
AST1100 Lecture Notes

23-24: Cosmology: models of the universe

1 The FRW-metric

Cosmology is the study of the universe as a whole. In the lectures on cos-
mology we will look at current theories of how the universe looked in the
beginning, how it looks today, how it evolved from the beginning until today
and how it will continue in the future. We learned i the lectures on general
relativity that how an object moves depends on the geometry of space and
time. The question of how the universe evolves is mainly a question about
what happens to its ’ingredients’ as time goes by. How do the objects in the
universe move with time? To answer this question, we thus need to find the
geometry of the universe as a whole.

We know that in order to find the geometry of spacetime, we need to
specify the content of spacetime in the stress-energy tensor Tµν on the right
hand side in the Einstein equation

Gµν = 8πTµν .

But how can we specify the mass and energy content at every point in space-
time of the whole universe? As always, we need to make some approximations
and simplifying assumptions. One main assumption is the cosmological prin-
ciple. The cosmological principle states that the universe is homogeneous
and isotropic. The universe is assumed to, on average, have a similar compo-
sition and density in all positions and to look the same in all directions. The
two conditions, homogeneity and isotropy may, at first look, seem identical.
It is easy to convince yourself that they are not: Imagine a universe filled
with trees which are all aligned with each other, i.e. the top of the trees
all point in the same direction and the roots all point in the same direction.
This universe is homogeneous: at every single point in the universe there is
a tree, and the density of trees is the same everywhere. But this universe is
not isotropic: When you look in one direction you will see a lot of tree tops,
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when you look in the other direction you will see a lot of roots. This universe
does not look the same in all directions and is therefore not isotropic. Now,
rotate all the trees in random directions. Then you will see the same number
of tree tops and roots no matter which direction you look. This universe
filled with randomly oriented trees would be homogeneous and isotropic.

The cosmological principle is an assumption with a philosophical basis:
Why should the universe have a very different composition in different places,
or why should there be a preferred direction? Data of the universe taken at
many different wavelengths seem to support the cosmological principle. This
simplifies our task: if we model the universe to have a density ρ which on
average is the same in all positions we can find a solution to the Einstein
equation. Of course, the density of the universe is not the same in every
position when you look at small parts of the universe. Clearly the density in
the Earth is not the same as in the empty space around it. But when taking
the average density over a large volume of the universe, the density turns
out to be the same no matter where you take this volume to be. Thus, our
solution to the Einstein equation will be valid on the largest scales in the
universe. It will not describe correctly what happens in a particular star or
in a particular galaxy, but it will describe the physics of larger scales. The
general form of the solution to the Einstein equation under the assumption
of homogeneity and isotropy is given by the Friedmann-Robertson-Walker
(FRW) metric (a ’metric’ is just a different word for the line element)

∆s2 = ∆t2 − R2(t)

[

∆r2

1 − kr2
+ r2∆θ2 + r2 sin2 θ∆φ2

]

. (1)

Here (r, θ, φ) are spherical coordinates for any position in the universe. The
center r = 0 of the spherical coordinate system can be chosen anywhere in the
universe. We normally choose it to be here, the position of the observer. The
form of the time dependent function R(t) depends on the properties of the
matter than fills the universe. We will later discuss the possible functional
forms of R(t). The parameter k can have the values +1, 0 or −1 and decides
the curvature of the spatial geometry of the universe. We will later relate
this to the total density of the universe. Finally note that the coordiante r
is dimensionless: The scale factor R(t) takes the unit meters such that R(t)r
has unit meters and not r alone. Why this is so will be clear when we look
at lower dimensional analogies in the next sections.

Looking at this metric, there is one thing which might be surprising. We
will now consider the proper distance between two objects in the universe.
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One object which is located at r = 0 and one at r = ∆r. We have learned
that in order to measure proper distances we need to make a measurement
such that ∆t = 0. This corresponds to measuring the distance with a meter
stick in the same way as we have seen before: take two events on each end
of the stick to happen at the same time ∆t = 0. The spacetime distance
between these two events is then by definition the proper distance between
the events (which corresponds to the physical distance we would measure
with a meter stick). We thus have for the proper distance

∆L = R(t)
∆r

√
1 − kr2

,

where ∆θ = ∆φ = 0. The most surprising observation here is that the
proper distance between two objects changes with time. The function R(t)
is called the scale factor and decides how the proper distance between objects
changes with time. Thus, if we measure the distance between two objects
at two different moments, we will measure two different distances and the
difference will be given by the difference in R(t). If R(t) increases with time,
then the proper distance between all objects in the universe also increases
with time and we say that the universe is expanding. On the contrary, a
universe in which R(t) is decreasing with time is contracting. We will later
see that our universe seems to be expanding. But as always in the theory
of relativity, reality is different for different observers/coordinates. If we use
the coordinate r to measure distances between objects , then the distances
between objects do not change. We call r the comoving coordinate, it is the
distance measured by the comoving observer, an observer who is expanding
with the universe. The comoving observer is an observer with meter sticks
which are expanding with the expansion of the universe. This observer will
always measure the same distance between objects.

We will now look at an analogy in order to get a deeper understanding
for the meaning of an expanding universe. It is however very important to
note that this is an analogy, it is a model which is constructed to make
the expansion of the universe easier to understand. But it is only that: an
analogy with limitations.

We will for a moment imagine the universe to be one dimensional. We
will consider the universe to be the rim of a circle. Since the universe is one
dimensional, everything is confined to the rim of the circle. All creatures in
this universe are one dimensional, living on the rim of the circle and having
an extension only in the direction along the rim of the circle (see figure 1).
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Figure 1: Two objects A and B at rest in the one-dimensional universe. We
show the universe at two moments t1 and t2. The universe has expanded from
t1 to t2 and the distance between the two objects has increased even if the
objects have not moved. The coordinate φ is the only coordinate necessary
in order to give the position of an object in the one-dimensional universe.
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Everything can be described by a coordinate φ, the radius R is not a physical
property for this universe, it is only a parameter describing the size 2πR of the
universe in which the 1 dimensional beings live. There is no physical radial
dimension it is only helping us to understand events on the one dimensional
rim-of-the-circle universe. The radius of the circle is given by R and might
be a function of time R(t). In the figure we see the universe at to different
times t1 and t2.

Assuming Euclidean geometry, the spatial part of the line element for this
universe is given by

∆s2 = ∆x2 + ∆y2. (2)

But this is a two dimensional metric, the coordinates x and y do not exist
in the one-dimensional universe. We need to transform this to an expression
in terms of one single coordinate which specifies the position in this one-
dimensional universe. As a first step, we can use x as this one dimensional
coordinate. If we consider only φ = [0, π], then the x coordinate uniquely
specifies a position on he rim of the circle. We can get rid of the y coordinate,
using that

x2 + y2 = R2.

Thus, y =
√

R2 − x2 and taking the derivative of y we find

dy =
−xdx

√
R2 − x2

or in terms of intervals ∆y = −x∆x/
√

R2 − x2 which we insert in the line
element (equation 2) and obtain (after some reorganizing, check that you get
the same result!)

