
AST1100 Lecture Notes

17: General Relativity: Orbits

1 Schwarzschild step-by-step motion

In this lecture we will look at corrections to orbital motion due to general
relativity. We have already learned that a body in the gravitational field
of another body may go in elliptical orbits or escape to infinity following
parabolic or hyperbolic trajectories depending on the total energy of the
body. We have now obtained more accurate expressions for motion in grav-
itational fields and will check if these corrections may give rise to orbital
behavior different from the Newtonian prediction. We will study the motion
of a body in the gravitational field of a black hole. We might already antici-
pate a few differences to Newtonian gravity: If the body comes too close to
the black hole (inside the Schwarzschild radius), it will be swallowed by the
black hole without possibilities to get out. We will now check this in more
detail.

In figure 1 we show a spaceship at position (r, φ, t) in Schwarzschild
coordinates around a black hole of mass M . The spaceship has used all its
fuel and can therefore not use its engine, it is falling freely. The astronauts in
the spaceship are wondering whether the spaceship will pass the black hole
so close to the center that they will be swallowed by the black hole or not.
We will now study the motion of the spaceship step by step. We will ask the
question, what is the new position (r, φ, t) in Schwarzschild coordinates of
the spaceship after a time interval ∆τ has passed on the wrist watches of the
astronauts? We will look for the small increments ∆r, ∆φ and ∆t for each
small increment in astronaut proper time ∆τ . By increasing ∆τ and thereby
the other coordinates step by step, we will be able to follow the motion (r, φ)
of the spaceship and check if it at some point will reach r = 2M or not.

Knowing that the total energy per mass E/m is a constant of motion, we
can rewrite the expression

E

m
=
(

1 −
2M

r

)

dt

dτ
,
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r=2M

(r,  )φ
dr

dφ

dr? dφ ?

Figure 1: The spaceship is out of fuel. The engines stop. What will be the
next movement in r and φ direction?

for total energy per mass as

∆t =
E/m

(

1 −
2M

r

)∆τ. (1)

Similarly we can use that the angular momentum per mass L/m is a constant
of motion

L

m
= r2

dφ

dτ
to get

∆φ =
L/m

r2
∆τ. (2)

We have already obtained the displacements ∆φ and ∆t per proper time in-
terval ∆τ . Now we need to find the radial displacement ∆r. The Schwarzschild
line element (see previous lecture) gives

∆s2 = ∆τ 2 =
(

1 −
2M

r

)

∆t2 −
∆r2

(

1 −
2M

r

) − r2∆φ2.
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We insert the expressions (1) and (2) into the line element and obtain

∆τ 2 =
(

1 −
2M

r

)





E/m
(

1 −
2M

r

)





2

∆τ 2
−

∆r2

(

1 −
2M

r

) − r2

(

L/m

r2

)2

∆τ 2.

Reorganizing we find

∆r = ±

√

√

√

√

√

(

E

m

)2

−



1 +

(

L/m

r

)2




(

1 −
2M

r

)

∆τ. (3)

We now have three equations (1), (2) and (3) giving us the motion of the
spaceship as observed by the far-away observer for each tick ∆τ on the wrist-
watch of the astronauts. Note that these expressions in reality give the first
order terms of a Taylor expansion in ∆τ . The second derivative terms are
not included (and will not be treated in this course) and we can therefore
not use them in this form to describe a full orbital motion. In orbital mo-
tion, when the radial velocity reaches zero, the spaceship will start moving
outwards again (do you see that this is the case? Think about the motion
of a planet). Radial velocity equal to zero means that the first derivative is
zero and that the second derivatives (second order in the Taylor expansion) is
needed in order to describe the next step. But we may use it up to the point
where the radial velocity is zero. If the radius at this point is outside r = 2M
we are saved. If the radial velocity does not reach zero before r = 2M the
spaceship will fall into the black hole. In order to describe the full motion
in a more complete manner we can either continue the Taylor expansion to
higher orders or, much easier, we can consider the effective potential.

