The following people have participated in creating these solutions:
Nicolaas E. Groeneboom, Magnus Pedersen Lohne, Karl R. Leik-
anger NOTE: There might be errors in the solution. If you find something
which doens’t look right, please let me know

Partial solutions to problems: Lecture 18

Problem 1

We use equation (3) in the lecture notes:

dr b2
i +(1 - 2M/r)\/1 - (1- 2M/T)ﬁ
and square:
dr 2 9 v?
<%) —(1—2M/r) (1 - 2M/r)ﬁ)
Then switching to shell-coordinates
d’rshell o (1 — 2M/’I“)71/2d7’ . dr
dtshen (1 —2M/r)\/2dt — (1—2M/r)dt
such that . 2
T'shell \ 2
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Divide by b? to obtain the desired equation.

We see that this equation is on the form of equation (4) in the pre-
vious lecture notes (on relativistic orbits). We identify A = B = 1/b?,
Tr = drshell/dtshell and Vz(m) = (1 — 2M/7“)/7“2.

Problem 2

1. We differentiate the potential

and find the extremal points:

d 1 2 6M
Vi) —— (2 Ty
dr (r)

such that d%V(T) =0 if
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Figure 1: Potential V(r) for M = 1 with a maximum at r = 3.

for r = 3M.

As seen from figure 1, this extremal point is a maximum and not a
minimum. As energy states stabilize towards minima, any perturbation
from the maximum of the potential will rapidly decay towards lower
energy states. Think of trying to balance a ball on top of the potential
maximum - any perturbation to the ball will make it fall down either
way. However, in a minimum, the ball would just roll back and forth
in the potential. As this potential describes the orbits of light around
a heavy object, we conclude that there are no stable orbits for light.

2. See the text to find the explanation for why r = 3M is called the light
sphere.

3. The critical point is when 1/b% o V(r) is larger or smaller than the
peak in figure 1. At the maximum, the value of V (rq;) is

1 2M 1 1
V(rerit) = VM) = op\[1 = 537 = 3VEM bt

Problem 3

1. The situation is depicted in figure 2 with an enlargement of the triangle

ABC in figure 3.

The angular shift on the sky is given by «, the deflection of light is
Ad¢. First we observe that as the distance to the star goes to infinity
v — 90°. The star is much more distant than the Sun so it is a
good approximation to set v = 90°. Then we see from the figure that
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Figure 2: Deflection of light from a distant star by the Sun. ’Undeflected
beam’ refers to how a light beam from the star would have moved if the Sun
had not been there to deflect it.

8 =90° — A¢. Using the small triangle on the left hand side in figure
3 we have that
a+ (90° — Ag) 4+ 90° = 180°

giving Ao = A¢.

2. Inserting numbers for the mass and radius of the Sun (assuming that
the light passes very close to the solar surface) Ao = A¢p = 4AM/R =~
1.7

3. Similarly for the moon we get av = 6.3 x 10~% arc seconds.

Problem 4.6

Problems 4.1-4.5 should be possible to solve using the equations and figures
which are given. Here we only give the solution to problem 4.6. We use that
ds = 10"y, dy, = 10°1y. The lensing formula is given as

AM (dg — dy)
Op = did
Las

2 2
M= 0pdrds " c
4(dg —dr) G

solving for M:

=1.35 x 1015 M.
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Figure 3: The triangle ABC in figure 2 enlarged.