∆s2 =
R2∆x2

R2 − x2
. (3)

Now we have expressed the one-dimensional proper distance ∆s along the rim
of the circle in terms of intervals in the coordinate ∆x. As mention above,
a more logical way to specify a position on the rim of the circle is simply
in terms of the angle φ. Here we will use cos φ as the position coordinate
on the circle and we will call it r. Note that r is the coordinate increasing
along the rim of the circle from a point defined to be r = 0 on the rim of
the circle, it does not start from the centre of the circle as the coordinate
denoted by symbol r often does. However for a one-dimensional creature
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living on the rim of the circle this is indeed a measure of distance from the
point of observation along the rim. We define

r = cos φ =
x

R
,

the last transition comes from the fact that x = R cos φ. Substituting x with
r in equation 3 we obtain

∆s2 =
R2∆r2

1 − r2
.

We see that the spatial part of the line element for this one-dimensional
universe is similar to the spatial part of the FRW line element for k = +1
(equation 1). If the radius R of this circle is increasing such that R = R(t) the
one-dimensional creatures on the circle will experience that proper distances
increase with the scale factor R(t). The one-dimensional creatures will not
use the term ’radius’ about R(t), but they will call it a scale factor as the
effect they see of this increasing radius is the increasing distance between
points on the circle. An observer will always define himself as being at
r = 0 corresponding to φ = π/2 (see equation 2). Measuring the distance to
another object (for instance a galaxy) at φ = ∆φ corresponding to r = ∆r,
he finds that the proper distance is just

∆L = ∆s = R(t)
∆r

√
1 − r2

,

just as for the FRW metric. Looking at figure 1 we see that the coordinate
interval ∆r (shown in the figure in terms of φB −φA) between the two points
A and B on the circle is unchanged when the radius of the circle increases:

∆r = r1 − r0 = cos φ1 − cos φ0.

The position r (remember that r = cos φ) is always the same for an
object at rest (make sure you understand why!). Clearly the r coordinate,
or comoving coordinate, does not change with time even when the radius of
the circle increases. Therefore the coordinate distance ∆r is also unchanged
when the radius increases (again, make sure you understand!). What does
change is the distance ∆L between points measured on local meter sticks.
Thus, the one dimensional universe is expanding when the radius of the
circle increases. Or stated in a better way: The expansion of the universe
can be modeled as an increasing radius R(t). That the universe expands and
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the distances between all objects increases with time, does not mean that
the objects are really moving away from each other. Looking at the circle
with increasing radius we see that the objects on the circle are at rest while
the space between them expands. This is what we see in our universe: the
distance to all distant objects is increasing as a consequence of the expansion
of the universe. We measure that distant objects are moving away from us,
but we see from the previous example that the objects are really at rest, it is
the space between the objects which expands. It is the line element, or the
way of measuring distances, which changes.

If the universe is expanding today, we would expect the distances between
objects in the universe to have been much smaller in the past. As the radius
of the circle gets smaller and smaller, the proper distances between objects is
getting smaller and smaller. Going far back in time, the radius R(t) was very
small and therefore the distances between objects in the universe were very
small. This is what we call the Big Bang. The distances between objects
in the universe were very small, meaning that the density and therefore the
temperature in the universe was extremely high. But note that we are NOT
talking about the Big Bang as an explosion. Looking at the circle you see
that all objects at all positions in the universe were close to each other and
therefore extremely dense and extremely hot at very early times. One of the
most common misconceptions about the Big Bang is that it was an explosion
in one point and that the universe started expanding out from this point. We
see from the example with the circle that this is absolutely not true: The Big
Bang happened at all points on the circle at the same time. All positions
r (or φ) on the circle had a very high density when the radius of the circle
R was very small. But all these points never collapse to a single point: No
matter how small you make the radius R, the position r of the objects (and
therefore also the comoving distance ∆r between objects on the circle) does
not change. All the points in the universe never become one single point.
They can always be characterized with a position r. It is only the measure
of the proper distance between objects which is changing and which is very
small at early times. So the Big Bang is nothing else than a very dense and
hot universe which is expanding. The Big Bang happened at every single
point in the universe and is not an explosion from one single point.

We can carry this analogy over to our three dimensional space. In the
exercises you will study the case of a two-dimensional universe: in that case,
the universe is the surface of a sphere which is expanding out in a third
dimension (and the universe is only the surface, the third dimension does

8



not exist it only serves as a model to help the understanding). You will find
in the same manner as for the circle that the two-dimensional creatures living
on the surface of a sphere will note the increasing radius of the sphere as an
expanding two-dimensional universe. We will now take this even further: We
will look at a four-dimensional sphere expanding in a four-dimensional space.
Your brain is not capable of imagining a four-dimensional sphere in a four-
dimensional space, but we can use the example with the circle to help us.
This fourth dimension is not time but a fourth spatial dimension. This fourth
dimension does not exist: as in the above examples this is an analogy to help
us understand the FRW metric and the expanding space. We will look at
the three spatial dimensions of our universe as the three-dimensional surface
of a four-dimensional sphere expanding in four dimensions, but the whole
(spatial part of the) universe is within the three dimensions of the surface and
it is meaningless to make references to points outside the three dimensional
surface (exactly as the whole one-dimensional universe was within the rim of
the circle, the radial distance R had no meaning since the radial dimension
did not exist).

Assuming Euclidean geometry in the four-dimensional space we can write
the spatial line element in this four-dimensional space as

∆s2 = ∆x2 + ∆y2 + ∆z2 + ∆w2, (4)

where w is the coordinate in the imaginary fourth dimension (again, we are
here only looking at spatial dimensions, forgetting about the time dimension
for the moment). Thus for a given coordinate difference ∆x, ∆y, ∆z and
∆w between two points in this four dimensional space, the distance between
these two points is given by ∆s. The radius R of a four-dimensional Euclidean
sphere is given by

x2 + y2 + z2 + w2 = R2 (5)

(in analogy with the expression for the radius of a normal 3D sphere). We will
now measure three-dimensional distance along the three-dimensional surface
using coordinates r, θ, φ instead of x,y,z and w. It can be shown (and you will
show this for a three-dimensional sphere in the exercises) that we can define
the coordinate r such that ∆x = R∆r (exactly as in the one-dimensional
case above, check!), ∆y = Rr∆θ and ∆z = Rr sin θ∆φ where (r, θ, φ) are
coordinates along the three-dimensional surface. Our aim is now to rewrite
the expression for ∆s2 in terms of r, θ, φ and we are now ready to do this for
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the first three terms:

∆x2 + ∆y2 + ∆z2 = R2∆r2 + R2r2∆θ2 + R2r2 sin2 θ∆φ2. (6)

We now use the expression for the radius of the three-dimensional sphere
(equation 5) to eliminate w in the spatial line elements ∆s2 (exactly as we
did to eliminate y in the one-dimensional case):

w =
√

R2 − x2 − y2 − z2 =
√

R2 − R2r2,

where the last transition comes from equation 6 by taking ∆x, ∆y, ∆z and
∆r from the origin where x = y = z = r = 0 such that ∆θ = ∆φ = 0.
Taking the derivative of w with respect to r in this expression we find

dw2 =
r2R2dr2

1 − r2
.