2 Effective potential

To explain the concept of effective potential, we will go to a well known
example: An object sliding down a hill without friction. In figure (2) we see
the situation. An object is located at horizontal position x and at height h.
We can write the total (Newtonian) energy, kinetic plus potential, with the
well known expression

E/m =
1

2
v2 + gh(x) =

1

2
v2 + V (x),
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h(x)

0

v

m

x

Figure 2: Object sliding down a frictionless hill with height h(x).

V(x)=gh(x)

x

v
v=0m

0

E/m

Figure 3: Object sliding down a frictionless hill with energy per mass E/m =
gh(x) deciding the future motion.
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where g is the constant gravitational acceleration, h(x) is the height of the
hill at position x, V (x) is the potential, v is the velocity of the object and m
its mass. In figure 3 I have made the same plot as figure 2, but the function
is now multiplied by g such that the y-axis now shows gh(x) instead of only
h(x). Thus, as you see from the previous expression, the units on the y-
axis is now energy per mass and the height of the hill is just the potential
V (x). When the velocity is zero v = 0, the height of the object in this plot
directly gives us the total E/m = gh(x) for the object (you can see this from
the previous equation: if v = 0 then E/m = V (x)). Thus we can draw a
horizontal line passing through this point, showing that this is the energy per
mass of the object for all positions x (remember that E/m is constant). The
object will have velocity zero at all points where the horizontal line intersects
the hill curve (why?).

We have defined the height h(x) to go to asymptotically to zero for large
distances x → ∞. Thus, at large distances the energy of the object consists
of purely kinetic energy as the potential energy gh(x) → 0. A total negative
energy of the object corresponds to an object left at rest at h(x) < 0. This
object can never reach infinity: We just learned that at infinity the energy
of the object is purely kinetic, but kinetic energy cannot be negative. So
an object with a negative total energy is trapped in the ’valley’ seen in the
figures. Note also that an object with negative energy cannot move all the
way in to x = 0, it can only reach up to the point E/m on the y-axis where
the velocity will be zero: It will start oscillating back and forth between
the two points where the horizontal line at E/m crosses the hill curve. The
situation is different for an object with positive energy: Leave the object far
out on the positive x axis with an initial velocity different from zero and so
large that E/m is positive. By drawing a horizontal line at E/m you can
find how far in the object will move before it has v = 0 from where it will
move back an out to infinity. This object is not bound in the valley. The
two situations are illustrated in figure 4 and 5.

This case was probably not new to you. We will now generalize this
situation. We see (from equation 3) that the equation of motion for this
object can be written as

A = B~̇x
2

+ V (x), (4)

where A (equal to E/m in our example) and B (equal to 1/2 in our example)
are constants (B being positive), ~x is the position vector of the object and
V (x) is the position dependent potential. If V (x) has a ’valley’ similar to
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x

V(x)=gh(x)

E/m

0
v=0

Figure 4: Bound object oscillating between two points on the hill.

x

V(x)=gh(x)

v

E/m

0

Figure 5: Free object: slides up to a maximum point and then escapes to
infinity.
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figure 3 and V (x) → 0 when x → ∞, then the object with position ~x will
move in the following way:

• With A < 0 (corresponding to E < 0 in our example) the object is
trapped and will oscillate back and forth between two positions.

• With A > 0 (corresponding to E > 0 in our example), the object can
escape out to any position.

We recognize the situation described here from a similar physical system:
The two body problem. We remember for the two-body problem that an
object with negative total energy was bound to orbital motion around the
other object whereas objects with positive total energy could escape to infin-
ity. Let’s try to see the mathematical analogy. The total energy of an object
with mass m close to a star of mass M is

E/m =
1

2
v2

− G
M

r
,

and angular momentum
L/m = r2φ̇ (5)

using for the moment conventional units. We are only interested in the radial
motion of the object, i.e. whether the object will be bound or whether it can
escape to infinity. We are not interested in the details of the motion in φ
direction. We can rewrite the equation for the energy as

