The following people have participated in creating these solutions: Nicolaas E. Groeneboom, Magnus Pedersen Lohne, Karl R. Leikanger NOTE: There might be errors in the solution. If you find something which doens't look right, please let me know

Partial solutions to problems: Lecture 19

Problem 1

1. We need to find the normalizing constant of the probability distribution n(v). One of the requirements for n(v) to be a probability distribution is that all the probabilities adds up to 1 :

$$\int_{-\infty}^{\infty} n_{\rm norm}(v) dv = \frac{1}{N} \int_{-\infty}^{\infty} n(v) dv = 1$$

where N is the normalizing constant. We insert for the Maxwell-Boltzmann distribution:

$$n\left(\frac{m}{2\pi kT}\right)^{3/2} 4\pi \int_{-\infty}^{\infty} e^{-\frac{1}{2}\frac{mv^2}{kT}} v^2 dv = N \tag{0.1}$$

Perform the substitution $x = \frac{1}{2} \frac{mv^2}{kT}$ such that

$$v^2 = \frac{2xkT}{m}$$

and hence

$$dv = \frac{kT}{vm}dx = \frac{kT\sqrt{m}}{m\sqrt{2xkT}}dx = \sqrt{\frac{kT}{2mx}}dx$$

When inserting this back into equation (0.1):

$$n\left(\frac{m}{2\pi kT}\right)^{3/2} 4\pi \int_0^\infty e^{-x} \frac{2xkT}{m} \sqrt{\frac{kT}{2mx}} dx = N$$

such that

$$n\left(\frac{m}{2\pi kT}\right)^{3/2} 4\pi \frac{2kT}{m} \sqrt{\frac{kT}{2m}} \int_0^\infty e^{-x} x^{\frac{1}{2}} dx = N$$

summarizing terms:

$$n\left(\frac{m}{2\pi kT}\right)^{3/2} 4\pi\sqrt{2}\left(\frac{2kT}{m}\right)^{3/2}\Gamma(\frac{3}{2}) = N$$

where

$$\Gamma(n) = n\Gamma(n-1) = \int_0^\infty e^{-x} x^{n-1} dx$$

is the **Gamma-function**. For $n \in \mathbb{N}$, we have that $\Gamma(n + 1) = n!$ and $\Gamma(1/2) = \sqrt{\pi}$ such that $\Gamma(\frac{3}{2}) = \frac{1}{2}\Gamma(\frac{1}{2}) = \frac{1}{2}\sqrt{\pi}$. This function will become *very important* when working with statistical physics and quantum mechanics, so it's in general a good idea to get familiarized and friendly with it as soon as possible. The Γ -function doesn't bite.. too much.

Now, summarizing shows that most terms cancel and we end up with

N = n

which is not very surprising: integrating the number density per velocity over all velocities we should expect to find the total number density.

2. We proceed by determining the average energy of the gas:

$$\langle E \rangle = \frac{1}{2}m \langle v^2 \rangle = \frac{1}{2}m \int n_{\rm norm}(v)v^2 dv$$

Inserting all values yields

$$\langle E \rangle = \frac{m}{2} \left(\frac{m}{2\pi kT}\right)^{3/2} 4\pi \int_0^\infty e^{-\frac{1}{2}\frac{mv^2}{kT}} v^4 dv$$

Performing the same substitution as in the previous exercise, then

$$\langle E \rangle = \frac{m}{2} \left(\frac{m}{2\pi kT}\right)^{3/2} 4\pi \int_0^\infty e^{-x} \left(\frac{2xkT}{m}\right)^2 \sqrt{\frac{kT}{2mx}} dv$$

or

$$\langle E \rangle = \frac{m}{2} \left(\frac{m}{2\pi kT}\right)^{3/2} 4\pi \left(\frac{2kT}{m}\right)^2 \sqrt{\frac{kT}{2m}} \Gamma(\frac{5}{2})$$

Using that $\Gamma(5/2) = \frac{3}{2}\Gamma(\frac{3}{2}) = \frac{3}{4}\sqrt{\pi}$, then

$$\langle E \rangle = \frac{m}{2} \left(\frac{m}{2\pi kT}\right)^{3/2} 4\pi \left(\frac{2kT}{m}\right)^2 \sqrt{\frac{kT}{2m}} \frac{3}{4} \sqrt{\pi}$$

Summarizing:

$$\langle E \rangle = \frac{3}{2}m \left(\frac{m}{2\pi kT}\right)^{3/2} \left(\frac{2\pi kT}{m}\right)^{3/2} \left(\frac{kT}{m}\right)$$

or (finally)

$$\langle E \rangle = \frac{3}{2}kT$$

Problem 2

1. We use supplied formula for pp-chain:

$$\epsilon_{pp} \approx \epsilon_{0,pp} X_H^2 \rho T_6^4 \approx 0.001$$

where $\epsilon_{0,pp} = 1.08 \cdot 10^{-12}$, $X_H = 0.33$, $\rho = 1.5 \cdot 10^5$ and T = 15.7. Similarly,a

$$\epsilon_{cno} \approx 3.4 \cdot 10^{-4}$$

and

 $\epsilon_{3\alpha} \approx 0$

as $0.157^{41} \approx 0.$

2. We see that $\epsilon_{pp}/\epsilon_{cno} \approx 3$, which is way off the 1% expectation. This answer is wrong because we assumed that the temperature is constant in the core, which is not true: the high temperatures are only evident in the center of the core. This means that most of the energy is created at lower temperatures, where the pp chain dominates.

The 3α is practically non-existing.

- 3. With $T = 13 \cdot 10^6 K$, we obtain a ratio $\epsilon_{pp}/\epsilon_{cno} \approx 65$, which is more closer to reality (that is, pp dominates CNO by approx 1.5%).
- 4. At what temperature T is $\epsilon_{pp} = \epsilon_{CNO}$? We equate:

$$\epsilon_{0,pp} X_H^2 \rho T_6^4 = \epsilon_{0,CNO} X_H X_{CNO} \rho T_6^{20}$$

Solving for T_6 :

$$T = \left(\frac{\epsilon_{0,pp} X_H}{\epsilon_{0,CNO} X_{CNO}}\right)^{\frac{1}{16}} \approx 17$$

such that CNO dominates from 17 million K (assuming the temperature in the core is homogeneous).

5. The total energy L_{sun} emmitted from the sun must equal the total mass inside the core of the sun multiplied with the reaction rate:

$$L_{sun} = \frac{4}{3}\pi R^3 \cdot \rho \cdot \epsilon$$

Solving for R:

$$R = \left(\frac{3L_{sun}}{4\pi\rho\epsilon}\right)^{1/3} \approx 0.15R_{sun}$$

when the values have been inserted.

6. Using the same equation as in the previous question, we obtain that $R\approx 0.6R_{sun}.$