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Partial solutions to problems: Lecture 19

Problem 1

1. We need to find the normalizing constant of the probability distribution
n(v). One of the requirements for n(v) to be a probability distribution is
that all the probabilities adds up to 1 :

∫

∞

−∞

nnorm(v)dv =
1

N

∫

∞

−∞

n(v)dv = 1

where N is the normalizing constant. We insert for the Maxwell-Boltzmann
distribution:

n
( m

2πkT

)3/2

4π

∫

∞

−∞

e−
1

2

mv
2

kT v2dv = N (0.1)

Perform the substitution x = 1

2

mv2

kT such that

v2 =
2xkT

m

and hence

dv =
kT

vm
dx =

kT
√

m

m
√

2xkT
dx =

√

kT

2mx
dx

When inserting this back into equation (0.1):

n
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2πkT

)3/2

4π

∫

∞

0

e−x 2xkT

m

√

kT

2mx
dx = N

such that

n
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2πkT

)3/2
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2kT
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kT

2m

∫

∞

0

e−xx
1

2 dx = N

summarizing terms:

n
( m

2πkT

)3/2

4π
√

2
(2kT

m

)3/2

Γ(
3

2
) = N

where

Γ(n) = nΓ(n − 1) =

∫

∞

0

e−xxn−1dx

is the Gamma-function. For n ∈ N, we have that Γ(n + 1) = n! and
Γ(1/2) =

√
π such that Γ(3

2
) = 1

2
Γ(1

2
) = 1

2

√
π. This function will become

very important when working with statistical physics and quantum mech-
anics, so it’s in general a good idea to get familiarized and friendly with
it as soon as possible. The Γ-function doesn’t bite.. too much.
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Now, summarizing shows that most terms cancel and we end up with

N = n

which is not very surprising: integrating the number density per velocity
over all velocities we should expect to find the total number density.

2. We proceeed by determining the average energy of the gas:

〈E〉 =
1

2
m〈v2〉 =

1

2
m

∫

nnorm(v)v2dv

Inserting all values yields

〈E〉 =
m

2

( m

2πkT

)3/2

4π

∫

∞

0

e−
1

2

mv
2

kT v4dv

Performing the same substitution as in the previous exercise, then

〈E〉 =
m

2

( m

2πkT

)3/2

4π

∫

∞

0

e−x
(2xkT

m

)2

√

kT

2mx
dv

or

〈E〉 =
m

2

( m

2πkT

)3/2

4π
(2kT

m

)2

√

kT

2m
Γ(

5

2
)

Using that Γ(5/2) = 3

2
Γ(3

2
) = 3

4

√
π, then

〈E〉 =
m

2

( m

2πkT

)3/2

4π
(2kT

m

)2

√

kT

2m

3

4

√
π

Summarizing:

〈E〉 =
3

2
m

( m

2πkT

)3/2(2πkT

m

)3/2(kT

m

)

or (finally)

〈E〉 =
3

2
kT

Problem 2

1. We use supplied formula for pp-chain:

ǫpp ≈ ǫ0,ppX
2

HρT 4

6 ≈ 0.001

where ǫ0,pp = 1.08 · 10−12, XH = 0.33, ρ = 1.5 · 105 and T = 15.7.
Similarly,a

ǫcno ≈ 3.4 · 10−4

and
ǫ3α ≈ 0

as 0.15741 ≈ 0.
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2. We see that ǫpp/ǫcno ≈ 3, which is way off the 1% expectation. This
answer is wrong because we assumed that the temperature is constant in
the core, which is not true: the high temperatures are only evident in the
center of the core. This means that most of the energy is created at lower
temperatures, where the pp chain dominates.

The 3α is practically non-existing.

3. With T = 13 · 106K, we obtain a ratio ǫpp/ǫcno ≈ 65, which is more closer
to reality (that is, pp dominates CNO by approx 1.5% ).

4. At what temperature T is ǫpp = ǫCNO? We equate:

ǫ0,ppX
2

HρT 4

6 = ǫ0,CNOXHXCNOρT 20

6

Solving for T6:

T =
( ǫ0,ppXH

ǫ0,CNOXCNO

)
1

16 ≈ 17

such that CNO dominates from 17 million K (assuming the temperature
in the core is homogeneous).

5. The total energy Lsun emmitted from the sun must equal the total mass
inside the core of the sun multiplied with the reaction rate:

Lsun =
4

3
πR3 · ρ · ǫ

Solving for R:

R =
(3Lsun

4πρǫ

)1/3

≈ 0.15Rsun

when the values have been inserted.

6. Using the same equation as in the previous question, we obtain that R ≈
0.6Rsun.
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