E/m =
1

2
(ṙ2 + r2φ̇2) − G

M

r
=

1

2
ṙ2 +

(

1

2

(L/m)2

r2
− G

M

r

)

, (6)

where equation 5 was used. Setting A = E/m, B = 1/2 and

Veff(r)/m =
1

2

(L/m)2

r2
− G

M

r
,

we see that equation 6 can be written on the form of equation 4. We will
call the potential V (r) for the effective potential. Thus the problem is math-
ematically identical to the problem of the object sliding down the hill. This
means that also the results are identical. The r coordinate corresponds to
position on the hill, and the effective potential corresponds to the shape of
the hill. In figure 6 we can see the shape of the ’hill’ or effective potential.
The object falling in the gravitational field of a star is identical to the object
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v =0r v =0rE/m

V  (r)eff

r

0

r=a(1−e) r=a(1+e)

Figure 6: A bound object in elliptical orbit in a Newtonian effective potential.

sliding down the hill using the effective potential as the shape of the hill.
Again we have the result that for A = E/m < 0, the object is bound and
will oscillate between two r positions which we know (from earlier lectures)
are r = a(1 − e) and r = a(1 + e). Here we have ignored the motion in
φ direction, but we already know that this corresponds to an elliptical or-
bit. For E/m = 0, the object will reach zero velocity at in infinite distance
r → ∞. We already learned in previous lectures that this corresponds to the
parabolic trajectory. Finally for E/m > 0, the object can move to infinite
distances with arbitrary velocity corresponding to the hyperbolic trajectory.
Even though the treatment with effective potential did not give us the exact
shape of the orbit it did tell us the essentials using the radial motion only:
The object can either oscillate between two radial positions or it can move
out to infinity depending on the total energy E/m.

3 Orbital motion in Schwarzschild geometry

We will now turn to the relativistic case. We have seen that by looking
just at the radial motion of an object in a gravitational field we can obtain
essential information about the future motion of this object without going
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into details. Equation 3 can be written as

(

dr

dτ

)2

=
(

E

m

)2

−

(

1 −
2M

r

)

[

1 +
(L/m)2

r2

]

. (7)

Again comparing to equation 4 we see that we can make the following sub-
stitutions: A = (E/m)2, B = 1 and

Veff/m =

√

√

√

√

(

1 −
2M

r

)

[

1 +
(L/m)2

r2

]

We have defined the effective potential such that the square of the effective
potential appears in equation 7, different from the previous cases. This is
just to have an effective potential with units energy. Note that A is now the
energy per mass E/m squared instead of just E/m as we had in the above
examples. In equation 4 we only required A to be a constant, it is not required
that it equals energy. So we still have exactly the same case as we had above
and we can use the same argumentation. Note one more difference: The
effective potential goes to V (r) → 1 for large distances instead of V (r) → 0
as above (see the plot of the effective potential in figure 7). The reason for
this is that the rest energy for a particle in relativistic dynamics is E/m = 1.
If the velocity of the object is zero at large distances then E/m = 1 whereas
in Newtonian dynamics V (r) → 0 because E/m = 0 at large distances.
Remember that in Newtonian dynamics we do not consider the rest energy
E = m. This makes one difference in our argumentation with respect to
above. In the Newtonian case, the limiting energy deciding whether the
object would be trapped in the potential and therefore stay in a bound orbit
or if it would escape to infinity was E/m = 0. As we see, in relativistic
dynamics this limit is E/m = 1. If E/m < 1 then the ball starts falling with
zero velocity at some point on the hill below E/m = 1 and it can therefore
never escape to r → ∞, it will start orbiting. If however the energy E/m > 1
it has the possibility to escape to infinity as it will have a non-zero velocity as
r → ∞ (check that you understand this by looking at equation 7 and figure
7).

