
AST1100 Lecture Notes

19: Nuclear reactions in stellar cores

Before embarking on the details of thermonuclear reactions in stellar
cores, we need to discuss a few topics...

1 Some particle physics

Nature is composed of three kinds of elementary particles: leptons, quarks,
and gauge bosons. Nature also has four forces acting on these elementary
particles: the strong and weak nuclear forces, the electromagnetic force and
the force of gravity (from the point of view of general relativity the latter is
not a force, from the point of view of particle physics, it is). Actually, it has
been discovered that the weak nuclear force and the electromagnetic force
are two aspects of the same thing. At higher energies they unify and are
therefore together called the electroweak force.

The leptons can be divided in two groups, the 3 ‘heavy’ (with much more
mass than in the other group) leptons and 3 light leptons called neutrinos
(with a very small mass). Each heavy lepton has a neutrino associated with
it. In all there are thus 6 leptons

• the electron and the electron associated neutrino.

• the muon and the muon associated neutrino.

• the tau particle and the tau associated neutrino.

In collisions involving the electron, an electron (anti)neutrino is often cre-
ated, in collisions involving the muon, a muon (anti)neutrino is often created
and the same goes for the tau particle. Each lepton has lepton number +1
whereas an antilepton has lepton number -1. This is a property of the par-
ticle similar to charge: In the same way as the total charge is conserved in
particle collisions, the total lepton number is also conserved.

There are also 6 kinds of quarks grouped in three generations. In the
order of increasing mass these are
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• the up (charge +2/3e) and down (charge −1/3e) quarks.

• the strange (charge −1/3e) and charm (charge +2/3e) quarks.

• the bottom (charge −1/3e) and top (charge +2/3e) quarks.

A quark has never been observed alone it is always connected to other quarks
via the strong nuclear force. A particle consisting of two quarks is called a
meson and a particle consisting of three quarks is called a baryon. Mesons
and baryons together are called hadrons. A proton is a baryon consisting of
three quarks, two up and one down quark. A neutron is another example of
a baryon consisting of two down and one up quark.

In quantum theory, the forces of nature are carried by so-called gauge
bosons. Two particles attract or repel each other through the interchange of
gauge bosons. Normally these are virtual gauge bosons: Particles existing for
a very short time, just enough to carry the force between two particles. The
energy to create such a particle is borrowed from vacuum: The Heisenberg
uncertainty relation

∆E∆t ≥
h

4π
, (1)

allows energy ∆E to be borrowed from the vacuum for a short time interval
∆t. The gauge bosons carrying the four forces are

• gluons in the case of the strong nuclear force

• W and Z bosons in the case of the weak nuclear force

• photons in the case of the electromagnetic force

• (gravitons in the case of the gravitational force: note that a quantum
theory of gravity has not yet been successfully developed)

In quantum theory, the angular momentum or spin of a particle is quan-
tized. Elementary particles can have integer spins or half integer spins. Par-
ticles of integer spins are called bosons (an example is the gauge bosons)
and particles of half integer spin are called fermions (leptons and quarks are
examples of fermions. Fermions and bosons have very different statistical
properties, we will come to this in the next lecture.

Finally, all particles have a corresponding antiparticle: A particle having
the same mass, but opposite charge. Antileptons also have opposite lepton

2



number: -1. This is why a lepton is always created with an antineutrino in
collisions. For instance, when a free neutron disintegrates (a free neutron only
lives for about 12 minutes), it disintegrates into a proton and electron and
an electron antineutrino. A neutron is not a lepton and hence has lepton
number 0. Before the disintegration, the total lepton number is therefore
zero. After the disintegration, the total lepton number is 0 (proton) + 1
(electron) -1 (antineutrino) = 0, thus lepton number is conserved due to the
creation of the antineutrino.

Now make a schematic summary of all the elementary particles and forces
that have been observed in nature.

