
AST1100 Lecture Notes

18: General Relativity: Gravitational lensing

1 Motion of light in Schwarzschild spacetime

There is one huge difference between Newton’s and Einstein’s theory of grav-
ity. In the Einstein equation

Gµν = 8πTµν ,

energy (not only mass but total energy) enters in the energy momentum
tensor on the right hand side. This means that not only mass but also pure
energy (for instance in the form of light or other kinds of radiation) give
rise to curvature of spacetime as described by the left side of the equation.
This means that light gives rise to a gravitational field. In the same manner,
light is also affected by a gravitational field. We know that light follows
a spacetime path such that ds = 0. If the geometry of spacetime is the
Schwarzschild geometry, this line will necessarily be different than if the
geometry is Lorentz geometry. Hence the general theory of relativity predicts
light rays to be deflected in a gravitational field. We will now look at the
step-by-step motion of a ray of light through Schwarzschild spacetime in the
same way as we did for a particle in the previous lecture. There is however
one difference: We cannot use the proper time τ as the time parameter as
∆τ = 0 always for light. We need to eliminate ∆τ from the equation of
motion for particles. We can do this by using the expression for relativistic
energy

dτ

dt
=

1 − 2M
r

E/m
.

Using this expression to eliminate ∆τ in equations (2) and (3) from the
previous lecture and taking the limit m → 0 since light is massless, we
obtain (check!)

∆r = ±
(

1 −
2M

r

)
√

1 −
(

1 −
2M

r

)
(L/E)2

r2
∆t (1)
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r∆φ = ±
L/E

r

(

1 −
2M

r

)

∆t. (2)

These equations can again be used to describe the trajectory (r, φ) of light
as the far-away time t advances. We will use these equations to look at the
speed of light in various cases. First we will emit a beam of light radially
towards the center of the black hole. This is purely radial motion so ∆φ = 0
and the angular momentum is zero L = 0. Equation 1 then gives

vr =
dr

dt
= −

(

1 −
2M

r

)

.

We see that the speed of light is not one as we are used to. Surprise, surprise!
Special relativity was constructed based on the fact that the speed of light is
one for all observers. In general relativity this is no longer true: We see here
that the speed of light as measured in Schwarzschild coordinates (r, t), the
coordinates of the far-away observer, is different from one. And moreover as
r → 2M the speed of light goes to zero. Light slows down to zero close to
the horizon (for the far-away observer), just as material particles do.

Now, this was measurements made by the far-away observer who makes
measurements based on observations made by different local observers. What
speed of light does a shell observer on a shell close to the horizon measure?
Does he also see that light slows down and eventually stops? This was not
the case for material particles, we will now make the same calculations for
light.

The shell observer measures the speed of the light beam as it passes his
shell. He makes the measurement in a short time interval such that he can
be considered to be in a local inertial frame. Then his geometry is Lorentz
geometry

dτ 2 = dt2shell − dr2
shell

(you can show this last expression simply by inserting the expressions relating
dr and drshell as well as dt and dtshell into the Schwarzschild line element)
and he will necessarily measure

drshell

dtshell

= −1

We can thus change the principle of invariant speed of light to: A local
observer, an observer who measures the speed of light directly, will always
measure the speed of light to be one. The far-away observer who bases his
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measurement on the collection of observations from several different local
observers will see a different speed of light.

We will also check what happens to a beam of light which moves tangen-
tially. For this light ∆r = 0 which inserted in equation 1 gives

L

E
=

r
√
(

1 − 2M
r

) .

Inserting this in equation 2 we get (check!)

vφ = r
dφ

dt
=

√
(

1 −
2M

r

)

.

Also light moving tangentially has a speed different from one, but note the
square root which is not present for the radial velocity. We have that vr = v2

φ,
light moves faster in the the tangential direction than in the radial direction.
Also in this case vφ → 0 at the horizon. Again, this was light speed measured
in Schwarzschild coordinates (r, t) and therefore the light speed measured
by the far-away observer. Local observers would again measure a tangential
light speed of one.

