The following people have participated in creating these solutions: Nicolaas E. Groeneboom, Magnus Pedersen Lohne, Karl R. Leikanger NOTE: There might be errors in the solution. If you find something which doens't look right, please let me know

Partial solutions to problems: Lecture 19

Problem 1

1. We need to find the normalizing constant of the probability distribution $n(v)$. One of the requirements for $n(v)$ to be a probability distribution is that all the probabilities adds up to 1 :

$$
\int_{-\infty}^{\infty} n_{\text {norm }}(v) d v=\frac{1}{N} \int_{-\infty}^{\infty} n(v) d v=1
$$

where N is the normalizing constant. We insert for the Maxwell-Boltzmann distribution:

$$
\begin{equation*}
n\left(\frac{m}{2 \pi k T}\right)^{3 / 2} 4 \pi \int_{-\infty}^{\infty} e^{-\frac{1}{2} \frac{m v^{2}}{k T}} v^{2} d v=N \tag{0.1}
\end{equation*}
$$

Perform the substitution $x=\frac{1}{2} \frac{m v^{2}}{k T}$ such that

$$
v^{2}=\frac{2 x k T}{m}
$$

and hence

$$
d v=\frac{k T}{v m} d x=\frac{k T \sqrt{m}}{m \sqrt{2 x k T}} d x=\sqrt{\frac{k T}{2 m x}} d x
$$

When inserting this back into equation (0.1):

$$
n\left(\frac{m}{2 \pi k T}\right)^{3 / 2} 4 \pi \int_{0}^{\infty} e^{-x} \frac{2 x k T}{m} \sqrt{\frac{k T}{2 m x}} d x=N
$$

such that

$$
n\left(\frac{m}{2 \pi k T}\right)^{3 / 2} 4 \pi \frac{2 k T}{m} \sqrt{\frac{k T}{2 m}} \int_{0}^{\infty} e^{-x} x^{\frac{1}{2}} d x=N
$$

summarizing terms:

$$
n\left(\frac{m}{2 \pi k T}\right)^{3 / 2} 4 \pi \sqrt{2}\left(\frac{2 k T}{m}\right)^{3 / 2} \Gamma\left(\frac{3}{2}\right)=N
$$

where

$$
\Gamma(n)=n \Gamma(n-1)=\int_{0}^{\infty} e^{-x} x^{n-1} d x
$$

is the Gamma-function. For $n \in \mathbb{N}$, we have that $\Gamma(n+1)=n$! and $\Gamma(1 / 2)=\sqrt{\pi}$ such that $\Gamma\left(\frac{3}{2}\right)=\frac{1}{2} \Gamma\left(\frac{1}{2}\right)=\frac{1}{2} \sqrt{\pi}$. This function will become very important when working with statistical physics and quantum mechanics, so it's in general a good idea to get familiarized and friendly with it as soon as possible. The Γ-function doesn't bite.. too much.

Now, summarizing shows that most terms cancel and we end up with

$$
N=n
$$

which is not very surprising: integrating the number density per velocity over all velocities we should expect to find the total number density.
2. We proceeed by determining the average energy of the gas:

$$
\langle E\rangle=\frac{1}{2} m\left\langle v^{2}\right\rangle=\frac{1}{2} m \int n_{\mathrm{norm}}(v) v^{2} d v
$$

Inserting all values yields

$$
\langle E\rangle=\frac{m}{2}\left(\frac{m}{2 \pi k T}\right)^{3 / 2} 4 \pi \int_{0}^{\infty} e^{-\frac{1}{2} \frac{m v^{2}}{k T}} v^{4} d v
$$

Performing the same substitution as in the previous exercise, then

$$
\langle E\rangle=\frac{m}{2}\left(\frac{m}{2 \pi k T}\right)^{3 / 2} 4 \pi \int_{0}^{\infty} e^{-x}\left(\frac{2 x k T}{m}\right)^{2} \sqrt{\frac{k T}{2 m x}} d v
$$

or

$$
\langle E\rangle=\frac{m}{2}\left(\frac{m}{2 \pi k T}\right)^{3 / 2} 4 \pi\left(\frac{2 k T}{m}\right)^{2} \sqrt{\frac{k T}{2 m}} \Gamma\left(\frac{5}{2}\right)
$$

Using that $\Gamma(5 / 2)=\frac{3}{2} \Gamma\left(\frac{3}{2}\right)=\frac{3}{4} \sqrt{\pi}$, then

$$
\langle E\rangle=\frac{m}{2}\left(\frac{m}{2 \pi k T}\right)^{3 / 2} 4 \pi\left(\frac{2 k T}{m}\right)^{2} \sqrt{\frac{k T}{2 m}} \frac{3}{4} \sqrt{\pi}
$$

Summarizing:

$$
\langle E\rangle=\frac{3}{2} m\left(\frac{m}{2 \pi k T}\right)^{3 / 2}\left(\frac{2 \pi k T}{m}\right)^{3 / 2}\left(\frac{k T}{m}\right)
$$

or (finally)

$$
\langle E\rangle=\frac{3}{2} k T
$$

Problem 2

1. We use supplied formula for $p p$-chain:

$$
\epsilon_{p p} \approx \epsilon_{0, p p} X_{H}^{2} \rho T_{6}^{4} \approx 0.001
$$

where $\epsilon_{0, p p}=1.08 \cdot 10^{-12}, X_{H}=0.33, \rho=1.5 \cdot 10^{5}$ and $T=15.7$.
Similarly, a

$$
\epsilon_{\text {cno }} \approx 3.4 \cdot 10^{-4}
$$

and

$$
\epsilon_{3 \alpha} \approx 0
$$

as $0.157^{41} \approx 0$.
2. We see that $\epsilon_{p p} / \epsilon_{c n o} \approx 3$, which is way off the 1% expectation. This answer is wrong because we assumed that the temperature is constant in the core, which is not true: the high temperatures are only evident in the center of the core. This means that most of the energy is created at lower temperatures, where the $p p$ chain dominates.

The 3α is practically non-existing.
3. With $T=13 \cdot 10^{6} \mathrm{~K}$, we obtain a ratio $\epsilon_{p p} / \epsilon_{\text {cno }} \approx 65$, which is more closer to reality (that is, $p p$ dominates $C N O$ by approx 1.5%).
4. At what temperature T is $\epsilon_{p p}=\epsilon_{C N O}$? We equate:

$$
\epsilon_{0, p p} X_{H}^{2} \rho T_{6}^{4}=\epsilon_{0, C N O} X_{H} X_{C N O} \rho T_{6}^{20}
$$

Solving for T_{6} :

$$
T=\left(\frac{\epsilon_{0, p p} X_{H}}{\epsilon_{0, C N O} X_{C N O}}\right)^{\frac{1}{16}} \approx 17
$$

such that CNO dominates from 17 million K (assuming the temperature in the core is homogeneous).
5. The total energy $L_{\text {sun }}$ emmitted from the sun must equal the total mass inside the core of the sun multiplied with the reaction rate:

$$
L_{\text {sun }}=\frac{4}{3} \pi R^{3} \cdot \rho \cdot \epsilon
$$

Solving for R :

$$
R=\left(\frac{3 L_{\text {sun }}}{4 \pi \rho \epsilon}\right)^{1 / 3} \approx 0.15 R_{\text {sun }}
$$

when the values have been inserted.
6. Using the same equation as in the previous question, we obtain that $R \approx$ $0.6 R_{\text {sun }}$.