Writing this in terms of intervals ∆w and ∆r we can insert this in equation
4 to obtain

∆s2 = R2

[

∆r2

1 − r2
+ r2∆θ2 + r2 sin2 θ∆φ2

]

(check!) which is exactly the spatial part of the FRW metric using k = 1
and R = R(t) for an expanding four-dimensional sphere. Again, the model
of our three-dimensional universe as an expanding three-dimensional surface
embedded in four-dimensional space is an analogy which gives the correct
spatial metric and thereby a model which can be used to understand several
aspects of the geometry of the universe. But there are no observations which
indicate that there is a large fourth dimension in which our four-dimensional
sphere is expanding. In modern string-theory, the universe is viewed as 11-
dimensional, but in most theories these extra dimensions are much smaller
than the normal three spatial dimensions.

The lesson to be learned here is again: If we shrink this three-dimensional
sphere to a very small radius R(t), the three-dimensional coordinates (r, θ, φ)
of objects do not change, and the three-dimensional comoving distance ∆r
is always unchanged no matter how small you make R(t). The universe did
not start from one single point. When the radius R(t) was very small, all
proper distances between objects in the three-dimensional universe were very
small and the density was very high. The universe was everywhere very
hot and very dense. This expanding universe with a hot and dense gas is
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called the Big Bang. But it is no explosion, and the universe is not expanding
into anything. Expansion, as we have seen, just means that one particular
measure of distances between objects, as seen from one particular group of
observers, is increasing. The comoving observer does not see any expansion
and measures all distances to be constant.

Finally some words about the parameter k. In our examples with one,
two and three-dimensional spheres the parameter k was always k = +1. This
is a signature of positive curvature: a sphere has positive curvature. On the
three-dimensional surface of a four-dimensional sphere, space has positive
curvature. If k = 0 we see that the spatial part of the metric is, apart from
the factor R(t), just the metric for Euclidean geometry. Thus k = 0 for flat
space, space with zero curvature. Finally, if k = −1 we would need to use
a hyperbola in our one-dimensional universe instead of a circle. The three-
dimensional universe needs in this case to be viewed as a three-dimensional
hyperbolic surface embedded in a four-dimensional space. In a hyperbolic
space, k = −1 and space has negative curvature. In order to understand
the meaning of space with positive, negative or zero curvature, it is easier to
use the analogy with a sphere, plane or hyperbolic surface expanding in a
three-dimensional space (see figure 3).

2 Hubble’s law and cosmological redshift

Einstein realized that the general theory of relativity predicted an expanding
or contracting universe. At the time it was not known that the universe
was expanding and Einstein introduced a constant, called the cosmological
constant Λ, in his equations in order to make a static universe. In 1929
Edward Hubble found that distant galaxies always moved away from us and
that the further away they were, the faster away from us they moved. He
formulated Hubble’s law

v = H0d,

where v is the velocity of a distant galaxy, d is the distance and H0 is a
constant known as Hubble’s constant. After Hubble’s discovery, Einstein
realized that it was a mistake to introduce the cosmological constant Λ in
order to make the universe static. His theory was correctly predicting that
the universe is expanding. The Hubble constant is thus simply the rate of
expansion of the universe. Hubble’s law can be used to make a very crude
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Figure 3: Three possible geometries of a surface (or of the universe), hyper-
bolic, flat or spherical. In each case the matrix ∆s2, the way we measure
distances along the surface, is different. We have studied the lower case in
detail. Figure is borrowed from the NASA homepage.
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estimate of the age of the universe. If we write the Hubble law as

d = v
1

H0
,

we recognize the equation as s = vt, distance equals velocity times time. If
we assume that the expansion velocity v has been the same throughout the
whole lifetime of the universe then 1/H0 represents the time when the distant
galaxy with velocity v was at the same position as we are d = 0 (remember
that they were never really at the same position, but very close seen from
one special coordinate system). During the time 1/H0 it has moved with a
constant velocity v and is therefore at the moment at a distance d = v/H0.
The crude age estimate 1/H0 is called the Hubble time tH = 1/H0.

We can easily derive Hubble’s law by looking at the FRW-metric. The
proper distance d to a galaxy, i.e. the actual measured distance, is found by
taking ∆t = 0 in the metric. We found above that this is just

d(t) =
R(t)r

√
1 − kr2

,

where we have set r = 0 at the observer’s position so that ∆r = r − 0 = r
is the comoving distance to the galaxy. If we make a measurement of the
distance at time t we find

d(t) =
R(t)r

√
1 − kr2

.

Then at a later time ∆t we make a new measurement of the distance and
find

d(t + ∆t) =
R(t + ∆t)r
√

1 − kr2
=

R(t + ∆t)

R(t)
d(t).

The velocity with which we measure the distant galaxy to move away is
simply (d(t + ∆t) − d(t))/∆t). We thus have

v = d(t)

R(t+∆t)
R(t)

− 1

∆t
= d(t)

1

R(t)

∆R

∆t
= d(t)

Ṙ

R(t)
≡ H(t)d(t),

where the dot denotes time derivative. We have derived Hubble’s law and
found that the Hubble’s constant is just the rate of change of the scale factor

H(t) =
1

R(t)

dR(t)

dt
.
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This is what we expected: Hubble’s constant is just the expansion rate of
the universe which is the rate with which the scale factor R(t) changes with
time. We see that H(t) is time dependent and we therefore call it the Hubble
parameter whereas the Hubble constant is the value of the Hubble parameter
today. It is common to use the index 0 to denote functions of time taken at
the current time t0. In this way H0 = H(t0).

If proper distances between objects increases with time, one can also
conclude that the proper distance between two peaks in a wave will increase
with time. Thus, the wavelength of electromagnetic radiation will change
with time. Consider an electromagnetic wave where the proper distance
λ(t1) between two peaks in the wave is measured at time t1 such that

λ(t1) =
R(t1)∆r
√

1 − kr2
,

where ∆r is the coordinate distance (comoving distance) between the two
peaks in the wave. When the same wave is measured at a later time t2, the
distance between the same two peaks is found to be

λ(t2) =
R(t2)∆r
√

1 − kr2
=

R(t2)

R(t1)
λ(t1).

The comoving distance ∆r does not change and is therefore the same at the
two different times. Thus, we obtain a change in wavelength z (the redshift
is usually denoted z = ∆λ/λ)

z ≡
∆λ

λ
=

λ(t2) − λ(t1)

λ(t1)
=

R(t2)

R(t1)
− 1. (7)

When the universe is expanding R(t2) > R(t1) and the wavelength of elec-
tromagnetic waves are getting larger, the radiation is redshifted. Thus, we
observe light from distant galaxies to be redshifted since the light from these
galaxies was emitted a long time ago at a time t1 different from the time of
observation t2. When Hubble observed distant galaxies to move away from
us he made this conclusion on the basis of the redshift of the galaxies. He
used the normal Doppler formula for redshifts. Now we know that we are
not looking at normal velocities: these galaxies are just at rest (apart from
smaller peculiar velocities) at a fixed coordinate r. It is the space between
us and the galaxies which is expanding, stretching the electromagnetic waves
and thus causing a redshift. But since we observe that the proper distance
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to the galaxies is changing we can also interpret this as a Doppler effect and
to first order we therefore have

z =
∆λ

λ
= v,

and we can write Hubble’s law as

z = H0d.

