
AST1100 Lecture Notes

13 - 14 Stars and stellar birth:

1 The Hertzsprung-Russell diagram revisited

We have already encountered the Hertzsprung-Russell (HR) diagram, the
diagram where stars are plotted according to their temperature and lumi-
nosity. There are several versions of this diagram, differing mainly in the
units plotted on the axes. The most used units on the x-axis are:

• Temperature

• B-V color index

• spectral classes

We have so far seen temperature on the x-axis. The temperature of a star
is directly related to its color and one can therefore also use the B − V
color index (see the lecture on cosmic distances) on the x-axis. There is also
another another possibility: spectral classes. Stars are classified according to
their spectral class which consists of a letter and a number. This historical
classification is based on the strength of different spectral lines found in
the spectra of the stars. It turned out later that these spectral classes are
strongly related to the temperature of the star: The temperature of the star
determines the state of the different atoms and therefore the possible spectral
lines which can be created.

The letters used in the spectral classification are, in the order of decreas-
ing temperature, O, B, A, F, G, K, M. The warmest O stars have surface
temperatures around 40 000K, the coldest M stars have surface temperatures
down to about 2 500K. Each of these classes are divided into 10 subclasses
using a number from 0 to 9. So the warmest F stars are called F0 and the
coldest F stars are called F9.

Normally observational astronomers tend to use either spectral class or
color index which are quantities related to the observed properties of the
star. Theoretical astrophysicists on the other hand, tend to use temperature
which is more important when describing the physics of the star.
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Also the y-axis in an HR-diagram have different units. We have already
seen luminosity and absolute magnitude which are two closely related quan-
tities. In addition one can use luminosity classes. It turns out that stars
which have the same spectral class but different luminosities also have some
small differences in the spectral lines. These differences have been shown to
depend on the luminosity of the star. There are 6 luminosity classes, num-
bered with Roman numerals from I to VI. The most luminous stars have
luminosity class I. Using this classification, the Sun is a G2V star.

Before we start to discuss the diagram in more detail, let us try to under-
stand what it is telling us. We know that the flux of a star with temperature
T can be expressed using the Stefan-Boltzmann law as F = σT 4. To obtain
the luminosity L, we need to integrate this flux over the full area 4πR2 of
the surface of the star giving (why?, check that you understand this!),

L = 4πR2σT 4.

Looking at the HR-diagram (see figure 1), we see that there are some spec-
tral classes for which there are stars with many different luminosities. For
instance stars with spectral class K0 have a range in luminosity from 0.5 to
1000 solar luminosities. If we fix T in the relation above (remember: fixed
T means fixed spectral class) , we see than higher luminosity simply means
larger radius. So for a fixed temperature, the higher the star is located in
the HR-diagram the larger radius it has. This also means that we can find
lines of constant radius in the diagram. Fixing the radius to a constant we
get

R2 =
L

4πσT 4
= constant,

so that for stars located along lines following L ∝ T 4 in the diagram, the
radius is the same. In figure 2 some of these lines have been plotted. Note
that these lines go from the upper left to the lower right, a bit similar to the
main sequence. So main sequence stars are stars which have a certain range
of radii. The fact that most of the stars are located on the main sequence
means that the physics of stars somehow prohibits smaller and larger radii
(look at the figure again and check that you understand) . We will come to
this in some more detail later.

Now it is clear why the stars which are situated above the main sequence
are called giants or super giants and the stars well below the main sequence
are called dwarfs. Main sequence stars usually have radii in the range 0.1R⊙
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Figure 1: HR-diagram. From http://www.answers.com/topic/hertzsprung-
russell-diagram?cat=technology
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Figure 2: HR-diagram with constant radii lines plotted. From
http://astro.wsu.edu/worthey/astro/html/im-Galaxy/

4



to about 10R⊙. Giant stars fall in the range between 10R⊙ to about 100R⊙

whereas super giants may have radii of several 100 solar radii. The masses of
stars range from 0.08M⊙ for the least massive stars up to about 100M⊙ for the
most massive stars. We will later discuss theoretical arguments explaining
why there is a lower and an upper limit of star masses.