Looking at figure 7 we see one radical difference in the shape of the effec-
tive potential with respect to the Newtonian case. At a certain critical radius
r = rcrit the potential has a peak and thereafter it falls steeply downwards
towards r = 0. This is not surprising: Any particle which passes inside the
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Figure 7: A bound object in elliptical orbit in a Schwarzschild effective
potential.

horizon at r = 2M cannot escape. We see from figure 7 that even objects
with energies larger than E/m = 1 (objects which are not bound in the
classical sense) may be swallowed by the black hole. The objects with an
energy E/m larger than the critical energy Ecrit/m will pass too close to the
object, so close that r < rcrit and it is captured by the black hole. In the
Newtonian case, this object would have a large enough energy to escape as
E/m > 1. In the exercises you will derive an expression for Ecrit. An object
which enters the black hole with an energy E = Ecrit equal the critical energy
will make a few orbits around the black hole at r = rcrit before coincidences
will make tiny changes to the energy of the object. These tiny changes may
go in either direction, either the object will escape or the object will plunge
into the black hole. We thus have three possibilities:

• E/m < 1 which gives orbits

• 1 < E/m < Ecrit/m for which the object can move to infinity

• E/m > Ecrit/m for which the object will plunge into the black hole

There is one more important difference between the relativistic and the
Newtonian effective potential. We will now consider a planet in orbit around
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Sun

Mercury

Figure 8: Perihelion precision of Mercury

a star. Because of the peak at r = rcrit, the potential rises more steeply after
the minimum than in the Newtonian case. A planet moving inwards in its
orbit towards the star will thus have to climb up this steeper potential and
will therefore slow down more close to the perihelion (the point in the orbit
of a planet closest to the star). The radial velocity of the planet in the parts
of the orbit close to the star is thus slower than in the Newtonian case. Since
the planet then spends more time in the orbit close to the star, the planet
now also has more time to move in the φ direction for which there is no
slow-down. Thus, in general relativity the planet has moved more in the φ
direction after passing close to the star than it would in the Newtonian case.
How does this affect the orbit? The result is that the perihelion moves around
the star. This is illustrated in figure 8. For each orbit, the perihelion moves
a little bit in φ direction. In Newtonian physics, the perihelion stays at the
same point. This φ motion of the perihelion is called perihelion precession.

Long before Einstein discovered the general theory of relativity, it was well
known that Mercury, the planet closest to the Sun, had a strong perihelion
precession. A large part of this precession could be attributed to the gravi-
tational forces from other planets in the solar system. But the gravitational
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attraction from other planets was not able to explain the full precession. A
little part remained and it turned out that general relativity accounts for
exactly this difference.

4 Inside the horizon

In the previous lecture we studied an object falling into the black hole from
rest at a large distance from the black hole. We found that the conserved
energy gave

(

1 −
2M

r

)

dt

dτ
= 1.

Using this, we obtained the speed of the object as measured by the far-away
observer

dr

dt
= −

(

1 −
2M

r

)

√

2M

r

and the speed of the object measured by the local shell observers as the
object passes the shells

drshell

dtshell

= −

√

2M

r
.

What is the velocity dr/dτ measured on the wristwatch time τ of the falling
object? Using these three equations we can write

dr

dτ
=

dr

dt

dt

dτ
= −

(

1 −
2M

r

)

√

2M

r

(

1 −
2M

r

)−1

= −

√

2M

r
. (8)

Even when measuring velocity on the wristwatch of the object, the velocity
approaches the speed of light at the horizon and gets larger than the speed
of light inside the horizon. But who measures this velocity? Nobody! In
this velocity measurement, length is measured by the far-away observer (who
cannot measure anything after the object has entered the horizon) and time is
measured on the wristwatch of the falling object. We also learned that inside
the horizon there are no shell observers to measure the velocity since you
cannot be at rest inside the horizon. A local observer sitting in an unpowered
spaceship passing the object will always measure that the velocity is less than
unity. Why? Because any freely falling observer is in a local inertial frame
for a short moment when the spaceship passes nearby, even when inside the
horizon. So for the freely falling observer special relativity applies (for a short
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moment when the spaceship passes nearby)) and he will always measure the
velocity of the object as being less than the velocity of light.