2 Mass in special relativity

Another topic which we need to discuss before studying nuclear reactions is
the notion of mass in the special theory of relativity. We have already seen
that the scalar product of the momenergy four-vector equals the mass of a
particle,

PµP
µ = E2 − p2 = m2. (2)

Imagine we have two particles with mass m1 and m2, total energy E1 and
E2 and momenta p1 and p2. Assume that they have opposite momenta
p1 = −p2 = p,

P 1
µ = (E1, p), P 2

µ = (E2,−p)

with E1 =
√

m2
1 + p2 and E2 =

√

m2
2 + p2 These two particles could for

instance constitute the proton and the neutron in a deuterium nucleus. The
question now is, what is the total mass of the two-particle system (deuterium
nucleus)? Let us form the momenergy four-vector for the nucleus

Pµ = P 1
µ + P 2

µ = (E1 + E2, 0).

Using equation 2 we can now find the total mass of the two-particle system
(the nucleus),

M2 = PµP µ = (E1+E2)
2 = E2

1+E2
2+E1E2 = m2

1+m2
2+2p2+

√

(m2
1 + p2

1)(m
2
2 + p2

2),

where M is the total mass of the nucleus. We have two important observa-
tions: (1) Mass is not an additive quantity. The total mass of a system of
particles is not the sum of the mass of the individual particles. (2) The mass
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of a system of particles depends on the total energy of the particles in the
system. The energy of particles in an atomic nucleus includes the potential
energy between the particles due to electromagnetic and nuclear forces.

Consider an atomic nucleus with mass M . This nucleus can be split into
two smaller nuclei with masses m1 and m2. If total mass of the two nuclei
m1 and m2 is smaller than the total mass of the nucleus, the rest energy is
radiated away when the nucleus is divided. This is a nuclear fission process
creating energy. Similarly if the total mass of m1 and m2 is larger than the
total mass of the nucleus, then energy must be provided in order to split the
nucleus. The same argument goes for nuclear fusion processes: Consider two
nuclei with masses m1 and m2 which combine to form a larger nucleus of
mass M . If M is smaller than the total mass of the nuclei m1 and m2 then
the rest mass is radiated away and energy is ’created’ in the fusion process.
In some cases (particularly for large nuclei), the mass M is larger than the
total mass of m1 and m2. In this case energy must be provided in order to
combine the two nuclei to a larger nucleus. We will soon see that in order to
produce atomic nuclei larger than iron, energy must always be provided.

3 Penetrating the Coloumb barrier

The strong nuclear force (usually referred to as the strong force) is active
over much smaller distances than the electromagnetic force. The strong force
makes protons attract protons and protons attract neutrons (and vice versa).
For two atomic nuclei to combine to form a larger nucleus, the two nuclei
need to be close enough to feel the attractive nuclear forces from each other.
Atomic nuclei have positive charge and therefore repulse each other at larger
distances due to the electromagnetic force. Thus for a fusion reaction to take
place, the two nuclei need to penetrate the Coloumb barrier, the repulsive
electromagnetic force between two equally charged particles. They need to
get so close that the attractive strong force is stronger than the repulsive
electromagnetic force. In figure 1 we show the combined potential from
electromagnetic and nuclear forces of a nucleus. We clearly see the potential
barrier at r = R. For a particle to get close enough to feel the attractive
strong force it needs to have an energy of at least E > E(R). We can
make an estimate of the minimal temperature a gas needs in order to make
a fusion reaction happen: The mean kinetic energy of a particle in a gas of
temperature T is EK = (3/2)kT (see the exercises). The potential energy
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Figure 1: The repulsive Coloumb potential V (r) as a function of distance
between nuclei r. At small distances r we see the potential well from the
attractive strong forces.

between two nuclei A and B can be written as

U = −
1

4πǫ0

ZAZBe2

r
,

where ǫ0 is the vacuum permittivity, Z1 and Z2 is the number of protons in
each nucleus, e is the electric charge of a proton and r is the distance between
the two nuclei. For nucleus A to reach the distance R (see figure 1) from
nucleus B where the strong force starts to dominate, the kinetic energy must
at least equal the potential energy at this point

3

2
kT =

1

4πǫ0

ZAZBe2

R
.

