The following people have participated in creating these solutions: Nicolaas E. Groeneboom, Magnus Pedersen Lohne, Karl R. Leikanger NOTE: There might be errors in the solution. If you find something which doens't look right, please let me know

Partial solutions to problems: Lecture 18

Problem 1

We use equation (3) in the lecture notes:

$$
\frac{d r}{d t}= \pm(1-2 M / r) \sqrt{1-(1-2 M / r) \frac{b^{2}}{r^{2}}}
$$

and square:

$$
\left(\frac{d r}{d t}\right)^{2}=(1-2 M / r)^{2}\left(1-(1-2 M / r) \frac{b^{2}}{r^{2}}\right)
$$

Then switching to shell-coordinates

$$
\frac{d r_{\text {shell }}}{d t_{\text {shell }}}=\frac{(1-2 M / r)^{-1 / 2} d r}{(1-2 M / r)^{1 / 2} d t}=\frac{d r}{(1-2 M / r) d t}
$$

such that

$$
\left(\frac{d r_{\text {shell }}}{d t_{\text {shell }}}\right)^{2}=1-(1-2 M / r) \frac{b^{2}}{r^{2}}
$$

Divide by b^{2} to obtain the desired equation.
We see that this equation is on the form of equation (4) in the previous lecture notes (on relativistic orbits). We identify $A=B=1 / b^{2}$, $x=d r_{\text {shell }} / d t_{\text {shell }}$ and $V^{2}(x)=(1-2 M / r) / r^{2}$.

Problem 2

1. We differentiate the potential

$$
V(r)=\sqrt{\frac{1-2 M / r}{r^{2}}}
$$

and find the extremal points:

$$
\frac{d}{d r} V(r)=\frac{1}{2 \sqrt{\frac{1-2 M / r}{r^{2}}}} \cdot\left(-\frac{2}{r^{3}}+\frac{6 M}{r^{4}}\right)=0
$$

such that $\frac{d}{d r} V(r)=0$ if

$$
\frac{2}{r^{3}}=\frac{6 M}{r^{4}}
$$

Figure 1: Potential $\mathrm{V}(\mathrm{r})$ for $M=1$ with a maximum at $r=3$.
for $r=3 M$.
As seen from figure 1, this extremal point is a maximum and not a minimum. As energy states stabilize towards minima, any perturbation from the maximum of the potential will rapidly decay towards lower energy states. Think of trying to balance a ball on top of the potential maximum - any perturbation to the ball will make it fall down either way. However, in a minimum, the ball would just roll back and forth in the potential. As this potential describes the orbits of light around a heavy object, we conclude that there are no stable orbits for light.
2. See the text to find the explanation for why $r=3 M$ is called the light sphere.
3. The critical point is when $1 / b^{2} \propto V(r)$ is larger or smaller than the peak in figure 1. At the maximum, the value of $V\left(r_{c r i t}\right)$ is

$$
V\left(r_{c r i t}\right)=V(3 M)=\frac{1}{3 M} \sqrt{1-\frac{2 M}{3 M}}=\frac{1}{3 \sqrt{3} M}=\frac{1}{b_{c r i t}}
$$

Problem 3

1. The situation is depicted in figure 2 with an enlargement of the triangle ABC in figure 3.

The angular shift on the sky is given by α, the deflection of light is $\Delta \phi$. First we observe that as the distance to the star goes to infinity $\gamma \rightarrow 90^{\circ}$. The star is much more distant than the Sun so it is a good approximation to set $\gamma \approx 90^{\circ}$. Then we see from the figure that

Figure 2: Deflection of light from a distant star by the Sun. 'Undeflected beam' refers to how a light beam from the star would have moved if the Sun had not been there to deflect it.
$\beta=90^{\circ}-\Delta \phi$. Using the small triangle on the left hand side in figure 3 we have that

$$
\alpha+\left(90^{\circ}-\Delta \phi\right)+90^{\circ}=180^{\circ}
$$

giving $\Delta \alpha=\Delta \phi$.
2. Inserting numbers for the mass and radius of the Sun (assuming that the light passes very close to the solar surface) $\Delta \alpha=\Delta \phi=4 M / R \approx$ 1.7^{\prime}
3. Similarly for the moon we get $\alpha=6.3 \times 10^{-8}$ arc seconds.

Problem 4.6

Problems 4.1-4.5 should be possible to solve using the equations and figures which are given. Here we only give the solution to problem 4.6. We use that $d_{S}=10^{10} l y, d_{L}=10^{9} l y$. The lensing formula is given as

$$
\theta_{E}=\sqrt{\frac{4 M\left(d_{S}-d_{L}\right)}{d_{L} d_{S}}}
$$

solving for M :

$$
M=\frac{\theta_{E}^{2} d_{L} d_{S}}{4\left(d_{S}-d_{L}\right)} \times \frac{c^{2}}{G}=1.35 \times 10^{15} M_{\odot}
$$

Figure 3: The triangle ABC in figure 2 enlarged.