We will now start to look at the evolution of stars, from birth to death.
Stars start out as huge clouds of gas contracting due to their own gravity.
Thus a star starts out on the far right side of the HR-diagram, with a very low
temperature. Then, as it contracts, the radius decreases and the temperature
increases. It moves leftwards and finally after nuclear reactions have begun,
the star settles on the main sequence. Where it settles on the main sequence
depends on the mass of the star. As we will show later, the larger the mass,
the higher the luminosity and the higher the surface temperature. So the
more massive stars settles on the left side of the main sequence whereas
the less massive stars settles on the right side of the main sequence. Stars
spend the largest part of their lives on the main sequence. During the time
on the main sequence they move little in the HR-diagram. Towards the
end of their lives, when the hydrogen in the core has been exhausted, the
stars increase their radii several times becoming giants or supergiants. The
surface temperature goes down, but due to the enormous increase in radius
the luminosity increases. After a short time as a giant, the star dies: Low
mass stars die silently, blowing off the outer layers and leaving behind a small
white dwarf star in the lower part of the HR-diagram. The more massive
stars die violently in a supernova explosion leaving behind a so-called neutron
star or a black hole. We will now discuss the physics behind each of these
steps in turn. Beginning here with star birth: a gas of cloud contracting.

2 The Jeans criterion

A star forms from a cloud of gas, a so-called molecular cloud, undergoing
gravitational collapse. These molecular clouds consist mainly of atomic and
molecular hydrogen, but also contain dust and even more complex organic
molecules. The question is whether a cloud will start collapsing or not. In
the lectures on the virial theorem we saw that the condition for stability is
2K +U = 0. If the kinetic energy is larger compared to the potential energy,
the system does not stabilize, the gas pressure is larger than the gravitational
forces and the cloud expands. On the other hand, if the potential energy is
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dominating, the cloud is gravitationally bound and undergoes collapse. For
a cloud to collapse we thus have the condition (why?),

2K < |U |.

In the lectures on the virial theorem, we found an expression for the potential
energy of the cloud:

U ∝ 3GM2

5R
,

where M is the mass of the cloud and R is the radius. From thermodynamics,
we learn that the kinetic energy of a gas is given by

K =
3

2
NkT,

where N is the number of particles in the gas, k is the Boltzmann constant
and T is the temperature. We can write N as

N =
M

µmH
, (1)

where m = µmH is the mean mass per gas particle. The mean molecular

weight

µ =
m

mH
,

is simply the mean mass per particle measured in units of the hydrogen
mass mH (check now that expression 1 for N makes sense for you! This is
important!). So the condition 2K < |U | becomes simply

3MkT

µmH

<
3GM2

5R
.

We can write this as a criterion on the mass

M >
5kT

GµmH

R.

This minimum mass is called the Jeans mass MJ which we can write in terms
of the mean density of the cloud as

MJ =

(

5kT

GµmH

)3/2 (

3

4πρ

)1/2

,
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where we used ρ = M/(4/3πR3) assuming constant density throughout the
cloud. Thus, clouds with a larger mass than the Jeans mass M > MJ will
have 2K < |U | and therefore start a gravitational collapse. We can also
write this in terms of a criterion on the radius of the cloud. Using again the
expression for the density we have the Jeans length (check again that you
can deduce this expression from the expression above)

RJ =

(

15kT

4πGµmHρ

)1/2

.

A cloud with a larger radius than the Jeans length R > RJ will undergo grav-
itational collapse. The Jeans criterion for the collapse of a cloud is a good
approximation in the absence of rotation, turbulence and magnetic fields.
In reality however, all these factors do contribute and far more complicated
considerations are needed in order to calculate the exact criterion.

The collapsing cloud will initially be in free fall, a period when the pho-
tons generated by the converted potential energy are radiated away without
heating the cloud (the density of the cloud is so low that the photons can
easily escape without colliding with the atoms/molecules in the gas). The
initial temperature of the cloud of about T = 10K − 100K will not increase.
After about one million years, the density of the cloud has increased and the
photons cannot easily escape. They start heating the cloud and potential
energy is now radiated away as thermal radiation. In the lectures on the
virial theorem we made an approximate calculation of the time it would take
the Sun to collapse to its present size assuming a constant luminosity. We
found a collapse time of about 10 million years. Proper calculations show
that this process would take about 40 million years for a star similar to the
Sun. The contracting star is called a protostar.