2 Impact parameter

To study the motion of light in a gravitational field we need to define the
impact parameter b. The impact parameter is used in many fields of physics
and astrophysics, for instance to study colliding particles. In figure 1 we
see a large central mass M (for instance a black hole) and a small particle
far away from the central mass moving in any given direction. Draw a line
passing through the particle going in the direction of motion of the particle.
Then draw another line which is parallel to the first line but which passes
through the center of the black hole. The distance between these two lines
is called the impact parameter. It is important to note that the first line is
drawn on the basis of the movement of the particle when the particle is so
far away that it has not yet been influenced by the gravitational field. We
will soon see that this impact parameter will decide the future motion of the
photon.

We can calculate the angular momentum of the photon when it is still far
away as

L = ~r × ~p = rp sin θ = pb.
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Figure 1: Defining the impact parameter

r=2M
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Figure 2: The impact parameter expressed in terms of angular momentum.
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The angle θ is the angle between ~r pointing at the particle from the center
of the black hole and ~p the angular momentum vector of the particle. The
geometry is shown in figure 2 explaining why we can write b = r sin θ. Thus,
the impact parameter of a particle can be written as the ratio between angular
and linear momentum

b =
L

p
.

For a photon, we have that p = E so that

b =
L

E
.

(valid for photons only). Using this, we can rewrite equation (1) and (2)
using the impact parameter as (check!)

dr

dt
= ±

(

1 −
2M

r

)
√

1 −
(

1 −
2M

r

)
b2

r2
(3)

rdφ

dt
= ±

b

r

(

1 −
2M

r

)

. (4)

In the exercises you will show that the equations of motion for a photon can
be written as

A = Bv2
r,shell + Veff(r)2,

where A = B = 1/b2 and

Veff(r) =
1

r

√
(

1 −
2M

r

)

.

We see again that we have an equation on the same form as equation (4)
in the previous lecture. We know that we need to compare the value of
the constant A (which usually contains the energy E/m, but which this time
contains only the impact parameter) with the shape of the effective potential.
For a material body we showed in the previous lecture that it was the energy
E/m which appeared in the constant A and therefore it was the value of this
energy which decided whether the particle would move in an orbit, escape to
infinity or be swallowed by the black hole. For the photon, we see that it is
the impact parameter alone and not the energy which decides its destiny.

In figure 3 we see the effective potential for light. The first thing which
strikes us in this figure is that the potential does not exhibit a minimum as
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Figure 3: The effective potential for light.

all the other potentials we have discussed so far. The consequence is that
light cannot go in a stable orbit. If 1/b2 is lower than the peak in the figure,
the light will approach the black hole, be deflected in some direction and
escape to infinity (do you see why?). If 1/b2 is larger than the value at the
peak in the figure, light will be captured by the black hole. In the exercises
you will show that the peak in the potential is located at r = 3M for which
1/b2 = 1/(27M2).

Light which approaches the black hole with 1/b2 equal to the value of
the potential at the peak 1/(27M2) will go in an unstable orbit at r = 3M .
For this reason r = 3M is called the light sphere. All the stars around a
black hole radiate light in all possible directions with a huge range of impact
parameters. There will always be light approaching the black hole with an
impact parameter equal to the critical impact parameter 1/b2

crit = 1/(27M2)
such that the light will orbit the black hole at the light sphere. A shell
observer at the light sphere will see a ring around the black hole with several
copies of images of the stars in the sky. The light will not stay in the light
sphere for very long: Staying at the peak of the potential means being in
an unstable orbit. Tiny fluctuations in the impact parameter will make the
light either plunge into the black hole or escape. Coincidences will decide.
This is exactly what we saw for material bodies approaching the black hole

6



∆φ

Figure 4: Deflection of light by a star. The dotted line is the direction light
would have taken if no deflection had taken place.

with an energy such that it balanced on the peak of the potential for a few
revolutions and then either plunged or escaped.

3 Deflection of light

In figure 4 we see light approaching a star at a large distance with an impact
parameter such that the light will pass the star, be deflected and then escape
to infinity. The question is with how large an angle ∆φ the light is deflected.
If the light is significantly deflected by a star it would mean that we cannot
trust the position of objects that we observe on the sky: If the light from
distant galaxies is deflected by all the stars it passes on the way to Earth,
the original direction of the light and hence of the galaxy would be lost. We
need to calculate how large the deflection is to find out whether this could
be a problem for astronomical observations or not.