In the lectures on distance measurements we used this to measure distances
to distant galaxies: Measure the redshift z, use the Hubble constant H0

obtained from other observations and get the distance d to the galaxy.
The redshift z is often used as a time parameter. From Hubble’s law we

see that the further away a galaxy is, the higher is the redshift. But the
further away the galaxy is, the longer is the distance that light has traveled
to reach us. Thus the further away the galaxy is, the further back in time
we are looking. The redshift z tells us the distance. But since we know the
speed of light we can also find how long time ago the light was emitted and
thus at which epoch in the history of the universe we are looking when we
look at a specific galaxy. Therefore, the redshift z of an observed object also
tells us the time epoch at which we are observing this object. For an object
that we observe today (t = t0) with redshift z, we can rewrite equation 7 as

z =
R(t0)

R(t)
− 1, (8)

where t is the age of the universe at the time when light was emitted from
the observed object.

3 The Friedmann equations

In order to understand how the universe evolves, we need to obtain an expres-
sion for R(t). We also need to find k to know the curvature of the universe.
Inserting the FRW-metric on the left side in the Einstein equation and the
homogeneous and isotropic matter content on the right side, the Einstein
equation reduces to two equations called the Friedmann equations,

(

(

dR

dt

)2

−
8

3
πGρ(t)R2(t)) = −k (9)

d2R(t)

dt2
= −

4

3
πG(ρ(t) + 3P (t))R(t). (10)
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Remember that H(t) = 1/R(t)dR(t)/dt. Note that the density is only a
function of time ρ = ρ(t) and not of space: we have assumed a homogeneous
universe and the density is therefore the same in all positions. Note further
that ρ is the total energy density, not just mass density. We usually di-
vide the total energy density into two parts, the energy density from mass
(mass density) ρm and the energy density from radiation (photons) ρr. In
the lectures on cosmology we will measure mass in kilograms and we there-
fore need to specify the gravitational constant G. We do however, measure
distance and time in the same units so c = 1. Finally note that the pressure
P enters in this equation. This is the pressure of the material of which the
universe consists. At early times, the universe was filled with a dense gas and
the pressure of this gas needs to be specified in the Friedman equation. At
later times, the universe consists mainly of what we call ’dust’, pressureless
matter. Thus today the overall pressure in the universe is P = 0.

We will start by looking at the first Friedmann equation (equation 9). If
the universe has a flat geometry, then k = 0 (we found this by looking at the
metric, remember ?) and we have

ρc(t) =
3H2(t)

8πG
,

where the subscript c refers to ’critical’. We will soon see why. Note that the
density of the universe is a function of time. This should not be surprising:
due to the expansion of the universe, the volume increases but the matter
inside this volume remains the same. Thus, the density needs to decrease
with time. We will now use this definition of ρc and insert it in the Friedman
equation. Inserting the defined quantity ρc in equation 9 (now NOT assuming
k = 0) we can write the first Friedmann equation as

k =
8

3
πGR(t)2(ρ(t) − ρc(t)).

We see from this expression that if the density ρ(t) of the universe is larger
than the critical density, then k > 0 (actually k = 1 since k can only have
the values +1, -1 and 0) and the universe has positive curvature. In this
case we can use the model of the four-dimensional sphere expanding in a
four-dimensional space to describe the universe. On the other hand if the
density is lower than the critical density then k < 0 (again, k = −1) and
the curvature of the universe is negative meaning that the universe can be
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modeled as a three-dimensional hyperbolic hypersurface expanding in a four-
dimensional Euclidean space. If the density is exactly equal to the critical
density then the spatial geometry of the universe is flat (and k = 0). We will
later study which consequences the curvature of the universe has for the fate
of the universe.

We now define the density parameter

Ω(t) =
ρ(t)

ρc(t)
,

which is simply the ratio of the density to the critical density. If Ω = 1
then the universe is flat, if Ω < 1 the curvature is negative (hyperbolic three-
dimensional geometry) and if Ω > 1 the curvature is positive (spherical
three-dimensional geometry).

Now we know how the density of the universe decides the curvature k of
the spatial geometry. The next step is to find out how the universe evolves
in these three different geometries. The evolution of the universe is governed
by the function R(t). We will start by a simplified case, the pressureless
universe.

4 The evolution of the pressureless universe

We will start by studying a universe which contains pressureless dust. This
applies to the present universe, but does not apply to the earliest phases
of the universe when the universe contained a dense gas with a non-zero
pressure. Nevertheless this example will tell us the main properties of the
three different geometries, spherical, hyperbolic and flat.

In the dust dominated universe, most of the energy density is made up of
matter and not radiation. We therefore have ρ ≈ ρm. Before solving for R(t)
we will need to find a general property of a pressureless universe. To find
this property we start be taking the time derivative of the first Friedmann
equation 9:

2ṘR̈ =
8πG

3

d

dt
(ρR2).

We eliminate R̈ by using the second Friedmann equation (equation 10), re-
membering that P = 0

−ṘR
8πG

3
ρ =

8πG

3

d

dt
(ρR2).
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Now we note that

d

dt
(ρR3) = R

d

dt
(ρR2) + Ṙ(ρR2).

Inserting this in the previous equation we find

d

dt
(ρR3) = 0,

or ρR3 is a constant. This is not very surprising: R3 is proportional to an
expanding volume element so ρR3 is simply the total mass within a volume
element. This equation simply tells us that mass is conserved. If we use 0
as subscript for quantities taken today (so that H0 = H(t0), R0 = R(t0),
Ω0 = Ω(t0) etc.) we can thus write

ρ(t)R(t)3 = ρ0R
3
0,

since ρR3 has the same value at all times. We thus have

ρm(t) = ρm0

(

R0

R(t)

)3

, (11)

where I have added the subscript m in this equation only to highlight that
this equation is true in general for the matter component of the universe,
but not for the radiation component. Remember that since we are in a dust
dominated universe, the total energy density and the matter density are
almost equal ρ ≈ ρm. We normally normalize the scale factor R(t) in such a
manner that the scale factor today is one. We therefore define

R̄(t) =
R(t)

R0

This gives
ρ(t) = ρ0R̄

−3(t). (12)

In the following we will use this equation together with the Friedmann equa-
tions to find an expression for R(t).

We insert equation 12 in the first Friedmann equation to obtain

(

dR̄

dt

)2

−
8πGρ0

3R̄
= −k. (13)
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(check that you understand how R̄ now enters everywhere instead of R:
divide the Friedmann equation by R2

0.)
We will now deduce how the scale factor R(t) (and thus the expansion of

the universe) is different in universes with different geometries: flat (k = 0),
spherical k = 1 and hyperbolic (k = −1).

1. We will first find the form of R(t) for a flat universe, k = 0. Reorga-
nizing the previous equation we find

dR̄
√

R̄ =

√

8πGρ0

3
dt

which we integrate from the beginning of the universe t = 0 and R = 0
until time t

∫ R̄

0
dR̄

√
R̄ =

∫ t

0

√

8πGρ0

3
dt,

giving
R̄k=0(t) = (6πGρ0)

1/3t2/3

being valid for a flat universe. Thus in a flat universe the scale factor
will increase for ever. We can also find the expansion rate by taking
the time derivative

dR̄k=0

dt
=

2

3
(6πGρ0)

1/3t−1/3.

