
AST1100 Lecture Notes

20: Stellar evolution: The giant stage

1 Energy transport in stars and the life time

on the main sequence

How long does the star remain on the main sequence? It will depend on the
available hydrogen in the core. Note that as hydrogen is converted to helium
the mean molecular weight µ (see lecture 13-14) increases. We remember
that the pressure in an ideal gas can be written as

P =
NkT

µmH

.

Thus as µ increases, P decreases provided ρ and T remain approximately
constant. The result is that the hydrostatic equilibrium is lost. The battle
between the gravitational forces and the pressure forces is won by gravitation
and the stellar core starts contracting. The result of the contracting core is
that the core density and temperature rise. At higher core temperatures, the
nuclear reactions which are more effective at higher temperatures start to be
more important. We will now make an estimate of how long time it takes
until the hydrogen in the core is exhausted. At this point, the star leaves the
main sequence and starts the transition to the giant stage.

Before continuing the discussion on energy production in the core we need
to have a quick look at how the energy is transported from the core to the
surface. Clearly the photons produced in the nuclear reactions in the core do
not stream directly from the core and to the surface. The total luminosity
that we observe does not come directly from the nuclear reactions in the
core. The photons produced in the nuclear reactions scatter on the nuclei
and electrons in the core transferring the energy to the particles in the core.
Thus, the high temperature of the stellar core is a result of the energetic
photons produced in the nuclear reactions. The high temperature plasma in
the core emits thermal radiation. The photons resulting from this thermal
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radiation constitutes a dense photon gas in the core of the star. How is
the energy, that is, the heat of the plasma or the photons in the photon gas,
transported to the stellar surface? There are three possible ways to transport
energy in a medium:

• By radiation: Photons from the photon gas traveling outwards. The
photons cannot travel directly from the core, but will be continuously
scattered in many different directions by collisions with other parti-
cles. After a large number of scatterings and direction changes it will
eventually reach the surface and escape.

• By convection: Large masses of the hot gas may stream outwards while
the cooler gas falls inwards. In this way, the heat and thereby the
energy is transfered outwards. Convection is a much more efficient way
of energy transport than radiation.

• By conduction: Heat is transfered directly outwards by particle colli-
sions.

In stars, mostly the two former mechanisms for energy transport are at play.
In solar mass stars, energy is transported from the core by radiation un-
til a distance of about r = 0.7R⊙ where convection starts to be the most
important mechanism for energy transport out to the surface.

We will now make a very crude estimate of how long a star remains on the
main sequence. In order to do this properly it is necessary to do stellar model
building, i.e. solve the coupled set of equations of hydrostatic equilibrium,
the equations of energy production and the equations of energy transport.
This gives a model of the star in terms of density and temperature as a
function of distance from the center. From this model, the proper life time of
the star can be calculated. It turns out that the estimates and relations that
we now will deduce using some very rough approximations give results close
to the results obtained using the full machinery of stellar model building.

The outline of the method is the following: Find an expression for the
luminosity of the star. We know that luminosity is energy radiated away per
unit of time. If we assume how much energy the star has available to radiate
away during its life time, we can divide this energy by the luminosity to
find the life time (assuming constant luminosity which is a good assumption
during the main sequence phase).

We will again consider the photon gas in the stellar core. You will in
later courses in thermodynamics show that the energy density, i.e. energy
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Figure 1: Energy transport by radiation: random walk of the photons from
the core of the star to the surface.

per volume, of a photon gas goes as ρE ∝ T 4 (actually ρE = aT 4 where a is
the radiation constant that we encountered in lecture 13-14 for the pressure
of a photon gas P = 1/3aT 4). The question is how long time it will take
for the photos in the photon gas to reach the surface of the star. We will
now assume that the only mechanism for energy transport is by radiation.
A photon which starts out in the core will be scattered on particles and
continuously change directions until it reaches the surface of the star (see
figure 1). We assume that the photon travels a mean free path ℓ between

each collision. After being scattered N times, the position ~d of the photon
(see figure 2) is given by

~d =
N
∑

i=1

~li,

where ~li is the displacement vector between each scattering i (see again figure
2). The total length ∆r of the vector d is the total distance the photon has
moved from the center. It is given by (check!)

