
The following people have participated in creating these solutions:

Nicolaas E. Groeneboom, Magnus Pedersen Lohne, Karl R. Leik-

anger NOTE: There might be errors in the solution. If you find something

which doens’t look right, please let me know.

Partial solutions to problems: Lecture 13-14

Problem 1

1. Full range given in following answer

2. Full range given in following answer

3. Using the HR-diagram (figure 1 in the lecture notes), the luminosity
of a G0 star ranges between 0.8 and 60 Lsun, but these numbers are
all approximate. In the same range, the absolute magnitude M would
be between 2 and 6.

4. Recall that it is possible to decide the distance r to a star from the
difference between apparent (m) and absolute (M) magnitude:

M − m = −5 log10(
r

10pc
)

solving for r gives

r = 10pc · 10m−M

5

With an apparent magnitude m = 1, we find that the range of distance
for a G0 star becomes

rmin = 10pc · 10 1−6

5 = 1pc

rmax = 10pc · 10 1−2

5 = 6pc

which isn’t very accurate.

Problem 2

1. For small values of θ, the diameter is given as D = d ·θ = 200pc ·3.5′ ≈
0.2pc. The radius is then d = D/2 = 0.1pc.

2. The volume of a sphere is given as V = 4
3πr3, so assuming a uniformly

distributed mass density ρ we obtain

M = ρ · V = 3 · 10−17kg/m3 · 4

3
π(0.1pc)3 ≈ 3.62 · 1030kg

which approximately is 1.8 solar masses.
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3. The mass of hydrogen is mh = 1.71·10−27kg, while the mean molecular
weight is assumed to be µ = 1 (that is, there are only hydrogen atoms
in the cloud). The Jean mass is defined as

MJ =
( 5kT

GµmH

)3/2( 3

4πρ

)1/2

and describes the mass threshold for whether a molecular cloud will
collapse to a more compact object (M > MJ) or not (M < MJ).
Inserting the values (where T=10K), we obtain a Jeans mass of MJ ≈
4.2 · 1031kg, or 21 solar masses. This is more than the result obtained
in 13.2.2, so this cloud will not collapse (alone) and form a protostar.

4. Recall that the condition for a cloud to collapse is that 2K < |U |,
where U is the potential energy and K kinetic energy. If a supernova
in the vicinity contributes to compressing the gas, the gravitational
attraction becomes stronger. This is because the mass density increases
while the radius of the cloud decreases, thus U grows. But why would
K on average not grow? Increasing the mass density should decrease
the jeans mass (MJ ∝ 1√

ρ). It is therefore plausible that a supernova

could contribute to the creation of protostars.

5. See the last answer.

6. The spiral shaped pressure wave will compress the gas at the tops of
the wave and thus increase the probability for star birth in these areas.

Problem 3

1. The volume V of a sphere as function of radius r is given as V (r) =
4
3πr3. The total mass is the mass density times the volume, so

M(r) =
4

3
πr3ρ

if we assume ρ to be constant.

2. The hydrostatic equation reads

dP

dr
= −ρG

M(r)

r2
= −4

3
πGρ2r

where the M(r) from 13.3.1 was inserted. We start by fluffing around
with differentials:

dP

dr
=

dP

dr

dT

dT
=

dT

dr

dP

dT
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The pressure is given as P = ρkT/(µmH). Then

dP

dr
=

dT

dr

dP

dT
=

dT

dr

d

dT

( ρkT

µmH

)

=
dT

dr

ρk

µmH

Insert this expression into the hydrostatic equation and obtain

dT

dr
= −4

3
πGρr

µmH

k
(0.1)

3. We now integrate this solution from 0 to r. Letting

C = πG
µmH

k

equation 0.1 becomes
dT

dr
= −4

3
Cρ · r

integrating with regards to r from 0 to R gives

T (R) − TC = −4

3
Cρ ·

∫ R

0
r = −2

3
CρR2

such that

TC =
2

3
CρR2 + T (R)

4. Assuming the Sun to be spherical with a homogeneous (homogeneous
means that ρ(~x) ≡ ρ0 is constant) density, the total mass is expressed
as