As time goes, the expansion rate slows down and as t → ∞, the expan-
sion rate goes to zero. A pressureless universe with flat geometry will
expand for ever with a decreasing expansion rate reaching zero after an
infinite amount of time.

2. This integral is much harder to do in universes with non-zero curvature.
In the exercises you will show that the results can be written on a
parameterized form as

R̄k=1(x) =
1

2

Ω0

Ω0 − 1
(1 − cos x),

tk=1(x) =
1

2H0

Ω0

(Ω0 − 1)3/2
(x − sin x),

for a positively curved universe. Here x > 0 is the parameter used
to evolve time and scale factor. Insert any number x in these two
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equations and you will find the scale factor R̄(t) for a time t in a
pressureless positively curved universe.

In the exercises you will make plots of the scale factor as a function of
time. Here we will do some simple considerations. For x = 0, we have
t = 0 and R = 0 which is the Big Bang. When x increases, also R̄(t)
increases so the universe expands. But as x reaches π we see that the
scale factor reaches its maximum value. When cosx = −1 no value
of x can make the scale factor larger. When x continues to increase,
the scale factor starts decreasing. The universe is contracting. When
x → 2π, the scale factor R̄ → 0 and the whole universe again reaches
infinite density and stops in a Big Crunch. Thus a positively curved
universe starts expanding after the Big Bang. After reaching maximum
expansion, the universe starts contracting and ends in a Big Crunch.
Some theories predict that this universe will that start again in a Big
Bang which again will end in a Big Crunch and so on. This is called the
cyclic universe. Models of the universe with positive curvature k = +1
are for obvious reasons called closed universes.

3. Similarly for the universe with negative curvature we have

R̄k=−1(x) =
1

2

Ω0

1 − Ω0
(cosh x − 1),

tk=−1(x) =
1

2H0

Ω0

(1 − Ω0)3/2
(sinh x − x).

Recall that for x = 0, cosh x = 1 and therefore R = 0 which represents
the Big Bang. As x increases also cosh x increases. Remember that as
x → ∞ we have that cosh x → ∞. Thus, the universe with negative
curvature will expand forever and is therefore called an open universe.

Clearly, the open and closed universes will have very different fates and
the flat universe is just at the limit: The expansion will stop when R(t)
reaches infinity. One can understand this in the following manner: A closed
universe is a universe which has enough mass (ρ > ρc) such that gravitation
will stop the expansion and make the universe collapse back to itself. An
open universe is a universe with low density: there is not enough mass in
the universe for gravitation to stop the expansion (ρ < ρc). In all cases,
the expansion is slowed down with time due to the presence of gravitating
mass, but only in the closed universes is the density high enough to stop the
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expansion and make the universe contract. The critical density ρc of a flat
universe is the limiting case: if the density of the universe is larger than the
critical density, the universe ends in a Big Crunch. If the density is smaller
than the critical density, the expansion of the universe will gradually slow
down but never enough to stop the expansion.

We can use these equation to find the age of the universe at a certain
redshift z. Combining the above equations for R̄(x) and t(x) with equation
8 for the redshift as a function of scale factor, we obtain (you will show this
in the exercises)

t(z)k=0

tH
=

2

3

1

(1 + z)3/2

for flat universes. For closed universes we have

t(z)k=1

tH
=

Ω0

2(Ω0 − 1)3/2



cos−1
(

Ω0z − Ω0 + 2

Ω0z + Ω0

)

−
2
√

(Ω0 − 1)(Ω0z + 1)

Ω0(1 + z)





and for open universes

t(z)k=−1

tH
=

Ω0

2(1 − Ω0)3/2



− cosh−1
(

Ω0z − Ω0 + 2

Ω0z + Ω0

)

−
2
√

(1 − Ω0)(Ω0z + 1)

Ω0(1 + z)





Remember that tH is the Hubble time tH = 1/H0. When you observe an
object at a redshift z you can use these expressions to find the age of the
universe when the light from the object was emitted and thus the epoch
of the universe at which you observe this object. This is important for
understanding the evolution of the universe and to study how the universe
looked different in different time epochs.

5 Two components: matter and radiation

There is one big problem with the previous equations for the age of the
universe. We used the expansion rate which is valid only for a pressureless
universe. In the early universe, a high density of radiation made the radiation
pressure important and changed the rate of expansion of the universe. For
the moment we will use a general expression for the equation of state

P = wρ,
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where w is a dimensionless constant. For a dust dominated universe, this
constant is w ≈ 0 leading to P = 0. Going back to the early universe,
the universe consisted of a dense photon gas. The radiation pressure was
dominating. We have previously learned that the energy density of a photon
gas is ρr = aT 4 and radiation pressure Pr = (1/3)aT 4 such that

Pr =
1

3
ρr,

and therefore w = (1/3) for a photon gas. We will later look at one more
example of the equation of state.

Above, we found that the energy density in the universe decreases as
ρ ∝ R−3 (equation 11) when dust is the dominating species in the universe
(w = 0). We will now try to find out the general relation (general w) for how
the energy density evolves with the scale factor R(t) of the universe. In the
exercises you will use the same approach as for the pressureless universe to
show that

d

dt
(ρR3(1+w)) = 0,

giving
ρ(t)R3(1+w)(t) = ρ0R

3(1+w)
0 .

Thus we may write the density as

ρ(t) = ρ0

(

R0

R(t)

)3(1+w)

. (14)

For radiation w = (1/3), the density therefore goes as

ρr(t) = ρr0R̄
−4(t0), (15)

using again the normalized scale factor R̄ = R/R0.
In general the energy density of the universe can be written as a sum of

a radiation part and a matter part

ρ(t) = ρm(t) + ρr(t).

or in terms of the densities relative to the critical density

Ω(t) = Ωm(t) + Ωr(t),
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where Ωm(t) = ρm(t)/ρC(t) and Ωr(t) = ρr(t)/ρC(t). In the very early
universe, radiation was the dominant species and we can can write ρ ≈ ρr

and w ≈ (1/3). In the recent universe, matter is dominating and we can
write ρ ≈ ρm and w = 0. The period when the two species have similar
densities is more difficult and we will not treat this in detail here. It is a
good approximation for many purposes to assume that we had two eras with
a sudden transition.

With the more general equation of state, you will show in the exercises
that for a flat universe

R̄(t) =
(

t

t0

)

2
3(1+w)

. (16)

Thus, the expansion rate of the universe depends on the equation of state of
its content. A radiation dominated universe (w = (1/3) giving R(t) ∝ t1/2)
expands slower than a matter dominated universe.

The big question now is when the universe was radiation dominated. For
which time period can we assume w = 0 and for which time period can we use
w = (1/3)? We need to find the time of matter-radiation equality, the time
when the matter and radiation densities are equal denoted teq. Before teq
the universe was radiation dominated and after teq the universe was matter
dominated. So by definition at t = teq,

ρm(teq) = ρr(teq)

giving (using equation 12 and 15)

ρm0R̄
−3
eq = ρr0R̄

−4
eq ,

where we have set R̄(teq) = R̄eq. Dividing by ρc0 on both sides we have

R̄eq =
Ωr0

Ωm0
≈

1

3570
,

where we used the current observed ratio between matter and radiation den-
sity in the universe. Thus, the period of matter-radiation equality happened
when the size of the universe was a factor roughly 3570 times smaller than
today. We can use formula 7 to find the redshift zeq of matter-radiation
equality

zeq ≈ 1/R̄eq ≈ 3570.
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We can further find the time after the Big Bang when matter started to be
the dominating species in the universe. Using equation 16 we find

R̄eq =
(

teq
t0

)2/3

,

giving
teq ≈ R̄3/2

eq t0 ≈ 60000years,

using the current age of the universe t0 = 13.2×109 years. Thus, the universe
started out as radiation dominated, then after about 60 000 years, the density
in matter was larger than the density in radiation.