In figure 5 we show the situation in detail: Light with impact parameter b
is approaching a star of mass M . We have defined the φ coordinate such that
φ = 0 when the light is infinitely far away. If light had not been deflected
by the gravitational field, it would continue in a straight line to infinity at
φ = π. But we know that the light is deflected an angle ∆φ such that the
light goes to infinity at φ = π + ∆φ. We will now study light which has an
impact parameter b such that it passes the star with radial tangential shell
velocity vr,shell equal to zero at a distance R from the star (see figure 5). In
order to calculate the deflection ∆φ for this beam of light we will use the
equations of motion for light in Schwarzschild geometry given by equations
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1/2(π+∆φ) 1/2(π+∆φ)

R

Incoming light Outgoing light

Outgoing light if no deflection had taken place

Point where radial velocity is zero

φ=0 φ=π+∆φ

φ=π

Figure 5: Deflection of light by a star. Symmetry makes the situation equal
on either side of the point where the distance between the light beam and
the star is minimal r = R and the radial velocity of the beam is zero.
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(1) and (2). Dividing the two equations by each other we find

dφ =
dr

r2

√

1

b2
− 1

r2

(

1 − 2M
r

) .

We need to integrate this equation to obtain the deflection ∆φ from the
particle arrives at r = ∞, φ = 0 to r = ∞, φ = π+∆φ. Because of symmetry,
it is sufficient to find the deflection ∆φ/2 occurring during the trip from (r =
∞, φ = 0) to (r = R, φ = π/2 + ∆φ/2) (see again figure 5). The symmetry
of the problem tells us that this deflection equals the deflection occurring
during the trip from (r = R, φ = π/2 + ∆φ/2) to (r = ∞, φ = π + ∆φ).
The geometry of the problem is detailed in figure 5. We therefore need to
perform the following integration (integrating the previous equation)

∫ π/2+∆φ/2

0

dφ =
∫ R

∞

dr

r2

√

1

b2
− 1

r2

(

1 − 2M
R

) .

To make the integration easier we will make the substitution u = R/r giving

∫ π/2+∆φ/2

0

dφ =
1

R

∫ 1

0

du
√

1

b2
− u2

R2

(

1 − 2M
R

u
) .

Before integrating there is one more information which we have not used:
The fact that we know the impact parameter b. The radial shell velocity
at r = R is equal to zero. In problem 1 you will find an expression for the
radial shell velocity of light (equation 7) as a function of distance and impact
parameter. Setting the radial velocity to zero this equation gives us

1

b2
=

1

R2

(

1 −
2M

R

)

, (5)

which we can insert in our integral allowing us to get rid of the impact
parameter. The integral now reads

π

2
+

∆φ

2
=
∫ 1

0

du
√
(

1 − 2M
R

)

− u2

(

1 − 2M
R

u
) .

For stars, we normally have R >> 2M (check that this must be so for the
Sun: find the radius of the Sun expressed in Solar masses. Remember that
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R must be larger than the radius of the Sun (why?)). Therefore we define
x = M/R << 1 and we will try to Taylor expand the integrand in the small
value x. The integrand can be written as

f(x) = (1 − 2x − u2(1 − 2xu))−1/2 ≈ f(0) + f ′(0)x

Taking the derivative of f(x) with respect to x we find

f(0) =
1√

1 − u2
f ′(0) =

1 − u3

(1 − u2)3/2

Thus the integral can be written

π

2
+

∆φ

2
=
∫ 0

1

du√
1 − u2

︸ ︷︷ ︸

π/2

+
M

R

∫ 0

1

[

1

(1 − u2)3/2
−

u3

(1 − u2)3/2

]

du

︸ ︷︷ ︸

2

.

The solution to these integrals can be found in tables of integrals. We get

∆φ

2
=

2M

R
,

or

∆φ =
4M

R
.