The distance R is typically R ∼ 10−15m. Considering the case of two hydro-
gen nuclei Z = 1 fusing to make helium Z = 2, we can solve this equation for
the temperature and obtain T ∼ 1010K. This temperature is much higher
than the core temperature of the Sun TC ∼ 15 × 106K. Still this reaction is
the main source of energy of the Sun. How can this be?
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The secret is hidden in the world of quantum physics. Due to the Heisen-
berg uncertainty relation (equation 1), nucleus A can borrow energy ∆E from
vacuum for a short period ∆t. If nucleus A is close enough to nucleus B, the
time ∆t might just be enough to use the borrowed energy to penetrate the
Coloumb barrier and be captured by the potential well of the strong force.
This phenomenon is called tunneling. Thus, there is a certain probability
that nucleus A spontaneously borrows energy to get close enough to nucleus
B in order for the fusion reaction to take place.

4 Nuclear reaction probabilities and cross sec-

tions

Quantum physics is based on probability and statistics. Nothing can be pre-
dicted with 100% certainty, only statistical probabilities for events to happen
can be calculated. When nucleus A is at a certain distance from nucleus B we
cannot tell whether it will borrow energy to penetrate the Coloumb barrier
or not, we can only calculate the probability for the tunneling to take place.
These probabilities are fundamental for understanding nuclear reactions in
stellar cores. These probabilities are usually represented as cross sections σ.

The definition of the cross section is based on an imaginary situation
which is a bit different from the real situation but gives an intuitive picture
of the reaction probabilities and, most importantly, makes the calculations
easier. It can be proven that the calculations made for this imaginary picture
gives exact results for the real situation. Instead of the real situation where
we have one nucleus A and one nucleus B passing each other at a certain
distance (and we want to know the probability that they react), one imagines
the nucleus B to be at rest and a number of nuclei of type A approaching it.
One imagines nucleus B to have a finite two dimensional extension, like a disk,
with area σ. Towards this disk there is a one dimensional flow of A particles
(see figure 2). If a nucleus A comes within this disk, it is captured and fusion
takes place, if not the nuclei do not fuse. It is important to understand that
this is not really what happens: fusion can take place with any distance
r between the nuclei. It might also well be that A is within the disk and
the fusion reaction is not taking place. But in order to make calculations
easier one makes this imaginary disk with an effective cross section σ saying
that any nucleus A coming within this disk will fuse. It can be shown that
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calculations made with this representation gives correct reaction rates even
though the model does not give a 100% correct representation of the physical
situation. Because of the simplified mathematics, the cross section σ is the
most common way of representing a probability for a reaction or collision
process to take place. You will now see how this imaginary picture is used
to calculate reaction rates.

The disk cross section (tunneling probability) σ(E) depends on the energy
E of the incoming nucleus A. Thus the size of the immaginary disk (for the
nucleus B at rest) depends on the energy E of the incoming particle A. We
will now make calculations in the center of mass system. In problem 5 in the
lectures on celestial mechanics, you showed that the total kinetic energy of
a two-body system can be written as (ignoring gravitational forces)

E =
1

2
µ̂v2,

where µ̂ is the reduced mass µ̂ = (m1m2)/(m1 + m2). We showed that
the two-body problem is equivalent to a system where a particle with mass
M = m1 + m2 is at rest and a particle with the reduced mass µ̂ is moving
with velocity v. In this case we imagine the nucleus B to be at rest and the
particle A is approaching with velocity v.