Knowing the expressions for the expansion parameter, we can also find
an expression for the age of the universe. For a flat universe, we can rewrite
the first Friedmann equations as (check that you understand why)

H2 =
8

3
πGρ.

Now we use equation 14

H =

√

8πGρ0

3
(R̄(t))3(1+w)/2.

Since the universe is flat, the density is always equal to the critical density.
Using the expression above for the critical density at time t0 we have

1

R̄(t)

dR̄(t)

dt
= H0(R̄(t))3(1+w)/2

Reorganizing, we have
R̄(1+3w)/2dR̄ = H0dt.

Integrating this expression from t = 0 to t = t0 and from R̄ = 0 to R̄ = 1,
we have

2

3(1 + w)
= H0t0,

or

t0 =
2

3(1 + w)H0
.

The measured expansion rate today indicate a Hubble constant of H0 ≈
71km/s/Mpc. The units of the Hubble constant is usually given as km/s/Mpc:
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It is the velocity in km/s with which distant galaxies are moving away away
from us per distance in Mpc. This means for instance that a galaxy at the
distance of 1 Mpc will be observed to move away from us at the speed of 71
km/s. Assuming a pressureless universe w = 0 this expression then gives

t0 ≈ 9.1 × 109years.

This is lower than the current estimate of the age of the universe of t0 =
13.2 × 109years obtained with a more detailed analysis.

We have already seen in the above models that the rate of expansion of
the universe decelerates. The gravitational forces between all particles in
the universe are working against the expansion and decelerating it. This
deceleration is measured with the deceleration parameter q defined as

q(t) = −
1

R(t)H2(t)

d2R(t)

dt2
.

The reason for this complicated expression for the deceleration (just the sec-
ond derivative of R(t) would suffice as a measure of deceleration) is to obtain
a dimensionless measure. Note the minus sign: the deceleration parameter
is defined to be positive when the expansion of the universe decelerates. We
can use the second Friedmann equation to find an expression for q in a pres-
sureless universe (note that we do not assume anything about the geometry
of the universe this time, it can be flat, open or closed):

1

R(t)

d2R(t)

dt2
= −

4

3
πGρ(t).

We use the definition of Ω(t) to write the density in terms of the critical
density ρc(t) and Ω(t). Using the expression for the critical density we have

1

R(t)

d2R(t)

dt2
= −

4

3
πGρc(t)Ω(t).

Using the expression above for the critical density as well as the definition
of q(t) we have

q(t) =
1

2
Ω(t).

Not unexpectedly, the deceleration parameter depends on the density of the
universe. High density means high deceleration, low density means low decel-
eration just as we anticipated. There is also another consequence of this equa-
tion: we can now try to measure the deceleration parameter q and thereby
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obtain Ω in order to find out whether the geometry of the universe is flat,
open or closed. To measure the deceleration parameter, we would need to
measure the expansion rate of the universe over a time period to see how
it changes. This is not a problem: observing objects at different redshifts z
means studying the universe at a different epoch. We will now see how one
can use supernovae of type Ia to measure the deceleration parameter and
thereby the density parameter today Ω0.

6 Supernovae as a cosmological prove

We remember from the lectures on cosmic distance measurements that su-
pernova of type Ia are used as standard candles as their luminosity is roughly
the same for all supernoave of this kind. We will now see that we can use
this to measure distances to supernovae exploding at different epochs and
thereby find out how the expansion rate of the universe is changing with
time. Knowing how the expansion rate of the universe changes with time, we
can find the deceleration parameter and thereby the geometry of the universe
as described in the previous section.

We will try to find the apparent magnitude m with which we observe a
supernova or any other object with luminosity L. Luminosity is the energy
∆E emitted per unit of time ∆t at the source,

L =
∆E

∆t
,

We receive this radiation as a flux, energy ∆E ′ per unit of time ∆t′ per unit
area A at the observer’s position,

F =
∆E ′

∆A∆t′
. (17)

We will now try to express this flux in terms of the known luminosity L of
the supernova as well as the distance to the supernova.

We know that the energy is transmitted by photons with energy e = hν.
We start by finding a relation between the emitted energy per photon e = h/λ
and the received energy per photon e′ = h/λ′ per photon. We have previously
found (go back and check how!) that photons are redshifted according to

λ′

λ
= 1 + z
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such that
e′ =

e

(1 + z)
.

and therefore

∆E ′ =
∆E

(1 + z)
,

where z is the redshift og the supernova.
To find the surface area A we need to consider the area over which the

photons are distributed at a given moment in time. Thus, we need to find the
surface area of a sphere which is frozen in time, ∆t = 0, at the moment when
we receive the photons. We can use the FRW-metric to study the geometry
on this sphere. If we are confined to the sphere, ∆r = 0. Setting ∆t = 0 and
∆r = 0 in the FRW line element we have

∆s2 = −R2(t0)r
2(∆θ2 + sin2 θ∆φ2), .

where t0 appears because the area is measured today (at the time when
we receive the photons) at t = t0. We see that this line element is the
same as the line element for the geometry of an Euclidean sphere of radius
rR(t0). We know that an Euclidean sphere with this radius has surface area
A = 4πr2R2(t0) or A = 4πr2R2

0.
Finally we need to relate the time ∆t at the time of emission to the time

∆t′ at the time of reception of the photons. In figure 4 we see two peaks of
an electromagnetic wave. For an observer at rest, the time it takes from one
peak passes to the second has passed is given by ∆t = λ/c. Again we have

λ′

λ
= 1 + z

giving
∆t′

∆t
= 1 + z

Inserting all these relation in the expression for the flux (equation 17) we get

F =
L

4πr2R2
0(1 + z)2

.

This expression gives the flux F with which we observe an object with lu-
minosity L at coordinate distance r corresponding to redshift z. We can use
this expression to make a practical definition of distance in a universe with
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∆  = λ/t       c

Source

Observer

∆   = λ  /t’     ’   c

Figure 4: The energy ∆E is received within a time interval ∆t ∝ λ at the
source, for the same photons an energy ∆E ′ is received within a time interval
∆t′ ∝ λ′ at the observation.
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FRW geometry. We have discussed two different definitions of distance, the
coordinate or comoving distance r and the proper distance. None of these are
easy to measure in a practical way. As we discussed in the lectures on cosmic
distances, we usually measure distances based on the emitted and observed
fluxes of the objects. We will use this to define the luminosity distance dL

as

F =
L

4πd2
L

.

This is the relation between received flux, luminosity and distance in Eu-
clidean geometry. In FRW geometry, the distance dL is not equal to the
proper distance, it is the luminosity distance, a third and practical way of
defining distance. Combining the previous two expressions for the flux, we
find that the luminosity distance is given by

dL = R0r(1 + z).

