The following people have participated in creating these solutions: Nicolaas E. Groeneboom, Magnus Pedersen Lohne, Karl R. Leikanger NOTE: There might be errors in the solution. If you find something which doens't look right, please let me know

Partial solutions to problems: Lecture 9-10

We have not inserted numbers here, but leave this for the reader.

Problem 1

This exercise is self-contained and will not be presented here.

Problem 3

A Lorentz transformation is denoted $c_{\mu \nu}$, where μ and ν runs through $0-3$. Thus $c_{\mu \nu}$ is a 4×4 matrix, where the μ and ν specifies which element of the matrix one is working with. For instance, c_{12} would correspond to the element located at the 2st row, 3rd column. A Lorentz transformation (matrix) operates on a vector (in 4-dimensional flat Minkowski space-time) as such:

$$
\begin{equation*}
c_{\mu \nu} x_{\nu}=x_{\mu}^{\prime} \tag{0.1}
\end{equation*}
$$

Here, Einstein's summation convention was used: $\sum_{\mu=0}^{\mu=3} x_{\mu} x_{\mu} \equiv x_{\mu} x_{\mu}$. In matrix form, equation 0.2 is nothing but

$$
\left(\begin{array}{llll}
c_{00} & c_{01} & c_{02} & c_{03} \\
c_{10} & c_{11} & c_{12} & c_{13} \\
c_{20} & c_{21} & c_{22} & c_{23} \\
c_{30} & c_{31} & c_{32} & c_{33}
\end{array}\right)\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{0}^{\prime} \\
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right]
$$

We now define $D_{\mu}=A_{\mu}+B_{\mu}$, where A and B are 4 -vectors. To show D_{μ} is a four-vector, we must show that it transforms as equation 0.2 .

$$
\begin{equation*}
c_{\mu \nu} D_{\nu}=c_{\mu \nu}\left(A_{\nu}+B_{\nu}\right)=c_{\mu \nu} A_{\nu}+c_{\mu \nu} B_{\nu}=A_{\mu}^{\prime}+B_{\mu}^{\prime}=D_{\mu}^{\prime} \tag{0.2}
\end{equation*}
$$

Thus the sum of two 4 -vectors is a 4 -vector.

Problem 4

1. In the rest frame of the neutron, $v=0$ such that $P_{\mu}(n)=\left(m_{n}, 0\right)$.
2. In the rest frame of the neutron, $p_{p}^{\prime}=\gamma_{p}^{\prime} m_{p} v_{p}^{\prime}$ and $E_{p}^{\prime}=\gamma_{p}^{\prime} m_{p}$. The 4 -vector is then

$$
P_{\mu}(p)=\left(\gamma_{p}^{\prime} m_{p}, \gamma_{p}^{\prime} m_{p} v_{p}^{\prime}\right)=\gamma_{p}^{\prime} m_{p}\left(1, v_{p}^{\prime}\right) .
$$

Here v_{p}^{\prime} is the velocity of the proton from the neutron frame and $\gamma_{p}^{\prime}=$ $1 / \sqrt{1-\left(v_{p}^{\prime}\right)^{2}}$.
3. In the rest frame of the neutron, $p_{e}^{\prime}=\gamma_{e}^{\prime} m_{e} v_{e}^{\prime}$ and $E_{e}^{\prime}=\gamma_{e}^{\prime} m_{e}$, such that $P_{\mu}\left(e^{-}\right)=\gamma_{e}^{\prime} m_{e}\left(1, v_{e}^{\prime}\right)$. Here v_{e}^{\prime} is the velocity of the electron from the neutron frame and $\gamma_{e}^{\prime}=1 / \sqrt{1-\left(v_{e}^{\prime}\right)^{2}}$.
4. We use conservation of momentum:

$$
P_{\mu}^{\prime}(n)=P_{\mu}^{\prime}(p)+P_{\mu}^{\prime}\left(e^{-}\right)
$$

Inserting, we find

$$
\left[\begin{array}{c}
m_{n} \\
0
\end{array}\right]=\left[\begin{array}{c}
\gamma_{p}^{\prime} m_{p} \\
\gamma_{p}^{\prime} m_{p} v_{p}^{\prime}
\end{array}\right]+\left[\begin{array}{c}
\gamma_{e}^{\prime} m_{e} \\
\gamma_{e}^{\prime} m_{e} v_{e}^{\prime}
\end{array}\right]
$$