We will now consider a gas with a total number density of particles n per
volume, a number density nA per volume of A nuclei and a number density nB

per volume of B nuclei. We will try to find how many A nuclei with a given
energy E will react with one B nucleus per time interval ∆t. The answer is
simple: All the A particles with energy E which are in such a distance from
B that they will hit the disk with cross section σ(E) around nucleus B within
the time interval ∆t (do you really understand this?). This means that all
the A nuclei with energy E at a distance v(E)∆t from B moving towards
B will react with B. In figure 2 we illustrate the situation. All A nuclei
within a volume V = v(E)∆tσ(E) will react (make sure you get this before
continuing!). (again, this is an imaginary situation: only one nucleus A can
really react with B, the numbers we obtain are in reality probabilities). Let
nA(E) be the number density of A nuclei with energy E such that nA(E)dE
is the number of A nuclei with energies between E and E + dE. Then, the
total number of nuclear reactions per nucleus B from A nuclei with energies
in the interval E to E + dE is given by

dN(E) = v(E) dt σ(E)nA(E) dE. (3)
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Figure 2: A particles streaming towards the disk with cross section σ(E)
around the B nucleus. A particles of energy E within the volume v(E)∆tσ(E)
will react with the nucleus B within time ∆t.

Before continuing we need to know the number density of A nuclei with
energy E, nA(E). Recall from the lectures on electromagnetic radiation that
the number of particles with velocity between v and v + dv in an ideal gas
of temperature T with molecules of mass m can be written as

n(~v) = n
(

m

2πkT

)3/2

e−
1

2

mv2

kT , (4)

which is the Maxwell-Boltzmann distribution function. Note that there is a
small difference with the form of the function which you learned in previous
chapters: there is no dv on both sides and 4πv2 is missing on the right side.
The reason for this is that this is the Maxwell-Boltzmann distribution for ~v,
i.e. the probability for finding a particle with velocity v in the direction ~v in
the gas. The distribution we saw in earlier chapters was

n(v)dv = n
(

m

2πkT

)3/2

e−
1

2

mv2

kT 4πv2dv, (5)

which is the number of particles with absolute value between v and v +dv of
the velocity, regardless of direction. We will later in this course learn where
the 4πv2dv factor comes from.

8



The energy of the A nuclei can be written as E = (1/2)µ̂v2 giving a
velocity

v(E) =

√

2E

µ̂

and

dv =
dE√
2µ̂E

.

Inserting this in the Maxwell-Boltzmann distribution, we find

n(E)dE =
2n

√
π(kT )3/2

E1/2e−
E
kT dE,

(check that you get this!) which is the number of particles in the gas with
energy E expressed in terms of the total number of particles in the gas n.
Returning to equation 3 we see that what we need is not the total number of
particles at energy E, but the total number of A particles at energy E. This
can be written as

nA(E)dE =
nA

n
n(E)dE,

where nA/n is the fraction of A particles in the gas (over all energies). From
equation 3 we thus have

dN(E)

dt
= σ(E)v(E)

nA

n
n(E)dE,

which is the reaction rate per B nucleus, i.e. the number of reactions taking
place for each B nucleus present (independent of the energy of the B nucleus,
remember that the B nucleus is at rest). To obtain the total reaction rate
rAB between A and B nuclei we thus need to multiply with the total density
of B nuclei nB and integrate over all energies E

rAB =
dN

dt
=

∫ ∞

0
dEnAnBσ(E)v(E)

n(E)

n
.

This is the total number of reactions per time and volume. Now we insert
the Maxwell-Boltzmann distribution to get

rAB =
(

2

kT

)3/2 nAnB√
µ̂π

∫ E

0
dEEe−E/ktσ(E).

9



Advanced quantum field theory is needed to calculate σ(E). Here we will
give the answer

σ(E) =
S(E)

E
e−b/

√
E ,

where

b =
π
√

µ̂ZAZBe2

√
2ǫ0h

and S(E) is a slowly varying function in E depending on the nuclei involved.
The constant b involves the masses and the number of protons in the nuclei.
We can thus write the reaction rate as

rAB =
(

2

kT

)3/2 nAnB√
µ̂π

∫ ∞

0
dES(E)e−b/

√
Ee−E/(kT ). (6)