In the exercises you will see how close to a star light needs to pass for the
deflection to be important. You will also show that light from stars which
pass close to the surface of the Sun will be deflected significantly. Stars
which we observe in a direction close to the surface of the Sun will thus be
observed in the wrong position on the sky. The stars will be shifted due to
the deflection of light. This is a good test of the theory of general relativity:
We now have a formula to predict exactly by how large angle the position of
a star on the sky will change when viewed close to the surface of the Sun.
The problem is that the light from the Sun is so strong that we cannot see
stars which have a position on the sky close to the Sun. The only possibility
to observe these stars is during a total solar eclipse. During a solar eclipse
in 1919, this effect was measured for the first time: Stars which were seen
close to the surface of the Sun were measured to have shifted their position
with exactly the angle predicted by general relativity. This was the discovery
which made Einstein famous.
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Figure 6: The source on the left (a quasar), the lens in the middle (a cluster of
galaxies) and the Earth on the right receiving the radiation from the quasar
from several angles.

4 Gravitational lensing

The gravitational deflection of light is used today to study the most remote
objects in the visible universe. In figure 6 we show a typical situation. A
quasar (a black hole with gas falling into it producing strong radiation at
several wavelengths, quasars are one of the most powerful radiation sources
in the universe) is located at a distance dS and a cluster of galaxies with mass
M is located at distance dL. The indices S and L refer to ’source’ and ’lens’.
The quasar is the source of light and the cluster of galaxies deflects this light
similar to an optical lens. For this reason we call the cluster of galaxies for
the ’lens’ and the effect of light deflection is called gravitational lensing.

The limiting angle θem (see figure 6) is the angle that the light emitted
from the quasar needs to have in order to reach Earth. Light emitted with
a smaller angle will be deflected too much, light emitted with a larger angle
will be deflected too little. Only light with angle θem will be deflected in
such a way that the light will reach us and we will see the quasar. The
figure shows only a two dimensional plane, taking into account the three
dimensional geometry of the problem, light emitted with an angle θem will
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θE

Figure 7: The cluster of galaxies in the middle and the Einstein ring being
the lensed image of the quasar behind. The angular radius of the ring is θE .

reach us from all direction the result being that we see the quasar as a ring
of light around the cluster (see figure 7). We call this ring an Einstein ring.
The angle θE is the observed angular radius of the Einstein ring (you find the
angle both in figure 6 and 7 check that you understand the relation between
the two figures). In the exercises, you will show that this angle can be written
as

θE =

√

4M(dS − dL)

dLdS
, (6)

which is called the lensing formula.
From spectroscopic measurements, the distances dS and dL of the quasar

and the cluster are normally known. The angular radius of the Einstein ring
can be measured by observations. Combining these numbers, the lensing
formula can be used to find the mass of a cluster of galaxies. We remember
from previous lectures that we can use the virial theorem to find the mass
of clusters of galaxies. The mass estimates of clusters obtained using the
lensing formula is based on assumptions very different from those used in
the virial theorem approach. Thus we have two independent measurements
of the mass of the cluster. These two ways of measuring mass are in good
agreement taking into account the uncertainties in the two methods. Both
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Figure 8: Detailed geometry of the situation in figure 6

methods tell us that there is far more dark than luminous matter in clusters
of galaxies being another confirmation of the existence of dark matter.

To obtain an Einstein ring, the quasar needs to be exactly behind the
center of the cluster of galaxy. Furthermore the cluster needs to have a
spherical mass distribution. This is basically never the case, a complete
Einstein ring is very rarely observed. What we rather see are small arcs
around the cluster. By studying these arcs combined with more advanced
theory of gravitational lensing, one can even infer the distribution of mass in
the cluster of galaxies.

Finally I will mention another important use of gravitational lensing based
on microlensing. The idea of microlensing is based on the following obser-
vation: The lens deflects light from the source towards Earth, light which
otherwise would not have reached us. The lensing effect increases the to-
tal amount of photons from the quasar arriving to the Earth. Gravitational
lensing does not only happen at the scale of clusters of galaxies. Even if an
object passes in front of a star, gravitational lensing occurs. In this case,
the Einstein ring is so small that it cannot be resolved on the sky. Only
one effect of the lensing is directly observable: The fact that more light is
directed towards us. The flux we receive from the star increases when the
object is in front of the star. This is called microlensing.
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Microlensing has been used to look for ’lumps’ of dark matter in the
Milky Way, so-called MAssive Compact Halo Objects (MACHO). If these
MACHOs, lumps of dark matter orbiting the center of the Milky way, exist
they should cause microlensing of stars in the LMC and SMC (Large and
Small Magellanic Clouds). The LMC and SMC are dwarf galaxies orbiting
the center of the Milky Way. The MACHOs are expected to have orbits
between us and the Magellanic clouds. When the MACHOs pass in front of
stars in the Magellanic clouds microlensing will increase the flux from these
stars for a few days or weeks. An extensive search program is running looking
for these microlensing events in the Magellanic clouds in order to get closer
to the solution of the dark matter mystery.