∆r2 = ~d · ~d =
∑

i,j

~li ·~lj = Nℓ2 + ℓ2
∑

i6=j

cos θij ,

where θij is the angle between two vectors ~li and ~lj . The directions of the
scatterings are random, so cos θij will have values between -1 and 1. After
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Figure 2: Random walk from the core. The position after N scatterings ~li is
~d.

many scatterings, the mean value of this term will approach zero and we
have

∆r =
√

Nℓ,

or writing this in terms on number of scatterings N to reach the surface we
thus have N = R2/ℓ2 where R is the radius of the star (check!).

The time ∆t for a photon to reach the surface is then (note that the total
distance traveled by the photon is Nℓ)

∆t =
Nℓ

c
=

ℓ

c

R2

ℓ2
=

R2

ℓc
.

If we assume that within a radius r of the star, the temperature T and
energy density ρE of the photon gas is constant, the total energy content of
the photon gas within radius r is

E =
4

3
πr3ρE ∝ r3T 4,

where we used that ρE ∝ T 4. We will now use a very rough model of the
star: We assume the density and temperature of the star to be constant
everywhere in the star. Then the energy content of the photon gas in the
whole star is given by E ∝ R3T 4. If we assume that this energy is released
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within the time ∆t it takes for the photons in the core to reach the surface,
then the luminosity of the star can be written as

L ∝
E

∆t
∝

R3T 4

R2/ℓ
∝ RT 4ℓ. (1)

The mean free path ℓ depends on the density of electrons and the different
nuclei in the core. If we assume that photons are only scattered on electrons,
it can be shown that the mean free path ℓ ∝ 1/ρ which does seem reasonable:
The higher the density the lower the mean free path between each scattering.
Since we assume constant density we have ρ ∝ M/R3. Inserting this in
equation 1 we have

L ∝ RT 4ℓ ∝
RT 4

ρ
∝

R4T 4

M
. (2)

Finally we will use the equation of hydrostatic equilibrium

dP

dr
= −ρg.

If we assume that the pressure can be written as P ∝ rn where n is unknown
then

dP

dr
= nrn−1 =

nrn

r
=

nP

r
∝

P

r
.

The equation of hydrostatic equilibrium then yields

P

R
∝ ρg ∝

M

R3

M

R2
∝

M2

R5
,

or P ∝ M2/R4. We remember from lecture 13-14 than for an ideal gas
P ∝ ρT . Inserting this in the previous equation gives

T ∝
M

R
.

Inserting this in equation 2 we get

L ∝
R4

M

(

M

R

)4

∝ M3. (3)

The luminosity is proportional to the mass of the star to the third power. A
more exact calculation would have shown that

L ∝ Mβ ,
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where β is usually between 3 and 4 depending on the exact details of the star.
It turns out that most low or medium mass stars have β ≈ 4. This is also
supported by observations. Therefore we will in the following use L ∝ M4.
Having the luminosity of the star, we can easily find the life time. Assume
that a fraction p of the mass of the star is converted to energy. Then then
total energy radiated away during the lifetime of the star is given by

E = pMc2.

If we assume constant luminosity during the lifetime we have

L =
pMc2

tlife
∝ M4,

giving

tlife ∝
1

M3
.