We will not do the integral here but note that the solution can be Taylor
expanded around given temperatures T as

rAB ∝ XAXBρα′

T β, (7)

where ρ is the density, XA and XB are the mass fractions of the two nuclei

XA =
nAmA

nm
=

total mass in type A nuclei

total mass
,

and α′ and β depend on the temperature T around which the expansion
is made. We usually express the reaction rate as the energy εAB which is
released per kilogram matter per second. We can write this as

εAB =
ε0

ρ
rAB,

where ε0 (which is not the vacuum permittivity ǫ0) is the energy released per
nuclear reaction (why did we include the density ρ here?). Using equation 7
we can write this as

εAB = ε0XAXBραT β,

where α = α′ − 1. Here, ε0, α and β will depend on the nuclear reaction
(calculated from the integral 6). If we have ε0, α and β for different nuclear
reactions, we can use this expression to find the nuclear reactions which are
important for a given temperature T in a stellar core.
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The energy release per mass per time, ε, can be written as luminosity per
mass

dL

dm
= ε

The luminosity at a shell at a distance r from the center of a star can therefore
be written as

dL(r)

dr
= 4πr2ρ(r)ε(r), (8)

which is another of the equations used together with the equation of hydro-
static equilibrium in the stellar model building described in the exercises of
lecture 13-14.

5 Stellar nuclear reactions

For main sequence stars the most important fusion reaction fuses four 1
1H

atoms to 4
2He. When writing nuclei, A

ZX, A is the total number of nucleons
(protons and neutrons), Z is the total number of protons and X is the chem-
ical symbol. There are mainly two chains of reaction responsible for this
process. One is the pp-chain,

1
1H +1

1 H → 2
1H +0

0 ē +0
0 ν

2
1H +1

1 H → 3
2He +0

0 γ
3
2He +3

2 He → 4
2He + 2 ×1

1 H

Here 0
0ν is the electron associated neutrino, 0

0γ is a photon and the bar repre-
sents antiparticles: 0

0ē is the antiparticle of the electron called the positron.
This is the pp-I chain, the most important chain reactions in the solar core.
There are also other branches of the pp-chain (with the first two reactions
equal) but these are less frequent. The pp-chain is most effective for temper-
atures around 15 millions Kelvin for which we can write the reaction rate for
the full pp-chain (on the format of equation 7) as

εpp ≈ ε0,ppX
2
HρT 4

6 ,

where T = 106T6 with T6 being the temperature in millions of Kelvin. This
expression is valid for temperatures close to T6 = 15. For this reaction
ε0,pp = 1.08× 10−12Wm3/kg2. The efficiency of the pp-chain is 0.007, that is
only 0.7% of the mass in each reaction is converted to energy.
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The other reaction converting four 1
1H to 4

2He is the CNO-cycle,

12
6 C +1

1 H → 13
7 N +0

0 γ
13
7 N → 13

6 C +0
0 ē +0

0 ν
13
6 C +1

1 H → 14
7 N +0

0 γ
14
7 N +1

1 H → 15
8 O +0

0 γ
15
8 O → 15

7 N +0
0 ē +0

0 ν
15
7 N +1

1 H → 12
6 C +4

2 He

with a total reaction rate

εCNO = ε0,CNOXHXCNOρT 20
6 ,

where ε0,CNO = 8.24 × 10−31Wm3/kg2 and

XCNO =
MCNO

M

is the total mass fraction in C, N and O. These three elements are only cat-
alysts in the reaction, the number of C, N and O molecules do not change
in the reaction. This expression is valid for T6 ≈ 15. We see that when
the temperature increases a little, the CNO cycle becomes much more ef-
fective because of the power 20 in temperature. In the exercises you will
find how much. Thus, the CNO cycle is very sensitive to the temperature.
Small changes in the temperature may have large influences on the energy
production rate by the CNO cycle.

For stars with an even hotter core, also 4
2He may fuse to heavier elements.