How long will it take for the object to reach the singularity in the center
from the moment it enters the horizon? We can integrate equation 8 to find
the time measured on the wristwatch of the object

τ = −

∫

0

2M

dr

√

r

2M
= −

[

2

3

√

r

2M
r
]0

2M

=
4M

3
.

How long will it take for an observer falling into a black hole with one solar
mass to go from the horizon to the singularity? Measured on the wristwatch
of the observer it takes

τ =
4M⊙

3
=

4 × 2 × 1030kg × 7.42 × 10−28m/kg

3
≈ 2000m =

2000m

3 × 108m/s
≈ 7µs.

In problem 3, you will study how the astronaut in a spaceship inside the
horizon experiences the world.

5 Problems

Problem 1 (2 - 3 hours)
A rocket is launched from shell r = 20M around a black hole of mass M

with velocity vshell = 0.993 at an angle θ = 167◦ with the outward pointing
vector from the black hole (see figure 9). Just after launch, there is a problem
with the engines and they stop. The shell observers at shell r = 20M need
to make another rocket to rescue the astronauts, but this takes a long time.
The astronauts are worried that they will be captured by the black hole. In
this exercise we will try to find out whether the rocket will be captured by
the black hole or not. The angular momentum of the rocket is L and the
mass of the rocket is m. In this exercise you will need the following relation
a couple of times

dx

dτ
=

dx

dtshell

dtshell

dτ
,

where x can be any quantity.

1. First we need to find out the shape of the effective potential. Use the
general relativistic expression for the effective potential to show that
the minimum and the maximum of the effective potential are located at

13



r=2M

r=20M

θ

Figure 9: Rocket launched from shell r = 20M inwards at an angle θ. Note:
Figure not to scale.
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the following distances(measured in Schwarzschild coordinates) from
the black hole

rextremum =
(L/m)2

2M



1 ±

√

√

√

√1 −
12M2

(L/m)2



 .

Which of these two solutions is the maximum of the potential?

2. Show that the angular momentum per mass for the rocket can be writ-
ten as

L

m
= r2

dφ

dτ
= rγshellvshell sin θ,

where γshell = 1/
√

1 − v2
shell

. hint 1: Remember that for short time
intervals dtshell, the shell observers can use special relativity. hint 2:
How could we write dt/dτ in special relativity?

3. Use the general relativistic expression for E/m to show that the total
energy per mass of the rocket can be written as

E

m
=

√

1 −
2M

r
γshell

4. Insert numbers in the expression for L/m and draw the potential (by
hand using the information you have obtained from the previous exer-
cises) having r in units of M on the x-axis and numbers for Veff/m on
the y-axis.

5. Will the rocket be captured by the black hole?

6. If they are captured by the black hole, how long does it take (on the
wristwatch of the astronauts) to reach the singularity from the moment
they enter the horizon. (give the answer in seconds assuming that this
is the black hole in the center of the Milky way, M ≈ 4× 106M⊙). im-
portant hint: You cannot use the result given in the text. Check
that you understand why and find the correct result. In the end
you will need to do an ugly integral. Go to ’The Integrator’ (http :
//integrals.wolfram.com/index.jsp) and type

1/Sqrt[a + b/x]
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7. What will happen with the astronauts just before entering the sin-
gularity? Draw an astronaut and draw the gravitational forces (ok,
let’s cheat and use forces for a moment since they are easier to draw
than spacetime geometry). Which shape will he/she have just before
reaching the center?

Problem 2 (1 -2 hours) In this exercise we will make a python (or
matlab or whatever) code to plot the orbit of the spaceship in the previous
exercise. We will start at r = 20M and evolve the position of the spaceship
forward in time using equations (2), (3).

1. Define variables for (L/m)/M and (E/m) and give them the values you
found in the previous exercise. Define a variable for the distance from
the black hole r/M and give it the initial value of 20. Finally define
a variable φ which is the angular position with respect to the black
hole. We give φ an initial value of zero. Define a variable which is the
number of time steps we will use. Set the variable to 1000. Finally
define a variable which is the proper time step ∆τ = 0.01.

