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Partial solutions to problems: Lecture 18

Problem 1

We use equation (3) in the lecture notes:
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= ±(1 − 2M/r)

√
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and square:
(dr
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Then switching to shell-coordinates

drshell
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=
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(1 − 2M/r)1/2dt
=
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Divide by b2 to obtain the desired equation.
We see that this equation is on the form of equation (4) in the pre-

vious lecture notes (on relativistic orbits). We identify A = B = 1/b2,
x = drshell/dtshell and V 2(x) = (1 − 2M/r)/r2.

Problem 2

1. We differentiate the potential

V (r) =

√

1 − 2M/r

r2

and find the extremal points:

d
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V (r) =

1

2
√
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· (−
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such that d
drV (r) = 0 if
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Figure 1: Potential V(r) for M = 1 with a maximum at r = 3.

for r = 3M .

As seen from figure 1, this extremal point is a maximum and not a
minimum. As energy states stabilize towards minima, any perturbation
from the maximum of the potential will rapidly decay towards lower
energy states. Think of trying to balance a ball on top of the potential
maximum - any perturbation to the ball will make it fall down either
way. However, in a minimum, the ball would just roll back and forth
in the potential. As this potential describes the orbits of light around
a heavy object, we conclude that there are no stable orbits for light.

2. See the text to find the explanation for why r = 3M is called the light
sphere.

3. The critical point is when 1/b2 ∝ V (r) is larger or smaller than the
peak in figure 1. At the maximum, the value of V (rcrit) is

V (rcrit) = V (3M) =
1

3M

√

1 −
2M

3M
=

1

3
√

3M
=

1

bcrit

Problem 3

1. The situation is depicted in figure 2 with an enlargement of the triangle
ABC in figure 3.

The angular shift on the sky is given by α, the deflection of light is
∆φ. First we observe that as the distance to the star goes to infinity
γ → 90◦. The star is much more distant than the Sun so it is a
good approximation to set γ ≈ 90◦. Then we see from the figure that
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Figure 2: Deflection of light from a distant star by the Sun. ’Undeflected
beam’ refers to how a light beam from the star would have moved if the Sun
had not been there to deflect it.

β = 90◦ − ∆φ. Using the small triangle on the left hand side in figure
3 we have that

α + (90◦ − ∆φ) + 90◦ = 180◦

giving ∆α = ∆φ.

2. Inserting numbers for the mass and radius of the Sun (assuming that
the light passes very close to the solar surface) ∆α = ∆φ = 4M/R ≈
1.7′

3. Similarly for the moon we get α = 6.3 × 10−8 arc seconds.

Problem 4.6

Problems 4.1-4.5 should be possible to solve using the equations and figures
which are given. Here we only give the solution to problem 4.6. We use that
dS = 1010ly, dL = 109ly. The lensing formula is given as

θE =

√

4M(dS − dL)

dLdS

solving for M :

M =
θ2

EdLdS

4(dS − dL)
×

c2

G
= 1.35 × 1015M⊙.
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Figure 3: The triangle ABC in figure 2 enlarged.
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