In the triple-alpha process three 4
2He nuclei are fused to form 12

6 C.

4
2He + 4

2He → 8
4Be +0

0 γ

8
4Be + 4

2He → 12
6 C∗ +0

0 γ

Here the reaction rate can be written as

ε3α = ε0,3αρ2X3
HeT

41
8 .

Here T = 108T8, T8 is the temperature in hundred millions of Kelvin and
ε0,3α = 3.86 × 10−18Wm6/kg3. This expression is valid near T8 = 1. We see
an extreme temperature dependence. When the temperature is high enough,
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this process will produce much more than the other processes. For higher
temperatures, even heavier elements will be produced for instance with the
reactions

4
2He + 12

6 C → 16
8 O +0

0 γ (9)

12
6 C + 12

6 C → 24
12Mg +0

0 γ (10)

There is a limit to which nuclear reactions can actually take place: The
mass of the resulting nucleus must be lower than the total mass of the nuclei
being fused. Only in this way energy is produced. This is not always the
case. For instance the reactions

12
6 C + 12

6 C → 16
8 O + 24

2He (11)

and
16
8 O + 16

8 O → 24
12Mg + 24

2He (12)

require energy input, that is the total mass of the resulting nucleus is larger
than the total mass of the input nuclei. It is extremely difficult to make such
reactions happen: Only in extreme environments with very high tempera-
tures is the probability for such reactions large enough to make the processes
take place.

In figure 3 we show the mass per nucleon for the different elements. We
see that we have a minimum for 56

26Fe. This means that for lighter elements
(with less than 56 nucleons), the mass per nucleon decreases when combining
nuclei to form more heavier elements. Thus, for lighter elements, energy is
usually released in a fusion reaction (with some exceptions, see equation
11) and 12). For elements heavier than iron however, the mass per nucleus
increases with increasing number of nucleons. Thus, energy input is required
in order to make nuclei combine to heavier nuclei. The latter processes are
very improbable and require very high temperatures.

We see that we can easily produce elements up to iron in stellar cores.
But the Earth and human beings consist of many elements much heavier than
iron. How were these produced? In the Big Bang only hydrogen and helium
were produced so the heavier elements must have been created in nuclear
reactions at a later stage in the history of the universe. We need situations
were huge amounts of energy are available to produce these elements. The
only place we know about where such high temperatures can be reached are
supernova explosions. We will come back to this later.
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Figure 3: Schematic diagram of mass per nucleon as a function of the number
of nucleons in the nucleus. Note that we are only illustrating the general
trends. There are for instance a few light elements for which the mass per
nucleon increases with increasing number of nucleons in the nucleus.

6 The solar neutrino problem

If you look back at the chain reactions above you will see that neutrinos are
produced in the pp-chain and the CNO cycle. We have learned in earlier
lectures that neutrinos are particles which hardly react with matter. Unlike
the photons which are continuously scattered on charged particles on they
way from the core to the stellar surface, the neutrinos can travel directly from
the core of the Sun to the Earth without being scattered even once. Thus,
the neutrinos carry important information about the solar core, information
which would have otherwise been impossible to obtain without being at the
solar core. Using the chain reactions above combined with the theoretical
reaction rates, we can calculate the number of neutrinos with a given energy
we should observe here at Earth. This would be an excellent test of the theo-
ries for the composition of the stellar interiors as well as of our understanding
of the nuclear reactions in the stellar cores. The procedure is as follows

1. Stellar model building: Solve the coupled set of equations consisting
of the equation of hydrostatic equilibrium, equation 8 as well as sev-
eral equations from thermodynamics describing the transport of energy

14



within the Sun. The solutions to these equations will give you the den-
sity ρ(r) and temperature T (r) of the Sun as a function of distance r
from the center.

2. The temperature T (r) at a given distance r combined with the above
expressions for stellar reaction rates gives the number of neutrinos pro-
duced in the different kinds of chain reactions and what energies E
these neutrinos should have.

3. Measure the flux of neutrinos for different energy ranges E that we
receive on Earth and compare to theoretical predictions.

