The following people have participated in creating these solutions: Nicolaas E. Groeneboom, Magnus Pedersen Lohne, Karl R. Leikanger NOTE: There might be errors in the solution. If you find something which doens't look right, please let me know.

Partial solutions to problems: Lecture 11-12

Problem 1

Here, $\theta=1^{\prime \prime}=1 / 60 / 60 / 360 \cdot 2 \pi=4.8 \cdot 10^{-6}$ radians. The distance between the two observations is $r=2 A U$, such that the distance to the star is $d=(r / 2) / \theta=1 p c$. Naturally, a parsec is defined as the parallax angle of an arc second, so $d=1 / 1^{\prime \prime}=1$ parsec.

Problem 2

As in 7.1, $\theta=r / d=2 a u / 4.22 l y=7.5 \cdot 10^{-6}$ radians. The parallax angle half of this, or or $\theta \approx 0.77^{\prime \prime}$.

Problem 3

We use that

$$
m-M=5 \log _{10}\left(\frac{r}{10 p c}\right)
$$

and solve for the radius r :

$$
r=10 p c \cdot 10^{\frac{m-M}{5}}
$$

When "plotting" (that is, manually inserting) the observed apparent magnitudes of the stars in the cluster into the Hertzsprung-Russel diagram, we note that the difference between the two magnitudes (absolute and apparent) are about $\delta m=5$. Thus,

$$
r=10 p c \cdot 10^{\frac{5}{5}}=100 p c
$$

Problem 4

Supernovae type Ia always has an absolute magnitude of $M=-19.3 \pm 0.3$. If we observe a supernovae type Ia with apparent magnitude $m=20$, we can use

$$
r=10 p c \cdot 10^{\frac{m-M}{5}}
$$

to give an upper and lower estimate:

$$
r_{\min }=10 p c \cdot 10^{\frac{20+19.0}{5}} \approx 630 M p c
$$

$$
r_{\max }=10 p c \cdot 10^{\frac{20+19.6}{5}} \approx 832 M p c
$$

Problem 5

Hubble's law states that the velocity of a distant object is proportional to its distance: $v=H_{0} r$. The velocity can be measured from the shift of wavelength : $v=c \cdot\left(\lambda-\lambda_{0}\right) / \lambda_{0}$. Inserting and solving for r, we obtain

$$
r=c \frac{\lambda-\lambda_{0}}{\lambda_{0}} \cdot \frac{1}{H_{0}}
$$

Using that $H_{0} \approx 71 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$, we find

$$
r=3 \cdot 10^{8} \frac{29.7-21.2}{21.2} \cdot \frac{1}{71 \cdot 10^{3}} 1 \cdot 10^{6} p c \approx 1.7 G p c
$$

Problem 6

We start off by the optical-depth-modified version of

$$
m-M=5 \log _{10}\left(\frac{r}{10 p c}\right)+1.086 \tau
$$

such that when solving for the distance r :

$$
r=10 p c \cdot 10^{\frac{m-M-1.086 \tau}{5}}
$$

For $\tau=0.2$, we obtain the distance $r \approx 90 p c$.

Problem 7

Same formula gives an error of 285 Mpc .