2. Now, define two arrays both with size equal to the number of time steps
(1000). The first array will contain the r position at each time step,
the other will contain the φ position at each time step. Set the first
element in both arrays to the current value of r and φ.

3. Make a FOR loop over all time steps. For each step, update r and φ
with the increments ∆r and ∆φ until r/M < 2.

4. Finally we need to plot the orbit. Make two arrays x and y converting
the arrays with r and φ values from polar to Cartesian coordinates.
The black hole is at position x = 0 and y = 0. Now we have two arrays
with the x and y position of the spaceship at different time steps. Now
plot a dot at each step in the orbit.

5. Now we will overplot the Schwarzschild radius: Make an array with,
say 100 elements, with the r position of the horizon r = 2. Make a
corresponding array with equal number of elements having numbers
going from 0 to 2π being the φ position. Then transform from polar
to Cartesian coordinates exactly as you did in the previous step and
plot the set of x and y positions you have obtained. Now you will see
a circle showing the horizon.
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6. How large angle ∆φ did the spaceship revolve around the black hole
before entering the horizon?

Problem 3 (1 - 2 hours) We are in a spaceship inside the horizon
falling towards the central singularity. We are trying to find a way to escape.
In order to check all possibilities we send one light beam backwards away
from the central singularity and one forward towards the central singularity.
In order to study how these beams of light are moving we need to write
the Schwarzschild line element in terms of our wristwatch time t′ instead
of Schwarzschild time t. We will make this change of coordinates already
before entering the horizon as this allows us to use shell frames as a help.
Assume in the following that we have velocity only in the radial direction.
Assume also that we started falling freely with velocity v = 0 far away from
the black hole.

1. Use the Lorentz transformations to show that time intervals measured
on the wristwatch of the astronauts are related to time and space in-
tervals measured by shell observers as

dt′ = −vshellγshelldrshell + γshelldtshell,

where vshell and γshell are based on the local velocity of the astronaut
measured by the shell observer at the shell which the spaceship passes.

2. Use the expressions relating shell coordinates and Schwarzschild coor-
dinates to show that

dt′ = −
vshellγshelldr
√

(

1 −
2M

r

)

+ γshell

√

(

1 −
2M

r

)

dt.

3. In the previous lecture, we deduced the shell velocity vshell of a falling
spaceship starting with v = 0 far from the black hole. Go back and
check this expression. Insert it (use the approximate expression for
r >> 2M) in the previous expression and show that

dt = dt′ −

√

2M/rdr
(

1 −
2M

r

) .
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4. Use this to substitute dt with dt′ in the normal Schwarzschild line
element and show that the Schwarzschild line element can be written

ds2 = dτ 2 =
(

1 −
2M

r

)

(dt′)2
− 2

√

2M

r
dt′dr − dr2

− r2dφ2.

Note that this form of the Schwarzschild line element does not have a
singularity at r = 2M .

5. We will now study the motion of the two light beams that we emit, one
forwards and one backwards. We know that for light, proper time is not
moving dτ = 0. The light beams in this case are moving only radially
so dφ = 0. Show that the speed of the two beams can be written as

dr

dt′
= −

√

2M

r
± 1.

After entering the horizon, do the astronauts in the spaceship measure
the speed of the light beams to be larger than the speed of light? (think
twice before answering)

6. In figure 10 we show the worldline of the spaceship falling into the
black hole. We have also plotted the world lines of light beams emitted
from the spaceship at various points in the trajectory. Use the previous
equation to explain why the world lines of the light beams look like they
do in the figure.

7. What happens to the light beams....in which direction does each of
them move? Suppose that the astronauts had a small rescue rocket
which could accelerate to a velocity close to the speed of light. They
went into the rescue rocket and went in the direction opposite of the
black hole. What would happen? How would their motion look like?
Do you understand better why nothing can escape the black hole?
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r/M
2

Figure 10: Worldline of the rocket (marked by a balls) and parts of the
worldlines of the forward and backward light beam (arrows) at several points
during the free fall into the black hole.
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