M = V · ρ =
4

3
πr3 · ρ

solving for ρ

ρ = M
3

4πR3
≈ 1.4 · 103kg/m3

We now use this ρ for estimating the core temperature of the sun:

TC = T (R) +
2

3
R2πGρ

µmH

k
≈ 11.5million K

where R = 700 000km, k the Boltzmann-constant, µ = 1 (assuming
only protons populate the sun), T (R) ≈ 0 as the surface temperature
is way lower than the core temperature, mH is the proton mass and
G the gravitational constant. The “real” temperature when accounting
for varying density ρ is ∼ 15 million K. Pretty hot, that is.

5. The pp-chain dominates as the core temperature TC < 20 million K.
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6. We already saw that

ρ = M
3

4πR3

inserting into

TC =
2

3
CρR2 + T (R)

we find

TC =
2

3
CR2M

3

4πR3
∝ M

R

7. The temperature in the core TC is proportional to

TC ∝ M

R

so if the temperature increases by a factor of 10, then for a constant
mass M the radius has to be decreased by a factor 10.

8. This is a nice exercise, as one has to utilize all previous knowledge from
this exercise. It is basically just a repetition of things already done,
but with a different pressure P. Return to the fact that

dP

dr
= −ρ

GM

r2
=

dP

dT

dT

dr
(0.2)

where now P = 1
3aT 4 is pure good old relativistic radiation pressure.

Then
dP

dT
=

4

3
aT 3

inserting this back into 0.2 to obtain

dT

dr
= −ρ

GM

r2

(

dP

dT

)−1

= −ρ
GM

r2

3

4aT 3

Separating the r and T on each side, we obtain a separable differential
equation:

T 3dT = −ρGM
3

4a

1

r2
= −πG

a
rρ2dr

where we used that the mass M = 4
3πr3ρ. Integrating both sides gives

∫ T (R)

TC

T 3dT = −ρ2 πG

a

∫ R

0
rdr

such that
1

4

(

T 4
C − T (R)4

)

= ρ2 πG

2a
R2

Solving for TC alone gives

T 4
C = T (R)4 + ρ2 2πG

a
R2

Take the 4th root on both sides, and Voilà! We’re done.
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Problem 4

1. We are now given a variable (and much more realistic) mass density of
a star which is dependent on r and the radius R:

ρ(r) =
ρC

1 +
(

r
R

)2

The mass inside a spherical shell of radius r is given as M =
∫

ρ · dV ,
where the volume element dV = 4πr2dr. Then

M(r) =

∫ r

0
ρ(r)4πr2dr = 4π

∫ r

0

ρCr2

1 +
(

r
R

)2 dr

Substituting x = r/R gives r = xR and dr = Rdx, such that

M(r) = 4π

∫ r

0

ρCx2R2

1 + x2
Rdx = 4πρCR3

∫ x

0

x2

1 + x2
dx

Using the fact that

∫ x

0

x2

1 + x2
dx = x − arctan x

the mass is expressed as

M(r) = 4πρCR3
( r

R
− arctan

r

R

)

2. The hydrostatic equilibrium is expressed as

dP

dr
= −ρ(r)

GM

r2
= −4π

ρC

1 +
(

r
R

)2 ρCR3
( r

R
− arctan

r

R

) G

r2
(0.3)

We use the ideal gas law P = ρ(r)kT (r)/(µmH), and take the deriv-
ative with respect to r. Then

dP

dr
=

d

dr

(T (r)ρ(r)k

µmh

)

Inserting this expression into 0.3 and move the constants µ,mH and k
to the right hand side yields

d

dr

(

ρ(r)T (r)
)