4. If there is agreement, it means we have obtained the correct model
for the Sun. If the agreement is not satisfactory, we need to go back
to the first step and make the stellar model building with different
assumptions and different parameters.

For many years, there was a strong disagreement between the neutrino
flux observed at Earth and the solar models. The observed number of neu-
trinos was much lower than predicted. Now the discrepancy is resolved and
the solution led to an important discovery in elementary particle physics:
It was discovered that the neutrinos have mass. It was previously thought
that neutrions were massless like the photons. Elementary particle physics
predicted that if the neutrinos have mass, they may oscillate between the
three different types of neutrino. If neutrinos have mass, then an electron
neutrino could spontaneously convert itself into a muon or tau neutrino. The
first neutrino experiments were only able to detect electron neutrinos. The
reason they didn’t detect enough solar neutrinos was that they had converted
themselves to different types of neutrinos on the way from the solar core to
the Earth. Today neutrino detectors may also detect other kinds of neu-
trino and the observed flux is in much better agreement with the models.
But it does not mean that the solar interior and solar nuclear reactions are
completely understood. Modern neutrino detectors are now used to measure
the flux of different kinds of neutrinos in different energy ranges in order to
understand better the processes being the source of energy in the Sun as well
as other stars.

But the neutrinos hardly react with matter, how are they detected? This
is not an easy task and a very small fractions of all the neutrinos passing
through the Earth are detected. One kind of neutrino detector consists of a
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tank of cleaning fluid C2Cl4, by the reaction

37
17Cl + 0

0ν → 37
18Ar + 0

−1e.

The argon produced is chemically separated from the system. Left to itself
the argon can react with an electron (in this case with its own inner shell
electron) by the converse process

37
18Ar + 0

−1e → 37
17Cl + 0

0ν.

The chlorine atom is in an excited electronic state which will spontaneously
decay with the emission of a photon. The detection of such photons by a
photomultiplier then is an indirect measurement of the solar neutrino flux.

7 Problems

Problem 1 (2 - 3 hours) We will show that the mean kinetic energy of a
particle in the gas is

K =
3

2
kT.

In statistics, if x is a stochastic random variable and we want to find the
mean value of a function f(x) of this random variable, we use the formula
for the mean

< f(x) >=
∫

dxf(x)P (x),

where P (x) is the probability distribution function describing the probabil-
ity of finding a certain value for the random variable x. The probability
distribution needs to be normalized such that

∫

dxP (x) = 1.

All integrals over x are over all possible values of x.
Let’s translate the last sentences into a more understandable language:

physics. Our random variable x is simply the velocity v of particles in a gas.
Why random? Because if you take a gas and choose randomly one particle
in the gas, you do not know which value you will find for v, it is random.
Thermodynamics gives us the probability distribution P (x) of velocities.
This probability distribution tells us the probability that our choosen gas
particle has a given velocity v. In an ideal gas, the probability distribution is
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given by the Maxwell-Boltzmann distribution function in equation 4. Finally,
the function f(x) is any function of the velocity, of which we want the mean
value. This could for instance be the kinetic energy K(v) = (1/2)mv2. This
is a function of the random variable v and we would indeed like to find the
mean value of this function, that is, the mean kinetic energy of a particle
in the gas. This mean kinetic energy would be the energy we would find if
we measured the kinetic energy of a large number of particles in the gas and
took the mean. It is that simple. So now we substitute x with v, f(x) with
K(v) and the probability distribution P (x) with n(v). There is however one
caveat: Above we mentioned that P (x) needs to be normalized. The form
of the Maxwell-Boltzmann distribution in equation 4 is not normalized. We
call the normalized distribution nnorm(v). Then we have

< K >=
∫

dvK(v)nnorm(v).

In the following you will need the following two integrals

∫ ∞

0
dxe−xx1/2 =

√
π

2

and
∫ ∞

0
dxe−xx3/2 =

3
√

π

4
.

1. First we need to find nnorm(v). We write

nnorm(v) =
1

N
n(v).

Use the normalization integral for P (x) above to find N .