Conservation of energy (P_{0}, first line) then gives

$$
m_{n}=\gamma_{p}^{\prime} m_{p}+\gamma_{e}^{\prime} m_{e},
$$

while the second line gives

$$
\gamma_{p}^{\prime} m_{p} v_{p}^{\prime}=-\gamma_{e}^{\prime} m_{e} v_{e}^{\prime} .
$$

Squaring the second line and writing it in terms of γ-factors:

$$
\left(\gamma_{p}^{\prime}\right)^{2} m_{p}^{2}-m_{p}^{2}=\left(\gamma_{e}^{\prime}\right)^{2} m_{e}^{2}-m_{e}^{2}
$$

Solve for γ_{e}^{\prime} from the first equation:

$$
\gamma_{e}^{\prime} m_{e}=m_{n}-\gamma_{p}^{\prime} m_{p}
$$

Insert in the second equation to obtain

$$
\gamma_{p}^{\prime}=\frac{m_{n}^{2}+m_{p}^{2}-m_{e}^{2}}{2 m_{p} m_{n}}
$$

From which we easily find that $v_{p}^{\prime}=0.001262$. Going back to the first equation we then find that $v_{e}^{\prime}=-0.9183016$ (where did we get the minus sign from?)
5. We now transform between the lab frame (where nothing is at rest) and the neutron rest frame. We use that $P_{\mu}\left(e^{-}\right)=c_{\mu \nu} P_{\nu}^{\prime}\left(e^{-}\right)$(note that the prime is now on the right hand side, meaning that we need to use $-v_{n}$ instead of v_{n}, why?). In matrix form for the electron,

$$
P_{\mu}=c_{\mu \nu} P_{\nu}^{\prime}\left(e^{-}\right)=\left(\begin{array}{cc}
\gamma_{n} & v_{n} \gamma_{n} \\
v_{n} \gamma_{n} & \gamma_{n}
\end{array}\right)\left[\begin{array}{c}
1 \\
v_{e}^{\prime}
\end{array}\right] \gamma_{e}^{\prime} m_{e}=\left[\begin{array}{l}
\gamma_{n}+v_{e}^{\prime} v_{n} \gamma_{n} \\
v_{n} \gamma_{n}+v_{e}^{\prime} \gamma_{n}
\end{array}\right] \gamma_{e}^{\prime} m_{e}
$$

where v_{n} is the neutron velocity in the lab frame and $\gamma_{n}=1 / \sqrt{1-v_{n}^{2}}$. Inserting numbers we have $E_{e}=1.481 \times 10^{-30} \mathrm{~kg}$ and $p_{e}=-1.168 \times$ $10^{-30} \mathrm{~kg}$. In exactly the same way we find $E_{p}=1.187 \times 10^{-26} \mathrm{~kg}$ and $p_{p}=1.175 \times 10^{-26} \mathrm{~kg}$.
6. We use the expression for relativistic energy (using the previous result)

$$
E_{e}=\frac{m_{e}}{\sqrt{1-v_{e}^{2}}}
$$

Solving for v_{e} we obtain $v_{e}=0.788922$ Similarly we obtain $v_{p}=$ 0.990025
7. Using the formula for relativistic addition of velocities we have

$$
v_{e}=\frac{v_{e}^{\prime}+v_{n}}{1+v_{e}^{\prime} v_{n}}
$$

using again the $-v_{n}$ as the speed of the neutron (check again that you understand why!). Similarly for the proton.
8. I don't like long and ugly calculations.

Problem 5

1. We let the electron move in the positive x -direction $v_{e}=v$ and the positron in the negative x -direction $v_{p}=-v$ such that

$$
v_{p}^{\prime}=\frac{v_{p}-v_{e}}{1-v_{p} v_{e}}=\frac{-2 v}{1+v^{2}}
$$

2. $P_{\mu}(e)=\gamma m(1, v)$ and $P_{\mu}(p)=\gamma m(1,-v)$, where m is the electron/positron mass and $\gamma=1 / \sqrt{1-v^{2}}$.
3.

