The following people have participated in creating these solutions: Nicolaas E. Groeneboom, Magnus Pedersen Lohne, Karl R. Leikanger NOTE: There might be errors in the solution. If you find something which doens't look right, please let me know

Partial solutions to problems: Lecture 20

Problem 1

1. We use that $M \propto T^{2}$, that is,

$$
M=C T^{2}
$$

where we obtain C by using what we know about the sun: $C=M / T^{2} \approx$ $6 \cdot 10^{22}$. The small star with $M=0.5 M_{\text {sun }}$ has temperature

$$
T=\sqrt{0.5 * M / C} \approx 4000 K
$$

while the larger star $M=5 M_{\text {sun }}$

$$
T=\sqrt{5 * M / C} \approx 13000 K
$$

and the largest star $M=40 M_{\text {sun }}$

$$
T=\sqrt{40 * M / C} \approx 36000 K
$$

2. We use Wien's displacement law $T=2.9 \cdot 10^{6} n m K / \lambda=14400 K$. From this, $M=C T^{2}=6.2 M_{\text {sun }}$.

Problem 2

We use that the radiation pressure is given as $P \tilde{T}^{4}$ such that the hydrostatic equation reads

$$
\frac{d P}{d R}=\frac{d P}{d T} \frac{d T}{d R} \propto T^{3} \frac{T}{R} \propto g \rho \propto \frac{M^{2}}{R^{5}}
$$

in other words,

$$
\begin{equation*}
T^{4} \propto \frac{M^{2}}{R^{4}} \tag{0.1}
\end{equation*}
$$

using the fact (equation 2 in the lecture notes) that

$$
L \propto \frac{R^{4} T^{4}}{M}=M
$$

when equation (0.1) inserted

Problem 5

1. The hydrostatic equation says that

$$
\frac{d P}{d r} \propto g \rho \propto \frac{M^{2}}{R^{5}}
$$

but assuming that $P \propto r^{n}$ for any n, we find that

$$
\frac{d P}{d r} \propto R^{n-1}=\frac{R^{n}}{R} \propto \frac{P}{R}
$$

such that

$$
P \propto \frac{M^{2}}{R^{4}}
$$

2. For an ideal gas,

$$
P \propto \rho T=\frac{M}{R^{3}} T=\frac{M^{2}}{R^{4}}
$$

such that

$$
T \propto \frac{M}{R}
$$

3. The efficiency of the $p p$-chain is

$$
\epsilon_{p p}=\epsilon_{0, p p} X_{H}^{2} \rho T_{6}^{2} \approx 0.005
$$

while

$$
\epsilon_{C N O}=\epsilon_{0, C N O} X_{H} X_{C N O} \rho T_{6}^{20} \approx 0.009
$$

so the CNO-cycle dominated this star
4. For the triple- α process to occur, we need a helium-abundant core, that is, $X_{h e}=1$. In this case, we find

$$
\epsilon_{03 \alpha} \rho^{2}\left(\frac{T_{6}}{100}\right)^{41}=\epsilon_{0 C N O} X_{H} X_{C N O} \rho 18^{20}
$$

where we used that $T_{8}=T_{6} / 100$. Solving for T_{6} yields

$$
\begin{equation*}
T_{6}=\left(\frac{\epsilon_{0 C N O} X_{H} X_{C N O}}{\epsilon_{03 \alpha} \rho} \cdot 100^{41} \cdot 18^{20}\right)^{1 / 41} \approx 131 \text { million } \mathrm{K} \tag{0.2}
\end{equation*}
$$

5. We use that

$$
R \propto \frac{M}{T}=C \cdot \frac{1}{T}
$$

for M constant when the core is contracting and C is a constant. We determine C by using what we know about the star on the main sequence $\left(R=0.2 R_{\text {sun }}, T_{\text {sun }}=18 M K\right)$, so $C=R T$. For a core temperature to reach 131 million K , the radius of the core needs to be

$$
R=\frac{C}{T}=0.2 R_{\text {sun }} 18 \frac{1}{131}=0.0275 R_{\text {sun }}
$$

6. A more suitable density can be found as such

$$
\rho_{\text {before }}\left(0.2 R_{\text {sun }}\right)^{3}=\rho_{\text {after }}\left(0.0275 R_{\text {sun }}\right)^{3}
$$

such that

$$
\rho_{\text {after }}=\rho_{\text {before }}\left(\frac{0.2}{0.0275}\right)^{3}=384 \rho_{\text {before }}
$$

Using equation (0.2) we obtain a new core temperature of $T \approx 114$ million K.