When the core of the collapsing protostar has reached sufficiently high
temperatures, thermonuclear fusion begins in the center. The luminosity
starts to get dominated by the energy produced by nuclear fusion rather than
converted potential energy from the gravitational collapse. The protostar
keeps contracting until hydrostatic equilibrium is reached and the star has
entered the main sequence.
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Figure 3: The mass element dm inside a main sequence star is not moving.

3 Settling on the main sequence: Hydrostatic

equilibrium

In figure 3 we show a mass element with mass dm inside a star at a radius r
from the center. We know that gravity pulls this element towards the center.
But a main sequence star does not change its radius with time, so there
must be a force working in the opposite direction keeping this mass element
stable at radius r. This force is the pressure. In a main sequence star, the
pressure forces must exactly equal the force of gravity, otherwise the star
would change its radius. This fact, called hydrostatic equilibrium, gives us
an invaluable source of information about a star’s interior. We can’t observe
the interior of a star directly, but the equation of hydrostatic equilibrium
together with other thermodynamic relations combined with observations of
the star’s surface allow detailed computer modeling of the interior of stars.
Here we will deduce this important equation.

In figure 4 we have zoomed in on the mass element dm. Because of the
symmetry of the problem (the fact that gravitation only works radially), we
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Figure 4: The mass element dm inside a main sequence star is not moving:
The forces add to zero.

can assume spherical symmetry, i.e. that density, pressure and temperature
are all only a function only of the distance r from the center. We show the
forces of pressure pushing on the mass element from above and below, as well
as the force of gravity. Assuming that the element is infinitesimally small,
there are no gravitational forces pushing on the sides and the pressure forces
on the sides will be equal since the distance r from the center is the same
on both sides. The forces on the sides must therefore sum up to zero. We
will now look at a possible radial movement of the mass element. Newton’s
second law on the mass element gives

dm
d2r

dt2
= −F grav − F pressure(r + dr) + F pressure(r),

where all forces are defined to be positive. The minus sign on the two first
forces show that they push towards the center in negative r direction. The
area of the upper and lower sides of the element is dA. Pressure is defined
as force per area, so

P =
F pressure

dA
,
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giving

dm
d2r

dt2
= −G

M(r)dm

r2
− P (r + dr)dA + P (r)dA,

(check that you understand where each term comes from here) where M(r)
is the total mass inside radius r:

M(r) =
∫ r

0
dr′4π(r′)2ρ(r′) (2)

The infinitesimal difference in pressure between r and r + dr is dP = P (r +
dr) − P (r). We have

dm

dA

d2r

dt2
= −dm

dA

GM(r)

r2
− dP

We write the mass of the element as the density ρ(r) at radius r times the
volume dAdr of the mass element dm = ρdAdr. Dividing by dr on both sides
give

ρ
d2r

dt2
= −G

ρM(r)

r2
− dP

dr
.

(did you understand all parts of the deduction?) For a main sequence star,
the radius is not changing so the mass element cannot have any acceleration
in r direction giving d2r/dt2 = 0. This gives the equation of hydrostatic
equilibrium

dP

dr
= −ρ(r)g(r),

where g(r) is the local gravitational acceleration

g(r) = G
M(r)

r2
.

The equation of hydrostatic equilibrium tells us how the pressure P (r) must
change as a function of radius in order for the star to be stable. In the fol-
lowing we will study what kind of pressure we might experience inside a star
and which effect it has.

From thermodynamics we learn that the gas pressure in an ideal gas can
be written as

P =
ρkT

µmH

.
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An ideal gas is a gas where the atoms or molecules of which the gas consists
do not interact with each other. This is not the case in real gases but often
a good approximation. In the stellar interior, there is a high density of
photons traveling in all possible directions. The photons behave like the
atoms or molecules in a gas. So we may consider the collection of photons
as a photon gas. This photon gas also has a pressure in the same way as a
normal gas has. Thermodynamics tells as that the pressure of a photon gas
is given by

P =
1

3
aT 4,

where a = 7.56 × 10−16 J/m3K4 is the radiation constant.

4 Problems

Problem 1 (10 - 20 min.) Look at the HR-diagram in figure 1. Assume
that you observe a main sequence star with spectral class G0. The apparent
magnitude of the star is m = 1.