This can be the total life time of the star, or just the life time on the main
sequence (in fact, for most stars the time on the main sequence is so much
longer than other stages in a star’s life so the time on the main sequence
is roughly the same as the life time of the star). If we take p to be the
fraction of mass converted to energy during the main sequence, then this is
the expression for the time the star spends on the main sequence. We see
that the life time of a star is strongly dependent on the mass of the star.
The Sun is expected to live for about 10 × 109 years. A star with half the
mass of the Sun will live 8 times longer (which is much longer than the age
of the universe). A star with two times the mass of the Sun will live only
1/8 or roughly 109 years. The most massive stars only live for a few million
years. We see from equation 3 that this can be explained by the fact that
massive stars are much more luminous than less massive stars and therefore
burn their fuel much faster. A star with two times the mass of the Sun will
burn 16 times (equation 3) as much ’fuel’ per time as the Sun, but it only
has twice as much ’fuel’. It will therefore die much younger.

As the last expression is just a proportionality, we need to find the con-
stant of proportionality, that is, we need to know the life time and mass of
one star in order to use it for other stars. We know these numbers for the Sun
and we will now use approximations to calculate this number. One can show
that a star will leave the main sequence when about 10% of its hydrogen
has been converted to helium. We discussed in the previous lecture that the
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efficiency of the pp-chain is 0.7%. So the total energy that will be produced
of the Sun during its lifetime is therefore 0.1 ×Mc2 × 0.007. Assuming that
the solar luminosity 3.7 × 1026W is constant during the time on the main
sequence we have

tmainsequence
⊙ =

0.1 × 2 × 1030kg × (3 × 108m/s)2 × 0.007

3.7 × 1026W
≈ 1010years.

We will now try to find a way to estimate the mass of a star. Remember
that in the lectures on extrasolar planets, we needed to know the mass of the
star by independent measurements in order to be able to estimate the mass
of a planet orbiting it. In the above approximation we considered a star with
constant density and temperature. The conditions we used are normally valid
only for the core of the star. Thus, the approximations we made are more
correct in the core of the star. We found that the temperature T ∝ M/R.
For main sequence stars, the core temperature is reasonably constant, there
is not a large difference in core temperatures for different main sequence
stars. Using this assumption we can write

Tc ∝
M

R
= constant.

We can write this as R ∝ M . Now, we know that the luminosity of a star
can be written in terms of the effective temperature as

L = 4πR2σT 4
eff ,

where 4πR2 is the area of the surface and F = σT 4
eff is the flux at the surface.

Using R ∝ M and L ∝ M4 this gives

L ∝ M4 ∝ R2T 4
eff ∝ T 4

effM2,

so M4 ∝ T 4
effM2 giving

M ∝ T 2
eff (4)

and we have obtained a way to find the mass of a star from its temperature.
In the exercises you will use this expression to find the temperature of stars
with different masses.
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Figure 3: HR-diagram of the evolution of a star from the main sequence to
the giant stage.
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Figure 4: The structure of a subgiant and red giant. The core consists mainly
of helium, but the core temperature is not high enough for helium burning.
Hydrogen is burning to helium in a shell around the core. For red giants,
convection transports material all the way from the core to the surface and
the material is mixed (in the figure there is only hydrogen in the outer parts,
for red giants the mixing due to convection will also transfer other elements
all the way to the surface). The relative sizes of the shells are not to scale,
this will depend on the exact evolutionary stage.

2 From the main sequence to the giant stage

We will now follow a star during the transition from the main sequence to the
giant stage. The exact sequence of events will be slightly different depending
on the mass of the star. Here we will only discuss the general features and
discuss a few main differences between low and high mass stars. In figure
3 we can follow the evolutionary path of the star in the HR diagram. The
theories for stellar evolution are developed using computer models of stars
obtained by solving the equations for stellar model building numerically. The
chain of arguments that we will use below to describe stellar evolution are
obtained by studying the outcome of computer simulations.
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When the hydrogen in the core has been exhausted, the forces of pres-
sure are not any longer strong enough to sustain the forces of gravity. The
hydrostatic equilibrium is lost and the core starts contracting. During the
core contraction, the temperature in and around the core increases. The
temperature in the core is still not high enough to ’burn’ helium (all energy
production is by nuclear fusion, not by ’burning’ in the classical sense but it
is common practice to use the term ’burning’ anyway), but the temperature
in a shell around the core now reaches temperatures high enough to start
hydrogen burning outside the core. The structure of the star is illustrated in
figure 4. Because of the increased outward pressure due to hydrogen burning
in the shell, the radius of the star starts increasing significantly. The star has
become a sub giant of luminosity class IV (see the lecture on the HR diagram
and luminosity classes). In figure 3 the star has left the main sequence and is
now on the sub giant branch between point 1 and 2. The luminosity has been
increasing slightly because the energy produced in the shell is higher than
the energy previously produced in the core. But because of the increasing
radius of the star, the surface temperature is dropping. Thus the star moves
to the right and slightly upwards in the HR diagram.

