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Partial solutions to problems: Lecture 9-10

We have not inserted numbers here, but leave this for the reader.

Problem 1

This exercise is self-contained and will not be presented here.

Problem 3

A Lorentz transformation is denoted cµν , where µ and ν runs through 0− 3.
Thus cµν is a 4 × 4 matrix, where the µ and ν specifies which element
of the matrix one is working with. For instance, c12 would correspond to
the element located at the 2st row, 3rd column. A Lorentz transformation
(matrix) operates on a vector (in 4-dimensional flat Minkowski space-time)
as such:

cµνxν = x′

µ
(0.1)

Here, Einstein’s summation convention was used:
∑

µ=3

µ=0
xµxµ ≡ xµxµ. In

matrix form, equation 0.2 is nothing but
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



=









x′

0

x′

1

x′

2

x′

3


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We now define Dµ = Aµ + Bµ, where A and B are 4-vectors. To show Dµ is
a four-vector, we must show that it transforms as equation 0.2.

cµνDν = cµν(Aν + Bν) = cµνAν + cµνBν = A′

µ
+ B′

µ
= D′

µ
(0.2)

Thus the sum of two 4-vectors is a 4-vector.

Problem 4

1. In the rest frame of the neutron, v = 0 such that Pµ(n) = (mn, 0).
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2. In the rest frame of the neutron, p′
p

= γ′

p
mpv

′

p
and E′

p
= γ′

p
mp. The

4-vector is then

Pµ(p) = (γ′

p
mp, γ

′

p
mpv

′

p
) = γ′

p
mp(1, v

′

p
).

Here v′
p

is the velocity of the proton from the neutron frame and γ′

p
=

1/
√

1 − (v′
p
)2.

3. In the rest frame of the neutron, p′
e

= γ′

e
mev

′

e
and E′

e
= γ′

e
me, such

that Pµ(e−) = γ′

e
me(1, v

′

e
). Here v′

e
is the velocity of the electron from

the neutron frame and γ′

e
= 1/

√

1 − (v′
e
)2.

4. We use conservation of momentum:

P ′

µ
(n) = P ′

µ
(p) + P ′

µ
(e−)

Inserting, we find

[

mn

0

]

=

[

γ′

p
mp

γ′

p
mpv

′

p

]

+

[

γ′

e
me

γ′

e
mev

′

e

]

Conservation of energy (P0, first line) then gives

mn = γ′

p
mp + γ′

e
me,

while the second line gives

γ′

p
mpv

′

p
= −γ′

e
mev

′

e
.

Squaring the second line and writing it in terms of γ-factors:

(γ′

p
)2m2

p
− m2

p
= (γ′

e
)2m2

e
− m2

e

Solve for γ′

e
from the first equation:

γ′

e
me = mn − γ′

p
mp

Insert in the second equation to obtain

γ′

p
=

m2
n

+ m2
p
− m2

e

2mpmn

From which we easily find that v′
p

= 0.001262. Going back to the first
equation we then find that v′

e
= −0.9183016 (where did we get the

minus sign from?)
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5. We now transform between the lab frame (where nothing is at rest)
and the neutron rest frame. We use that Pµ(e−) = cµνP ′

ν
(e−) (note

that the prime is now on the right hand side, meaning that we need to
use −vn instead of vn, why?). In matrix form for the electron,

Pµ = cµνP ′

ν
(e−) =

(

γn vnγn

vnγn γn

) [

1
v′
e

]

γ′

e
me =

[

γn + v′
e
vnγn

vnγn + v′
e
γn

]

γ′

e
me

where vn is the neutron velocity in the lab frame and γn = 1/
√

1 − v2
n
.

Inserting numbers we have Ee = 1.481 × 10−30kg and pe = −1.168 ×
10−30kg. In exactly the same way we find Ep = 1.187 × 10−26kg and
pp = 1.175 × 10−26kg.

6. We use the expression for relativistic energy (using the previous result)

Ee =
me

√

1 − v2
e

Solving for ve we obtain ve = 0.788922 Similarly we obtain vp =
0.990025

7. Using the formula for relativistic addition of velocities we have

ve =
v′
e
+ vn

1 + v′
e
vn

using again the −vn as the speed of the neutron (check again that you
understand why!). Similarly for the proton.

8. I don’t like long and ugly calculations.

Problem 5

1. We let the electron move in the positive x-direction ve = v and the
positron in the negative x-direction vp = −v such that

v′
p

=
vp − ve

1 − vpve

=
−2v

1 + v2

2. Pµ(e) = γm(1, v) and Pµ(p) = γm(1,−v), where m is the electron/positron
mass and γ = 1/

√
1 − v2.

3.

P ′

µ
(e±) = cµνPν(e±) =

(

γ −vγ
−vγ γ

)[

1
∓v

]

mγ =

[

1 ± v2

−v ∓ v

]

mγ2
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4. In general, E2 = p2+m2. Photons have zero mass, so E = ±p. A four-
vector is generally expressed Pµ = (E, p, 0, 0), such that the four-vector
of a photon is always Pµ(γ) = (E,±E, 0, 0).

5. Conservation of four-vectors gives (omitting the y-z-directions)

Pµ(e) + Pµ(p) = Pµ(γ1) + Pµ(γ2),

inserting:

mγ(1, v) + mγ(1,−v) = (E1, E1) + (E2,−E2).

Thus
(2mγ, 0) = (E1 + E2, E1 − E2)

Momentum conservation gives E1 − E2 = 0, so E1 = E2.

6. The wavelength is given as E = hc/λ, so λ = hc/E. From the previous
question we have E = mγ such that λ = hc/(mγ)

7. A Lorentz boost (omitting y and z directions) is given by

cµνPν =

(

γ −vγ
−vγ γ

) [

P0

P1

]

=

[

P ′

0

P ′

1

]

= P ′

µ

When P = (E,E) and P ′ = (E′, E′),

(

γ −vγ
−vγ γ

)[

E
E

]

=

[

γE − γvE
−vγE + γE

]

Conservation of energy gives

E′ = γE − γvE = Eγ(1 − v)

8. This is found by insertion of the electron velocity v:

E′ = Eγ(1 ± v)

where E is the energy of the photons in the laboratory frame.

9. We start with

∆λ

λ
=

λ′ − λ

λ
=

λ′

λ
− 1 =

E

E′
− 1,

where we used E = hc/λ. Inserting the expression for energy,

∆λ

λ
=

E

E′
−1 =

1

γ(1 − v)
−1 =

√
1 − v2

1 − v
−1 =

√

(1 − v)(1 + v)

(1 − v)2
−1 =

√

1 + v

1 − v
−1

which is the relativistic Doppler formula.
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10. We Taylor expand the expression f(v) =
√

(1 + v)/(1 − v) to first
order, as v is very small (and hence v2 even smaller).

f(v) ≈ f(0) + f ′(0) · v

where f(0) = 1 is trivial. We differentiate f:

f ′(v) =
d

dv

√

1 + v

1 − v
=

1

2
√

1+v

1−v

( 1

(1 − v)2
+

1

1 − v
+

v

(1 − v)2
)

letting v = 0,we find f ′(0) = 1, such that we end up with

∆λ

λ
=

√

1 + v

1 − v
− 1 = f(v) − 1 ≈ 1 + v − 1 = v

which is the non-relativistic Doppler effect.
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