We need the coordinate distance r to the object in order to find a value for
the luminosity distance. In the exercises you will rewrite r in this expression
to obtain

dL =
1

H0q2
0

[q0z + (q0 − 1)(
√

1 + 2zq0 − 1)].

The luminosity distance depends on the redshift of the object as well as on
the current expansion rate and deceleration parameter. This makes sense:
the size of the area A of a sphere should depend on the geometry of the
universe. We have seen that the geometry of the universe depends on the
density parameter Ω and thereby the acceleration parameter q.

Now we are almost ready to measure the distance to a supernova. We
use the relation between apparent and absolute magnitude

m − M = 5 log
dL

10pc
.

Note that it is the luminosity distance that enters here. Why? Remember
that this expression was obtained using Euclidean geometry F = L/(4πd2)
(go back an check!), taking general relativity into account we have now seen
that this is only correct if we use the luminosity distance dL (if we had used
coordinate distance r we should have included (1+z) as we have seen above).

Inserting the expression for dL we have

m−M = 5 log(q0z +(q0 − 1)(
√

1 + 2zq0 − 1))− 10 log(q0)− 5 log(H0 × 10pc)
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We have a function combining the difference in apparent and absolute mag-
nitude m−M , the redshift of the supernova z and the expansion and decel-
eration parameters today H0 and q0.

We remember that supernovae of type Ia are standard candles which
means that we easily can find their luminosity and thereby the absolute
magnitude M . By studying the spectrum of a supernova we can find z.
We can find H0 by other kinds of observations. The only unknown in this
equation is thus q0. We can therefore find the deceleration parameter by
studying supernovae. We also know that q0 = Ω0/2 so we can also find
the geometry of the universe. There are uncertainties in the measurement
of the luminosity and thereby M of a supernova, but by measuring many
supernovae at different distances, these uncertainties can be reduced. By
using many supernovae one can even find the best fitting H0 and q0 by using
methods similar to the least square method. In the exercises coming next
week you will try this method on a set of simulated supernova data.

The first results for q0 using observations of a large amount of supernovae
came in 1998. The surprising results shocked the whole astronomical commu-
nity. It turns out that q0 ≈ −0.6. The deceleration parameter was designed
such that it is positive for a decelerating expansion. But the result shows
that the deceleration parameter is negative meaning that the expansion

of the universe is accelerating. The classical models for the universe
all predict that the expansion of the universe should decelerate due to the
attractive gravitational forces. But the opposite is true.

7 The cosmological constant and dark energy

We will see that a possible solution to the problem is the cosmological con-
stant, a constant which appears in the derivation of the Einstein equation.
Einstein gave this constant a value different from zero in order to make the
universe static, but after the discovery of the expansion of the universe, it
was set to zero. There is no physical reasons why this constant should be
zero. The Friedmann equations including the cosmological constant look like
this

Ṙ2(t) −
8

3
πGρ(t)R2(t) −

Λ

3
R(t)2 = −k

d2R(t)

dt2
= −

4

3
πG(ρ(t) + 3P )R(t) +

Λ

3
R(t).
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Here Λ is the cosmological constant. To understand the physical effect of
dark energy, notice that if we define

ρΛ =
Λ

8πG
(18)

and

PΛ = −
Λ

8πG
(19)

then we can write the Friedmann equations in the classical form as

(Ṙ2(t) −
8

3
πGρ′(t)R2(t)) = −k (20)

d2R(t)

dt2
= −

4

3
πG(ρ′(t) + 3P ′(t))R(t). (21)

exactly in the same form as before (check!) but with

ρ′ = ρ + ρΛ = ρm + ρr + ρΛ

and
P ′ = P + PΛ.

We see that the cosmological constant plays the same role as an additional
component contributing to the energy density of the universe. From the
above equations we see that (using equation 18 and 19)

PΛ = −ρΛ

is the equation of state of this cosmological constant related component which
is called dark energy. Thus, for dark energy w = −1. This means that dark
energy has negative pressure. Positive pressure means that energy needs to
be supplied to reduce the volume of a gas. That space has negative pressure
means that energy has to be supplied to increase the volume. In a way one
could say that a rubber band has negative pressure: one needs to add energy
in order to stretch it.

We can now look at the consequences that dark energy has on the expan-
sion of the universe. First we note that the energy density ρΛ of dark energy
is a constant since Λ is a constant. This is in contrast to the other types
of energy densities that we have in the universe: the density of matter and
radiation decreases with time since the volume increases. The dark energy
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density however is constant even with an increasing volume. Thus, as time
passes by the dominating species in the universe will be the dark energy.
Actually, this has already happened. Today we measure that Ωm0 ≈ 0.3 but
we also measure that Ω0 = 1. Thus, the universe is flat, but the total energy
density in matter is Ωm0 ≈ 0.3. The remaining contribution to the energy
density of the universe is the dark energy. As much as 70% of the energy in
the universe today is dark energy. Thus, the expansion of the universe today
cannot be described by the above functions for R(t). We need to find the
form of R(t) in a universe dominated by the cosmological constant.

We cannot insert w = −1 in the equations that we have derived for R(t)
since this would lead to infinities. We need to start with the Friedmann
equation. Assuming the universe is flat (Ω = 1, k = 0) and dominated by
the cosmological constant the first Friedmann equation reads

dR̄

dt
=

√

8

3
πGρΛR̄

Since ρΛ is a constant, this can easily by integrated

√

8

3
πGρΛ

∫ t

0
dt =

∫ R

0

dR̄

R̄

giving

ln R̄ =

√

8

3
πGρΛt

or
R̄(t) = e

√
8
3
πGρΛt.

We see that a universe dominated by dark energy is expanding exponentially
with time. Thus, the expansion of the universe accelerates and the universe
will eventually become extremely big and empty. In the distant future we will
not be able to see other galaxies around us (but long before this happens, the
Sun has already become a white dwarf). The results from the supernova data
showed that this process has started: the universe has started an accelerated
expansion.

32



8 Exercise to be presented on the blackboard:

A Newtonian justification for the Friedmann

equations

For a rigorous derivation of the Friedmann equations we must start from
Einstein’s field equation, the Robertson-Walker line element and the energy-
momentum tensor of a homogeneous and isotropic perfect fluid. However,
one can get a set of equations very similar to the Friedmann equations start-
ing from Newtonian gravity. In a way this is not surprising. The cosmological
gravitational field is weak enough to justify a Newtonian treatment. Further-
more, the assumption of homogeneity means that the Universe is the same
on small scales as it is on large scales. And for over small length scales, New-
ton’s theory is again sufficient. So we should expect to get something very
similar to the Friedmann equations from Newtonian gravity. However, since
Newton’s gravity assumes absolute space and time, the interpretation of the
equations will not be the same as in GR. And, to make the derivation work
we have to make at least one assumption which is problematic in Newtonian
theory. I won’t say which one, but think carefully about it and see if you can
spot it.

We will consider a homogeneous and isotropic mass distribution with
time-dependent density ρ(t). Within this distribution, we look at a sphere
of radius R(t) and place a test particle with mass m on its boundary (see
figure 5).

1. Use the fact that the total mechanical energy E of the test particle is
conserved to show that

(

dR

dt

)2

=
8πG

3
ρR2 +

2E

m
.