$$
P_{\mu}^{\prime}(e \pm)=c_{\mu \nu} P_{\nu}(e \pm)=\left(\begin{array}{cc}
\gamma & -v \gamma \\
-v \gamma & \gamma
\end{array}\right)\left[\begin{array}{c}
1 \\
\mp v
\end{array}\right] m \gamma=\left[\begin{array}{c}
1 \pm v^{2} \\
-v \mp v
\end{array}\right] m \gamma^{2}
$$

4. In general, $E^{2}=p^{2}+m^{2}$. Photons have zero mass, so $E= \pm p$. A fourvector is generally expressed $P_{\mu}=(E, p, 0,0)$, such that the four-vector of a photon is always $P_{\mu}(\gamma)=(E, \pm E, 0,0)$.
5. Conservation of four-vectors gives (omitting the y-z-directions)

$$
P_{\mu}(e)+P_{\mu}(p)=P_{\mu}\left(\gamma_{1}\right)+P_{\mu}\left(\gamma_{2}\right),
$$

inserting:

$$
m \gamma(1, v)+m \gamma(1,-v)=\left(E_{1}, E_{1}\right)+\left(E_{2},-E_{2}\right) .
$$

Thus

$$
(2 m \gamma, 0)=\left(E_{1}+E_{2}, E_{1}-E_{2}\right)
$$

Momentum conservation gives $E_{1}-E_{2}=0$, so $E_{1}=E_{2}$.
6. The wavelength is given as $E=h c / \lambda$, so $\lambda=h c / E$. From the previous question we have $E=m \gamma$ such that $\lambda=h c /(m \gamma)$
7. A Lorentz boost (omitting y and z directions) is given by

$$
c_{\mu \nu} P_{\nu}=\left(\begin{array}{cc}
\gamma & -v \gamma \\
-v \gamma & \gamma
\end{array}\right)\left[\begin{array}{l}
P_{0} \\
P_{1}
\end{array}\right]=\left[\begin{array}{c}
P_{0}^{\prime} \\
P_{1}^{\prime}
\end{array}\right]=P_{\mu}^{\prime}
$$

When $P=(E, E)$ and $P^{\prime}=\left(E^{\prime}, E^{\prime}\right)$,

$$
\left(\begin{array}{cc}
\gamma & -v \gamma \\
-v \gamma & \gamma
\end{array}\right)\left[\begin{array}{c}
E \\
E
\end{array}\right]=\left[\begin{array}{c}
\gamma E-\gamma v E \\
-v \gamma E+\gamma E
\end{array}\right]
$$

Conservation of energy gives

$$
E^{\prime}=\gamma E-\gamma v E=E \gamma(1-v)
$$

8. This is found by insertion of the electron velocity v :

$$
E^{\prime}=E \gamma(1 \pm v)
$$

where E is the energy of the photons in the laboratory frame.
9. We start with

$$
\frac{\Delta \lambda}{\lambda}=\frac{\lambda^{\prime}-\lambda}{\lambda}=\frac{\lambda^{\prime}}{\lambda}-1=\frac{E}{E^{\prime}}-1,
$$

where we used $E=h c / \lambda$. Inserting the expression for energy,

$$
\frac{\Delta \lambda}{\lambda}=\frac{E}{E^{\prime}}-1=\frac{1}{\gamma(1-v)}-1=\frac{\sqrt{1-v^{2}}}{1-v}-1=\sqrt{\frac{(1-v)(1+v)}{(1-v)^{2}}}-1=\sqrt{\frac{1+v}{1-v}}-1
$$

which is the relativistic Doppler formula.
10. We Taylor expand the expression $f(v)=\sqrt{(1+v) /(1-v)}$ to first order, as v is very small (and hence v^{2} even smaller).

$$
f(v) \approx f(0)+f^{\prime}(0) \cdot v
$$

where $f(0)=1$ is trivial. We differentiate f :

$$
f^{\prime}(v)=\frac{d}{d v} \sqrt{\frac{1+v}{1-v}}=\frac{1}{2 \sqrt{\frac{1+v}{1-v}}}\left(\frac{1}{(1-v)^{2}}+\frac{1}{1-v}+\frac{v}{(1-v)^{2}}\right)
$$

letting $v=0$,we find $f^{\prime}(0)=1$, such that we end up with

$$
\frac{\Delta \lambda}{\lambda}=\sqrt{\frac{1+v}{1-v}}-1=f(v)-1 \approx 1+v-1=v
$$

which is the non-relativistic Doppler effect.