5 Problems

Problem 1 (30 min. - 1 hour)
Use the equations of motion for a photon (equation 3) to show that the radial
light speed drshell/dtshell observed by the shell observer can be written as

1

b2

(

drshell

dtshell

)2

=
1

b2
−

(

1 − 2M
r

)

r2
. (7)

Look at equation (4) and (7) from the previous lecture and show that we can
define an effective potential for light (based on the shell velocity rather than
the velocity dr/dt) as

V (r) =

√
√
√
√

(

1 − 2M
r

)

r2
.

Problem 2 (30 min - 1 hour)

1. By taking the derivatives of the effective potential for light, show that
the potential has only one extremal point which is a maximum. Explain
why this means that there are no stable orbits for light.

2. Show that this maximum occurs at r = 3M and explain why we call
this radius the light sphere.
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3. Show that the criterion deciding whether light will escape a black hole
or plunge into it is given by the critical impact parameter as

bcrit = 3
√

3M ≈ 5.2M

Problem 3 (1 - 2 hours)
In 1919 a solar eclipse gave one of the first opportunities to check the validity
of Einstein’s theory. Stars which appear very close to the Sun can normally
not be seen due to the much stronger light from the Sun. Only light from the
stars which appear very close to the Sun on the sky would be significantly
affected by the gravitational field of the Sun. The only possibility we have
to see these stars is during a solar eclipse. The light from the Sun is blocked
and the stars can be seen. If the light from these stars pass close to the
surface of the Sun they will be deflected by the solar gravitational field. This
deflection will shift the position of the star on the sky.

1. Draw the situation showing why the apparent position of such a star
is shifted and whether it will be shifted towards the Sun or away from
the Sun. Then show that the angular shift on the sky is given by
∆φ = 4M/R (you can assume that you already know that light will
be deflected by this angle, but it is not obvious that this equals the
apparent angular shift on the sky, this is what you need to show by the
figure/geometry). You will need a good drawing and some geometrical
consideration to arrive at the answer.

2. Calculate the angular shift in position in arc seconds assuming that the
light passes very close to the solar surface.

3. Repeat the previous calculation for the Moon. Is the same effect mea-
surable for stars close to the Moon? (here you need the mass of the
Moon)

Problem 4 (60 - 90 min.)
In this exercise, we will deduce the lensing formula (equation 6). Go back
and read what the different symbols in the lensing formula mean. Also go
and check that you understand figures 6 and 7 well.

1. First use the fact that R >> M to show that light with impact pa-
rameter b will pass the cluster at a distance R ≈ b from the center of
the cluster at the closest point. (hint: equation 5). This is the reason
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why the closest distance of the light beam to the cluster is given by b
in figure 6.

2. Show that the deflection angle ∆φ is given by

∆φ ≈
4M

b
.

3. Only light emitted with an angle θem will reach Earth. We just found
out that this light will be deflected an angle 4M/b and will reach Earth
in an angle θE . In figure 8 we show the geometry tin more detail. Make
sure that you understand the figure and why all the different angels can
be written the way they are written in this figure. Use the figure to
show that

θem + θE =
4M

b
. (8)

4. We will assume that the distances dL and dS as well as dL − dS are
much larger than the distance between the center of the cluster and
the light beam at the closest given by b. If this is the case (as it always
is in this situation), then the angles θE and θem are so small that we
can use the small angle formula. Show that

θem ≈
b

dS − dL
, θE ≈

b

dL
.

5. Now you have enough information to show the lensing formula

θE =

√

4M(dS − dL)

dLdS
,

6. An Einstein ring is observed around a cluster of galaxies. The radius of
the Einstein ring is 3′. The distance to the cluster has been estimated to
be 109 light years. Using spectroscopy on the light from the Einstein
ring it is recognized as a quasar and the distance to the quasar is
estimated to be 1010 light years. What is the mass of the cluster of
galaxies expressed in solar masses?
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