= −µmH

k
4π

ρ2
C

1 +
(

r
R

)2 R3
( r

R
− arctan

r

R

) G

r2

*puh*.
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3. This is again a separable differential equation, so we separate the r′s
and the T ′s on each side:

ρ(r)T (r) − ρCTC = −
∫ r

0

µmH

k
4π

ρ2
C

1 +
(

r
R

)2 R3
( r

R
− arctan

r

R

) G

r2
dr

Ni-ice. Now move the constants outside the integral:

ρ(r)T (r)−ρCTC = −
(µmH

k
ρ2

C4πR3G
)

∫ r

0

1

1 +
(

r
R

)2

( r

R
−arctan

r

R

) 1

r2
dr

and use the same substitution as in exercise 13.4.1:

ρ(r)T (r)−ρCTC = −
(µmH

k
ρ2

C4πR2G
)

∫ x

0

1

1 + x2

(

x−arctan x
) 1

x2
dx

where one of the R’s in the denominator disappeared due to the change
of variable. Including the 1/x2, we split the integral into two parts:

ρ(r)T (r)−ρCTC = −
(µmH

k
ρ2

C4πR2G
)

∫ x

0

( 1

(1 + x2)x
− arctan x

(1 + x2)x2

)

dx

(0.4)

4. We magically use that

∫ x

0

1

x(x2 + 1)
dx = ln x − 1

2
ln (x2 + 1)

and
∫ x

0

arctan x

x2(x2 + 1)
dx = −1

2
(arctan x)2− 1

x
arctan x+ln x−1

2
ln (x2 + 1)+1

The extra +1 has a curious origin: in the limit when x → ∞, then by
L’hôpital’s rule, limx→0 arctan(x)/x = 1. Inserting these two fellows
into equation 0.4, the logarithmic parts luckily cancel (as lnx→0 x =
−∞!). Then:

ρ(r)T (r)−ρCTC = −
(µmH

k
ρ2

C4πR2G
)(1

2

(

arctan(
r

R
)
)2

+
R

r
arctan

r

R
−1

)

Rearranging terms and dividing by ρC results in

TC =
ρ(r)

ρC
T (r)+

(µmH

k
ρC4πR2G

)(1

2

(

arctan(
r

R
)
)2

+
R

r
arctan

r

R
−1

)
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inserting for ρ(r) gives

TC =
1

1 +
(

r
R

)2 T (r)+
(µmH

k
ρC4πR2G

)(1

2

(

arctan(
r

R
)
)2

+
R

r
arctan

r

R
−1

)

(0.5)

which is the end result.

5. What happens when the arctan’s r ∝ x → ∞? From basic arithmetic’s,
we know that limx→π/2 tan(x) = ∞, so limx→∞ arctan x = π/2. In-
serting this into equation (0.5) one obtains

TC =
(µmH

k
ρC4πR2G

)(1

2

(π

2
)2 − 1

)

where the 1st and 3rd terms disappear as limx→∞ 1/(1 + x2) = 0.

6. From
ρ(r) =

ρC

1 +
(

r
R

)2

it is easy to see that the density ρ(r) = 1
2ρC when r = R. We now

need to decide what this R is. The core stops where r = 0.2Rsun, and
at this point ρ(r) = 1

10ρC . Then

1

10
ρC =

ρC

1 +
(

0.2Rsun

R

)2

where R is the point that the density is halved. Inverting both sides
and removing ρC yields

10 = 1 +
(0.2Rsun

R

)2

such that √
9 =

0.2Rsun

R
or

R =
0.2Rsun

3
≈ 0.067Rsun

7. We now use the approximation in the core:

TC =
(µmH

k
ρC4πR2G

)(1

2

(π

2
)2 − 1

)

where R was given in 13.4.6. Solve for ρC :

ρC =
TCk

µmHGR24π(π2/8 − 1)
≈ 2.9 · 105kg

or 200 times the mean density (assuming 1400kg/m3), about a factor
two wrong. Not bad!
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