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Partial solutions to problems: Lecture 21

Problem 1

The normalization requirement

We have

n =

∫

∞

0

n(p)dp =

∫

∞

0

n
( 1

2πmkT

)3/2

e−p2/(2mkT )4πp2dp

= n
( 1

2πmkT

)3/2

4π

∫

∞

0

e−p2/(2mkT )p2dp

substitute: x = p2/(2mkT ), p =
√

2mkTx and dp = 1
2

√

2mkT/xdx. Dividing
by n, the integral is then

1 =
( 1

2πmkT

)3/2

4π

∫

∞

0

e−x2mkTx
1

2

√

2mkT/xdx

summarizing terms:

=
( 1

2πmkT

)3/2

2π
(

2mkT
)3/2

∫

∞

0

e−xx1/2dx

using that Γ(3/2) = 1
2Γ(1/2) = 1

2

√
π, we obtain

=
( 1

2πmkT

)3/2(

2mkTπ
)3/2

= 1

and we see that the distribution is already normalized, as required. We continue
by deciding on P :

Obtaining P

Now, P is found by

P =
1

3

∫

∞

0

pvn(p)dp

written out, this becomes

P =
1

3

∫

∞

0

p2

m
n(p)dp =

1

3m

∫

∞

0

n
( 1

2πmkT

)3/2

4πe−p2/(2mkT )p4dp

summarizing terms:

P =
4π

3m

( 1

2πmkT

)3/2
∫

∞

0

ne−p2/(2mkT )p4dp
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performing the substitute as in the previous section gives:

P =
4πn

3m

( 1

2πmkT

)3/2
∫

∞

0

e−x(2mkTx)2
1

2

√

2mkT/xdx

Summarizing again:

P =
2πn

3m

( 1

2πmkT

)3/2

(2mkT )5/2

∫

∞

0

e−xx3/2dx

using that Γ(5/2) = 3
2Γ(3/2) = 3

4

√
π, we find

P =
π3/2n

2m

( 1

2πmkT

)3/2

(2mkT )5/2 = nkT

Problem 2

1. We have

ne = np = percentage of protons in nucleus×total mass / mass of hydrogen =
Z

A
× ρ

mH

2.
3

2
kT <

h2

8me

(3ne

π

)2/3

3

2
kT <

h2

8me

( 3Zρ

πAmH

)2/3

12

h2
kTme <

( 3Zρ

πAmH

)2/3

(12

h2
kTme

)3/2

<
3Zρ

πAmH

or

ρ >
πAmH

3Z

(12

h2
kTme

)3/2

3. This is done by direct insertion: ρ > 7.03 · 108kg/m3.

4. We have

M =
4

3
πR3ρ

or

R =
(3M

4πρ

)1/3

with the density found in the previous question we obtain R ∼ 8790km

5. Inserting the mass of the Earth instead of the mass of the Sun, we obtain
R ∼ 126.6 km.
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Problem 3

In this exercise, we’re asked to derive the expression for the mean kinetic energy
of a particle in a degenerate gas. This gas no longer follows the normal M.B-
distribution, which we have used in earlier exercises.

1. Let’s summarize: We have a relation between n(~p)(the number density
per volume per momentum space volume for particles with momentum
~p) and n(p) (the number density per real space volume for particles with
absolute momentum p). This relation is given by n(p)dp = 4πp2n(~p)dp,
where we obtain the real-space volume element by integrating a sphere
over the momentum-space for a fixed absolute momentum. We’re now
asked to find a relation between n(p) and n(E). We know that

E =
p2

2m

such that
p =

√
2mE

and

dp =
1

2
√

2mE
· 2mdE =

√

m

2E
dE

dp

dE
=

√

m

2E

Now, we switch from n(p) to n(E) using the chain rule:

n(E) = n(p)
dp

dE
= n(p)

√

m

2E

and insert for n(p) = 4πp2n(~p):

n(E) = 4πp2n(~p)

√

m

2E
= 4

√
2πm3/2

√
En(~p)

where we substituted p2 = (2mE). We now insert for

n(~p) =
2

h3

1

e(p2
−p2

F
)/(2mkT ) + 1

n(E) =
8
√

2πm3/2

h3

√
E

1

e(p2
−p2

F
)/(2mkT ) + 1

Rewriting, we find

n(E) = 4π
(2m

h2

)3/2√
E

1

e(p2
−p2

F
)/(2mkT ) + 1

=
g(E)

e(p2
−p2

F
)/(2mkT ) + 1

2. We continue by finding the mean kinetic energy of a particle in a degen-
erate gas:

〈E〉 =

∫

∞

0

P (E)EdE
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First, remember that the probability distribution is given by n(E), but a
probability distribution needs to be normalized such that

P (E) = Nn(E)

where N is found by

∫

∞

0

P (E)dE = N

∫ Ef

0

n(E)dE = 1

where the Ef -limit is because n(E) = 0 for E > EF . The next thing we

do is an approximation: in this energy range, the e(p2
−p2

F )/(2mkT ) in n(E)
is much less than 1. We can then approximate n(E) ≈ g(E), and the
integral becomes surprisingly simple. But first we need to normalize the

distribution. For simplicity we define K = 4π
(

2m
h2

)3/2

. Then

1 = N

∫ Ef

0

g(E)dE = NK

∫ Ef

0

E1/2dE = NK
2

3
E

3/2
F = 1

such that N = 3/2(KE
3/2
F ). The expectation value is thus

〈E〉 = N

∫ Ef

0

g(E)EdE =
3

2
E

−3/2
F

∫ Ef

0

E3/2dE

〈E〉 =
3

2
E−3/2 2

5
E

5/2
F =

3

5
EF
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