When reaching point 2 in the HR-diagram, the radius of the star has been
increasing so much that the surface temperature is close to 2500K which is
a lower possible limit. When reaching this limit, the dominant mechanism
of energy transport in the star changes from being radiation to convection.
Convection is much more efficient, the energy is released at a much larger
rate and the luminosity increases rapidly. The star has now become a red

giant. At the red giant stage, convection takes place all the way from the core
to the surface. Material from the core is moved all the way to the surface.
This allows another test of the theories of stellar evolution. By observing
the elements on the surface of a red giant we also know the composition of
elements in the core. The star is now on the red giant branch in the HR-
diagram (figure 3). The structure of the star still resembles that of figure
4. The radius is between 10 and 100 times the original radius at the main
sequence and the star has reached luminosity class III.

The next step in the evolution depends on the mass of the star. For
stars more massive than ∼ 2M⊙, the temperature in the core (which is still
contracting) will eventually reach temperatures high enough to start the
triple-alpha process burning helium to carbon as well as other chains burning
helium to oxygen. In low mass stars, something weird happens before the
onset of helium burning. As the core is contracting the density becomes so
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high that a quantum mechanical effect sets in: there is no more space in the
core for more electrons. Quantum physics sets an upper limit on the number
of electrons within a certain volume with a certain momentum. This is called
electron degeneracy. The core has become electron degenerate. In the next
lecture we will discuss this effect in detail. At the moment all we need to
know is that an electron degenerate core will have a new type of pressure:
degeneration pressure. The degeneration pressure is now the outward force
which battles the inward gravitational force in the equation of hydrostatic
equilibrium. The degeneration pressure does not depend on temperature.
Thus, even when the temperature of the core increases significantly, the core
does not expand. The degenerate core is close to isothermal and when the
temperature is high enough to start helium burning, this happens everywhere
in the core at the same time. An enormous amount of energy is released in
a very short time causing an explosive onset of the helium burning phase.
This is called the helium flash. After a few seconds, a large part of the
helium in the core has already been burned. The huge amounts of energy
released breaks the electron degeneracy in the core and the gas starts to
behave normally, i.e. the pressure is again dependent on the temperature
allowing the core to expand. The onset of helium burning (which includes
the helium flash for low mass stars and a less violent transition for high mass
stars) is marked by 3 in figure 3.

The final result of the onset of helium burning is therefore the same for
both low and high mass stars: The core will finally expand, pushing the
hydrogen burning shells outward to larger radii where the gas will cool and
the hydrogen burning will therefore cease in large parts of the shell. The
energy produced in the helium burning is not enough to substitute the energy
production in the shell and the total luminosity of the star will decrease. This
is the case also for stars which undergo a helium flash. This is seen in the
transition from 3 to 4 in figure 3. The star has now entered the horizontal

branch. This stage is in a way similar to the main sequence: This is where the
star burns its helium to carbon and oxygen in the core. Hydrogen burning
is still taking place in parts of the shell. The structure of the star is shown
in figure 5. Horizontal branch giants are called so because, as we will discuss
now, they will move back and forth along a horizontal branch.

