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Partial solutions to problems: Lecture 21

Problem 1

The normalization requirement

We have
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substitute: x = p?/(2mkT), p = V2mkTx and dp = % 2mkT /xdz. Dividing
by n, the integral is then
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summarizing terms:
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using that I'(3/2) = 1T'(1/2) = /7, we obtain
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and we see that the distribution is already normalized, as required. We continue
by deciding on P:

Obtaining P
Now, P is found by
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written out, this becomes
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summarizing terms:
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performing the substitute as in the previous section gives:
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Summarizing again:
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using that I'(5/2) = 3I'(3/2) = 3 /7, we find
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Problem 2

1. We have
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3. This is done by direct insertion: p > 7.03 - 10%3kg/m?>.

4. We have 4
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with the density found in the previous question we obtain R ~ 8790km

5. Inserting the mass of the Earth instead of the mass of the Sun, we obtain
R ~ 126.6 km.



Problem 3

In this exercise, we're asked to derive the expression for the mean kinetic energy
of a particle in a degenerate gas. This gas no longer follows the normal M.B-
distribution, which we have used in earlier exercises.

1. Let’s summarize: We have a relation between n(p)(the number density
per volume per momentum space volume for particles with momentum
p) and n(p) (the number density per real space volume for particles with
absolute momentum p). This relation is given by n(p)dp = 4np?n(p)dp,
where we obtain the real-space volume element by integrating a sphere
over the momentum-space for a fixed absolute momentum. We’re now
asked to find a relation between n(p) and n(F). We know that
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Now, we switch from n(p) to n(E) using the chain rule:

n(E) = n(p)j—g = n(p)\/g

and insert for n(p) = 4mp?n(p):
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where we substituted p? = (2mE). We now insert for
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Rewriting, we find
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2. We continue by finding the mean kinetic energy of a particle in a degen-
erate gas:
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First, remember that the probability distribution is given by n(E), but a
probability distribution needs to be normalized such that

P(E) = Nn(E)
where N is found by
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where the Ey-limit is because n(E) = 0 for E > Ep. The next thing we
do is an approximation: in this energy range, the e(P*=Pr)/(2mkT) i n(E)

is much less than 1. We can then approximate n(F) ~ ¢(F), and the
integral becomes surprisingly simple. But first we need to normalize the
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distribution. For simplicity we define K = 47r(2h—’§‘) . Then
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such that N = 3/2(KE§’7/2). The expectation value is thus
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