2. Now use the normalized distribution function to find the mean kinetic
energy of a particle in an ideal gas.

3. Now we will check our result numerically: Note that the Maxwell-
Boltzmann distribution function is a Gaussian distribution function
which can be written on the form

P (~v) =
1

(2πσ2)3/2
e−(v2

x+v2
y+v2

z)/(2σ2)
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(a) Comparing with equation 4 (use the normalized version that you
just obtained!), what is σ here?

(b) In Python there is a function random.gauss(mean,sigma) to pro-
duce random numbers with a Gaussian probability distribution.
The vx, vy and vz components of the velocity of gas particles are
thus all distributed randomly with mean value 0 and standard
deviation given by the σ which you just found. Now you will
simulate 10000 gas particles with a temperature T = 6000K (like
on the solar surface), assuming that the atoms in the gas are hy-
drogen atoms. Now produce the random velocity components vx,
vy and vz of these particles using the random.gauss function in
Python. Now you have an array which has the velocity in each
direction for all your 10000 particles representing what you would
really find if you had a look at the velocities of 10000 particles in
a gas with this temperature. Now compute the kinetic energy for
each of the particles and take the mean value over all your parti-
cles. Compare the number you get to what you obtain with the
analytic expression you found above. Does it fit? If it does not
fit precisely, and if you have the computer power to do it, repeat
the code but now with 100000 particles. Does it fit better now?
In most real situatuions, an analytic expression cannot be found
and simulations like these have to be made.

Problem 2 (60 - 90 min.) One of the solar standard models predict
the following numbers for the solar core: ρ = 1.5 × 105kgm−3, T = 1.57 ×
107K, XH = 0.33, XHe = 0.65 and XCNO = 0.01. We will assume that the
expressions for energy production per kilogram given in the text are valid at
the core temperature of the Sun. We will make this approximation even for
the expression for the triple-alpha reaction which is supposed to be correct
only for higher temperatures.

1. Calculate the total energy produced per kilogram in the Sun by the
pp-chain, CNO-cycle and the triple-alpha process.

2. Find the ratio between the energy production of the pp-chain and the
CNO-cycle and between the pp-chain and the triple-alpha process. The
energy produced by the CNO cycle is only about 1% of the total energy
production of the Sun. If you got a very different number in your ratio
between the pp-chain and the CNO-cycle, can you find an explanation
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for this difference? What would you need to change in order to obtain
a more correct answer?

3. Now repeat the previous question using a mean core temperature of
about T = 13×106K. Use this temperature in the rest of this exercise.

4. At which temperature T does the CNO cycle start to dominate?

5. Assume for a moment that only the pp-chain is responsible for the total
energy production in the Sun. Assume that all the energy production in
the Sun takes place wihin a radius R < RE inside the solar core.Assume
also that the density, temperature and mass fractions of the elements
are constant within the radius RE . So all the energy produced by the
Sun is produced in a sphere of radius RE in the center of the solar core.
Use the above numbers and the solar luminosity L⊙ = 3.8 × 1026W to
find the size of this radius RE within which all the energy production
takes place. Express the result in solar radii R⊙ ≈ 7×108m. The solar
core extends to about 0.2R⊙. How well did your estimate of RE agree
with the radius of the solar core?

6. If the CNO-cycle alone had been responsible for the total energy pro-
duction of the Sun, what would the radius RE had been? (again express
the result in solar radii)

Problem 3 (30 min - 1 hour)

1. Go through all the nuclear reactions in the pp-chain and CNO cycle.
For each line in the chain, check that total charge and total lepton
number is conserved. (there might be some printing errors here, if you
spot one where is it?)

2. After having checked all these reactions you should have gained some
intuition about these reactions and the principles behind them. So
much that you should be able to guess the missing numbers and parti-
cles in the following reactions

27
14Si → 27

? Al + e++?

27
? Al + 1

1H → 24
12Mg + ?

2?

35
17Cl + 1

1H → 36
18Ar+?
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