1. Roughly what luminosity and absolute magnitude would you expect
the star to have? (use the diagram)

2. Using this result, can you give a rough approximation of the distance?

3. Looking again at the HR-diagram. Roughly what is the minimum and
maximum absolute magnitude you would expect the star to have?

4. What is the range of distances the star could have?

This method for measuring distances is called spectroscopic parallax (al-
though it has nothing to do with normal parallax). I have not included
this method in the lectures on distance measurements. From the answer to
the last question you will understand why it is not a very exact method.

Problem 2 (30 - 45 min.) A Giant Molecular Cloud (GMC) has typi-
cally a temperature of T = 10K and a density of about ρ = 3× 10−17kg/m3.
A GMC has been observed at a distance of r = 200pc. It’s angular extension
on the sky is 3.5′. Assume the cloud to be spherical with uniform density.

1. What is the actual radius of the cloud?
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2. What is the mass of the cloud?

3. Is the mass larger than the Jeans mass? Is the cloud about to collapse
and form a protostar?

4. A supernova explodes in the vicinity of the star emitting a pressure
wave which passes through the cloud. If an external pressure is push-
ing the cloud together, could this possibly lead to a decrease in the
minimum mass required for collapse (give arguments in terms of K
and U)? Argue why a decrease in minimum mass is more probable
than an increase (hint: does K really increase for all particles when
you compress the cloud?)

5. Could the supernova thus have contributed to the collapse of a cloud
which has a mass less than the Jeans mass?

6. The galaxy has a fairly uniform distribution of hydrogen in the galactic
disc. If a pressure wave is moving around the center of the disc in a
spiral like shape, would this explain why we observe galaxies as spirals
and not as a disc?

Problem 3 (2 - 3 hours) We will now assume a very simple model
of the Sun in order to show how one can use the equation of hydrostatic
equilibrium to understand stellar interiors and the nuclear reactions taking
place in the stellar cores. We will assume that the density of the Sun ρ = ρ0

is uniform throughout.

1. Find an expression for the total mass M(r) inside a radius r.

2. We will now assume that the only pressure in the Sun is the gas pres-
sure from an ideal gas. We ignore the radiation pressure. Insert this
expression for M(r) into the equation of hydrostatic equilibrium and
show that it can be written as

dT

dr
= −4π

3
Gρ0r

µmH

k

3. Integrate this equation from the core at r = 0 to the surface of the Sun
at r = R and show that the temperature Tc in the core of the Sun can
be written

TC = T (R) +
2π

3
GR2ρ0

µmH

k
.
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4. Assume that the Sun consists entirely of protons with a mass of 1.67×
10−27 kg. Use the solar mass of 2 × 1030 kg, the solar radius of 700
000 km and the surface temperature of the Sun T = 5780K to obtain
the density ρ0 and thereby the core temperature TC . (By doing this
calculation properly taking into account variations of the density with
distance from the core, one obtains a core temperature of about 15
million Kelvin)

5. In the coming lectures, we will learn that hydrogen can fuse to He-
lium by two different processes, the pp-chain and the CNO-cycle. The
pp chain is more efficient at temperatures below 20 million Kelvin
whereas the CNO-cycle starts dominating at temperatures above 20
million Kelvin. Use your result for the core temperature of the Sun
to decide which of these processes produces most of the energy in the
Sun.

6. Write ρ0 in terms of the mass M and the radius R of the Sun. We have
seen that the surface temperature of the Sun is much smaller than the
core temperature and might therefore be neglected. Show that the core
temperature of a star depends on the mass and radius as

TC ∝ M

R

7. In later lectures we will discuss in detail the evolution of a star. We will
learn that when the Hydrogen in the core of a star has been exhausted,
the nuclear fusion processes cease. In this case the pressure forces
cannot sustain the force of gravity and the radius of the core starts
shrinking. It will continue shrinking until some other force can oppose
the force of gravity. If Helium, an element which is now found in large
abundances in the core, starts to fuse to heavier elements this would
create a photon pressure high enough to sustain gravity. A temperature
of at least 100 million degrees Kelvin is needed in order for this fusion
process to start. By how much does the core radius of the Sun need to
shrink in order for Helium fusion to start?

8. In the last case, the radiation pressure is giving the dominant contribu-
tion to the forces of pressure. Show that in this case, the temperature
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of the core can be written as

TC =
(

T (R)4 +
2πG

a
ρ2

0R
2

)1/4

,

again assuming a constant density.