After the rapid expansion of the star after the onset of helium burning,
the star starts contracting again in order to reach hydrostatic equilibrium.
The result is an increasing effective temperature and the star moves to the
left along the horizontal branch. After a while on the horizontal branch, the
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Figure 5: A horizontal branch giant. Helium is burning to carbon and oxygen
in the core. Hydrogen is burning to helium in a shell around the core. The
relative sizes of the shells are not to scale, this will depend on the exact
evolutionary stage.
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mean molecular weight in the core has increased so much that the forces of
pressure in the core are lower than the gravitational forces and the core starts
contracting. The temperature of the core increases and the energy released
in this process makes the star expand: The effective temperature of the sur-
face is decreasing and the star is moving to the right along the horizontal
branch. At this point the helium in the core is exhausted and nuclear energy
production ceases. The following scenario resemble the scenario taking place
when the hydrogen was exhausted: The core which now mainly consists of
carbon and oxygen starts to contract (due to the lack of pressure to sustain
the gravitational forces after the energy production ceased). The core con-
traction heats a shell around the core sufficiently for the ignition of helium
burning. Energy is now produced in a helium burning as well as hydrogen
burning shell around the core. The radius of the star increases because of
the increased pressure. Again we reach a stage of strong convective energy
transport which (exactly as on the red giant branch) rises the luminosity.
The star now moves to the asymptotic giant branch becoming a bright giant
of luminosity class II or even a super giant of luminosity class I. The star
now has a radius of up to 1000 times the original radius. The structure of
the star is shown in figure 6.

Most stars follow an evolution similar to this. The stars with very high
mass (more than ∼ 20M⊙) do not have a significant convective phase and
do therefore not change their luminosity much during their evolution. They
will mainly move left and right in the HR-diagram.

Open stellar clusters can be used to test the theories of stellar evolu-
tion. An open cluster is a collection of stars which were born roughly at
the same time from the same cloud of gas. Observing different open clus-
ters with different ages, we can obtain HR diagrams from different epochs of
stellar evolution. We can use observed diagrams to compare with the pre-
dicted diagrams obtained using the above arguments. In figure 7 we see a
schematic example of HR diagrams taken at different epochs (from clusters
with different ages). We see that the most massive stars start to leave the
main sequence earlier: This is because the life time of stars is proportional
to t ∝ 1/M3. The most massive stars exhaust their hydrogen much earlier
than less massive stars. As discussed above, the most massive stars do not
have a phase with strong convection and do therefore not move vertically
up and down but mostly left and right in the diagram. For this reason we
do not see the red giant branch and the asymptotic branch for these stars.
Only in the HR diagram of the oldest cluster has the intermediate mass stars
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Figure 6: A bright/super giant. The core consists mainly of carbon and
oxygen but the temperature is not high enough for these elements to burn.
Around the core there is a shell where helium is fused to carbon and oxygen
and another shell where hydrogen is fused to helium. In the outer parts the
temperature is not high enough for fusion reactions to take place.
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Figure 7: Schematic HR diagrams of open clusters of different ages: Upper
left: A cluster still in the process of forming. The less massive stars are
still in the contracting phase and have not yet reached the main sequence.
Upper right: A cluster with an age of about 107 years. The most massive
stars have started to leave the main sequence. Lower left: A cluster of
about 109 years. The low mass stars have now reached the main sequence.
Lower right: A cluster of about 1010 years. The medium mass stars have
now started to leave the main sequence and we can clearly see the different
branches discussed in the text.
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started to leave the main sequence. For these stars we now clearly see all
the different branches. Comparing such theoretical diagrams with diagrams
for observed clusters has been one of the most important way to test and
understand theories of stellar evolution.

Having reached the asymptotic giant branch, the star has almost ended
its life cycle. The final stages will be discussed in more detail in the next
lectures. First we will look at a typical feature of giant stars: pulsations.

3 Stellar pulsations

Some giant stars have been observed to be pulsating. We have already en-
countered one kind of pulsating stars: the Cepheids. The pulsating stars
have been found to be located in narrow vertical bands, so-called instability
strips, in the HR-diagram. The Cepehids for instance, are located in a verti-
cal band about 600K wide around Teff ∼ 6500K. The pulsations start during
the core contraction and expansions starting when the star leaves the main
sequence. They last only for a limited period when the star passes through
an instability strip in the HR diagram. We remember that for Cepheids
there is a relation between the pulsation period and the luminosity of the
star allowing us to determine the distance to the star (see the lecture on the
cosmic distance ladder). The period-luminosity relation for Cepheids can be
written in terms of luminosity (instead of absolute magnitude) as

< L >∝ P 1.15, (5)

where < L > is the mean luminosity and P is the pulsation period. We will
now see if we can deduce this relation using physics in the stellar interior.

The pulsations are due to huge density waves, sound waves, traveling
through the interior of the star. We can find an approximate expression for
the pulsation period of a star by considering the time it takes for a sound
wave to go from one end of the star to the other. We will for simplicity
consider a star with radius R and constant density ρ. The pulsation period
P is thus the time it takes for a sound wave to travel a distance 2R. In
thermodynamics you will learn that the sound speed (the so-called adiabatic
sound speed) at a given distance r from the center of a star is given by

vs(r) =

√

γP (r)

ρ
,
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where γ is a constant depending on the specific heat capacities for the gas. We
have assumed constant density and therefore only need to find the pressure
as a function of r. The equation of hydrostatic equilibrium can give us the
pressure. We have

dP

dr
= −gρ = −

GM(r)

r2
ρ = −

4

3
Gπrρ2.

Integrating this expression from the surface where P = 0 and r = R down
to a distance r we get

P (r) =
2

3
πGρ2(R2 − r2).

We now have the necessary expressions in order to find the pulsation
period of a Cepheid. At position r, the sound wave travels with velocity
vs(r). It takes time dt to travel a distance dr, so

dt =
dr

vs(r)
.

To find the pulsation period, we need to find the total time P it takes for
the sound wave to travel a distance 2R

P ≈ 2
∫ R

0

dr

vs(r)
≈ 2

∫ R

0

dr
√

2
3
γπGρ(R2 − r2)

=
1

√

2
3
γπGρ

[

− tan−1 r
√

R2 − r2

r2 − R2

]R

0

Taking the limits in this expression, we find

P ≈

√

3π

2γGρ
∝

1
√

ρ
∝

(

R3/2

M1/2

)

.

From equation 4 we see that M1/2 ∝ Teff but since Cepheids are located
along the instability strip in the HR-diagram their effective temperatures are
roughly constant. So we have

P ∝ R3/2.

The luminosity of a star can be written as as L = 4πR2σT 4
eff . Again we

consider Teff ≈ constant so L ∝ R2 or R ∝ L1/2. Inserting this into the
previous expression for the pulsation period we have

P ∝ L3/4,
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or
L ∝ P 4/3 ∝ P 1.3.

Comparing to the observed period-luminosity relation (equation 5), this
agreement is excellent taking into account the huge simplifications we have
made. We have shown that by assuming the pulsations to be caused by
sounds waves in the stellar interiors, we obtain a period luminosity relation
for Cepheids similar to what we observe.

4 Problems

Problem 1 (10 - 20 min) In the text there is a formula for estimating the
effective temperature of a star with a given mass (or estimating the mass of
a star with a given effective temperature).

1. Given the effective temperature (5780K) and mass (M⊙) of the Sun,
find the effective temperature of a small star with M = 0.5M⊙, an
intermediate mass star M = 5M⊙ and a high mass star M = 40M⊙.

2. The star Regulus in the constellation Leo is a blue main sequence star.
It is found to have a peak in the flux at a wavelength of about λ =
240nm. Give an estimate of its mass expressed in solar masses.