Problem 4 (2 - 3 hours) We will now assume a slightly more realistic
model of the Sun. Assume that the density of the Sun as a function of
distance r from the core can be written as

ρ(r) =
ρC

1 + (r/R)2
,

where ρC is the density in the core of the Sun and R is the radius at which
the density has fallen by a factor 1/2 (check this by inserting r = R in the
expression). In this exercise we will use our knowledge about the minimum
temperature which is needed to obtain nuclear reactions in order to calculate
the density in the solar core.

1. We will now find an expression for the total mass M(r) inside a radius
r using this density profile. In order to perform the integral in equation
(2) we make the substitution x = r/R and integrate over x instead of
r. Show that M(r) can be written

M(r) = 4πρCR3

∫ r/R

0
dx

x2

1 + x2

2. In order to perform such integrals, the Mathematica package is very
useful. Not everybody has access to Mathematica, but a free web
interface exists for performing integrals. Go to
http://integrals.wolfram.com/index.jsp
Type
x2/(1 + x2),
and you get a nice and easy answer. Using this result, together with
the assumption of pure ideal gas pressure, show that the equation of
hydrostatic equilibrium can now be written

d

dr
(ρ(r)T (r)) = −µmH

k
4πGρ2

CR3 r/R − arctan(r/R)

r2

1

1 + (r/R)2
.
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3. We now need to integrate this equation from radius 0 to an arbitrary
radius r. Again the substitution x = r/R is useful. Show that the
equation of hydrostatic equilibrium now reads

ρ(r)T (r)−ρCTC = −µmH

k
4πGρ2

CR2

∫ r/R

0
dx

(

1

x(1 + x2)
− arctan(x)

x2(1 + x2)

)

4. To solve this integral you need to type the following in the ’Integrator’
1/(x(1 + x2))
and
ArcTan[x]/(x2(1 + x2))
Using these results, show that the core temperature Tc can be written

TC = T (r)/(1 + x2) +
µmH

k
4πGρCR2

(

1

2
(arctan x)2 +

arctan(x)

x
− 1

)

5. We will now try to obtain values for the central density ρC . In order
to obtain that, we wish to get rid of x and r from the equation. When
x → ∞, that is, when going far from the center, show that the equation
reduces to

TC =
µmH

k
4πGρCR2(

π2

8
− 1)

6. Before continuing, we need to find a number for R, the distance from the
center where the density has fallen by 1/2. Assume that considerations
based on hydrodynamics and thermodynamics tell us that the core of
the Sun extends out to about 0.2R⊙ and that the density has fallen to
10 percent of the central density at this radius. Using this information,
show that

R =
0.2R⊙√

9
≈ 0.067R⊙.

7. We know that a minimum core temperature of about 15 million degrees
is needed in order for thermonuclear fusion to be an efficient source of
energy production. What is the minimum density in the center of the
Sun? Assume the gas in the Sun to consist entirely of protons. Express
the result in units of the mean density ρ0 = 1400kg/m3 of the Sun.
(More accurate calculations show that the core density of the Sun is
about 100 times the mean density)
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In the last two exercises we have used some very simplified models together
with some rough assumptions and observed quantities to obtain knowledge
about the density and temperature in the interior of the Sun. These exercises
were made to show you the power of the equation of hydrostatic equilibrium:
By combing this equation with the knowledge we have about the Sun from
observations of its surface together with knowledge about nuclear physics, we
are able to deduce several facts about the solar interior. In higher courses in
astrophysics, you will also learn that there are more equations than the equa-
tion of hydrostatic equilibrium which must be satisfied in the solar interior.
Most of these equations come from thermodynamics and fluid dynamics. In
the real case, we thus have a set of equations for T (r) and ρ(r) enabling us to
do stellar model building, without using too many assumptions we can obtain
the density and temperature of stars at different distances from the center.
These models have been used to obtain the understanding we have today
of how stars evolve. Nevertheless many questions are still open and poorly
understood. Particularly towards the end of a star’s life, the density distri-
bution and nuclear reactions in the stellar interior become very complicated
and the equations become difficult to solve. But solving these equations is
important in order to understand the details of supernova explosions.
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