Problem 2 (30 - 60 min) In the text we derived that the luminosity
of a low/intermediate mass star is proportional to mass to the third power
L ∝ M3. In this derivation you used the ideal gas law. For high mass stars,
the radiation pressure is more important than the ideal gas pressure and
the expression for radiation pressure (you need to find it in the text) needs
to be used instead of the expression for the ideal gas pressure. Repeat the
derivation for the mass-luminosity relation using radiation pressure instead
of ideal gas pressure and show that for high mass stars L ∝ M . How is the
relation between the life time and the mass of a star for a high mass star
compared to a low mass star?

Problem 3 (30 - 60 min) Read carefully the description for the evolu-
tion of a star from the main sequence to the giant stage. Take an A4-sheet.
You are allowed to make some simple drawings and write a maximum of 10
words on the sheet. Make the drawings and words such that you can use it to
be able to tell someone how a star goes from the main sequence to the giant
stage, describing the logic of how the core contracts/expands and how the
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star moves in the HR-diagram depending on temperature, means of energy
transport and nuclear reactions. Bring the sheet to the group and use it (and
nothing else) to tell the story of stellar evolution to another student, then
exchange your roles.

Problem 4 (10 - 20 min) Look at the HR-diagram for the oldest cluster
in figure 7. Can you identify the different branches of stellar evolution?

Problem 5 (1 - 2 hours) We will now study the phase when the hydro-
gen in the stellar core has been depleted. The energy production in the core
stops and the core starts shrinking. The star reaches the sub giant branch
and then the red giant branch while the core keeps shrinking. The core will
keep shrinking until the temperature in the core is high enough for helium
burning to start. We will try to find out how much the core shrinks before
this takes place. For simplicity we will study a star with so high mass that
the core does not become degenerate before helium burning sets in. We will
assume the core density at the main sequence to be ρ = 1.7 × 105kg/m3.

We imagine the stellar core as an ’independent’ sphere of mass MC , radius
RC , pressure PC and temperature TC . We assume the density and tempera-
ture to be the same everywhere in the core.

1. Use the equation of hydrostatic equilibrium to show that

PC ∝
M2

C

R4
C

.

This is done in the text, but try to find your own arguments before
looking it up.

2. Then combine this with the ideal gas law to show that

TC ∝
MC

RC
.

3. We assume that the core temperature of the star on the main sequence
was TC = 18 × 106K. Use the expressions for the nuclear energy pro-
duction rates from the previous lecture to find out whether it was the
pp-chain or the CNO cycle which dominated the energy production in
the star while it was on the main sequence. Assume XH = 0.5 and
XCNO = 0.01.
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4. Now use the expressions for nuclear energy production to find at which
temperature T the energy production rate of the triple-alpha process
equals the energy production the star had on the main sequence (using
the numbers in the previous question). To calculate the energy produc-
tion rate from the triple-alpha process you need to find a reasonable
number for XHe in the core at the onset of helium burning. Give some
arguments for how you find this number. You also need a density ρ,
but since the energy production rate is so much more sensitive to the
temperature than to the density you can make the crude approximation
that the core density is the same as it was on the main sequence. Use
the temperature you find here as the criterion for the onset of helium
burning (and therefore the criterion for when the star moves to the
horizontal branch in the HR-diagram).

5. Use the equations and numbers we have derived in this exercise to find
the radius RC of the core at the moment when the energy production
from helium fusion starts (has become significant). Express the result
in terms of solar radii R⊙. At the main sequence, the core radius
was RC = 0.2R⊙. You have now found how much the core needs to
contract in order to start helium fusion and therefore to move down to
the horizontal branch.

6. When you calculated the temperature for the onset of helium burning
you made a very rough approximation: You used the core density which
the star had on the main sequence, whereas you should really use the
much higher density in the core when the core temperature is high
enough for helium burning. Now you have estimated the size of the
core radius when helium burning starts. Use this to obtain the correct
density when helium burning starts and go back to find a more correct
temperature for the onset of helium burning. Was the error in your
first crude estimate of the helium burning temperature large relative
to the temperature?
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