What does the last term on the right-hand side correspond to in the
general relativistic version of this equation?

The first law of thermodynamics says that an amount of heat dQ trans-
ferred to a volume V will be consumed by a combination of an increase dU
of the internal energy and work PdV done by the pressure forces to increase
the volume. In the case of the Universe, there is no source of heat, dQ = 0.
This is called adiabatic expansion. Therefore, we have

dU + PdV = 0.
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Figure 5: A sketch of the situation in this problem.

For non-relativistic matter, the energy is dominated by the mass, so U = ρV
(in units where c = 1).

2. Show that
dρ

dt
= −3

1

R

dR

dt
(ρ + P ).

3. Combine the two equations you have derived now and show that

d2R

dt2
= −

4πG

3
(ρ + 3p)R.

Einstein modified his equations by including the so-called cosmological
constant. It may surprise you, but there is room for such a term in Newtonian
gravity to, and Newton himself was aware of this. One of the key results that
makes it possible to apply Newton’s law of gravity for extended masses like
planets is the fact that the total gravitational field from a spherical mass
distribution is the same as from a point particle of the same mass placed
at the center of the sphere. This result follows from the 1/r2-dependence of
the force law, but there is another r-dependence which gives the same result:
a force proportional to r. It is not too difficult to show this for a spherical
shell, but we are not going to do this here (try it yourself!). The most general
gravitational force law that satisfies the ‘sphere theorem’ is a combination of
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a term proportional to 1/r2 and one proportional to r. The potential energy
of a point particle of mass m can then be written as

Ep = −
GMm

r
−

1

6
Λmr2,

where Λ plays the role of the cosmological constant (it can be shown to be
proportional to the mass of the entire Universe!)

4. Derive the equation for dR/dt in this case and compare it to the general
relativistic result.

9 Problems

Problem 1 We have deduced from the FRW-metric that all points in the
universe appear to move away from each other. We know that this is because
of the expansion of the space between these objects. According to the FRW-
metric, the distance between all objects in the universe increases with the
scale factor R(t).

1. The Hubble constant is about 71 km/s/Mpc. If we assume that what
the FRW metric tells us is true, with what speed v does the Sun move
away from Earth due to the expansion of the universe?

2. Assume that this velocity is roughly constant in time. How much
smaller was the Sun-Earth distance at the moment when the solar
system was formed about 4.6 billion years ago? (give the answer in
AU)

3. If we go back in time, this means that not so long ago, the Earth must
have been much closer to the Sun which we know from geological data
is not the case. Can you explain why ? Why doesn’t the distance
between the Earth and the Sun increase because of the expansion of
the universe ?

Problem 2

We will now show that the metric of two-dimensional beings living on the
two-dimensional surface of an expanding three-dimensional sphere is simi-
lar to the FRW-metric in two dimensions. Study the example with a one

35



dimensional universe in the text before doing this exercise. The sphere is
expanding in three-dimensional Euclidean space with metric

∆s2 = ∆x2 + ∆y2 + ∆z2.

We will now try to find the metric for the two-dimensional universe confined
to the surface of the sphere. The universe is only the surface of the sphere,
there is nothing, not even space inside or outside this surface. Since we
are looking for the metric of a two-dimensional surface, we need only two
coordinates instead of the coordinates x, y and z.

1. We can easily get rid of the z coordinate. Show that

z =
√

R2 − x2 − y2

2. Thus, we can specify the location of any point on the surface of the
sphere by giving a position (x, y) (we will now look only at the upper
hemisphere z > 0). We will now shift to coordinates which are natural
for a two-dimensional being living in this two-dimensional universe. For
simplicity, we will look at a person, 2D-John, living on the north pole
of the sphere such that x = y = 0 and z = R are his three-dimensional
coordinates. 2D-John thinks that coordinates r and φ are reasonable
coordinates to use. He defined r = 0 at his position. In figure 6 we
see the sphere from above with 2D-John in the middle (on the north
pole) and two 2D-galaxies called A and B located on the sphere at
positions (r = rA, φA = 0) and (r = rB, φB = ∆φAB) in 2D-John’s
coordinates. The coordinate distances between these two galaxies in
John’s coordinate system is ∆rAB and ∆φAB. We will now look at the
proper distance ∆sAB between galaxy A and galaxy B along the surface
of the sphere.

We need to write this distance in terms of 2D-John’s coordinates, ∆rAB

and ∆φAB instead of the three-dimensinal coordinates ∆xAB, ∆yAB and
∆zAB which do not have any meaning for 2D-John. We have

∆s2
AB = ∆x2

AB + ∆y2
AB + ∆z2

AB

Using the expression above we can now get rid of the z coordinate by
constraining the distance to be along the sphere. We will do this in the
end. First we will rewrite distances ∆x and ∆y in terms of ∆r and ∆φ.
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Figure 6: 2D-John living on the north pole in the two-dimensional surface-
of-sphere-universe. Here we see the universe from above as well as x and y
axis of a three dimensional coordinate system. 2D-John defines a coordinate
system (r, φ) measured along the surface (in his 2D universe) with r = 0 at
the north pole.
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The r coordinate measured from the north pole (2D-John’s position),
is similar to the θ coordinate used in normal three-dimensional polar
coordinates. We let galaxy A be at angle θ and galaxy B at angle
θ + ∆θ. We will use a definition of r similar to the definition we used
in the one-dimensional case

r = sin θ.

Show that
∆r = cos θ∆θ.

3. Make a drawing of the situation from the side showing the projection
of the galaxies A and B in the x-y plane. Use the geometry on the
figure to show that the distance ∆xAB can be written as

∆xAB = R sin θ − R sin(θ + ∆θ) cos ∆φAB ≈ R sin θ − R sin(θ + ∆θ),

where θ is still the normal three-dimensional polar coordinate.

4. Show that for small ∆θ, we can write (a Taylor expansion of the last
term could be a good idea)

∆xAB ≈ R cos θ∆θAB = R∆rAB

5. Now turn to your drawing with the projection of A and B in the x-y
plane. Use the geometry to find that

∆yAB = R sin θ sin ∆φAB ≈ Rr∆φAB,

where φ is the normal φ coordinate in a three-dimensional polar coor-
dinate system, but this is identical to the φ coordinate which 2D-John
is using.

6. Show that
∆x2

AB + ∆y2
AB = R2(∆r2

AB + r2∆φ2
AB).

7. Now we need to find an expression for ∆z. Show that the z-position
for an object at coordinate r in this universe is given by

z = R
√

1 − r2.

hint: We have that x = y = r = 0 at John’s position. We measure the
coordinates x, y and r from this point. Thus an object at position r
has a distance ∆r from John’s position. This also holds for the x and
y coordinate.
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8. Show that

∆z2
AB =

R2r2∆r2

1 − r2

9. Now you have all the information you need in order to find the metric
for John’s geometry, the geometry on the 2D universe on the surface
of the sphere. Show that it can be written as

∆s2 = R2

(

∆r2

1 − r2
+ r2∆φ2

)

.

which is similar to the spatial part of the FRW metric which we have
in our 3D space.

Problem 3 We will study the parameterized solutions for R(t) in the
case of an open and closed geometry.

1. Choose either the k = 1 or the k = −1 case and show that the param-
eterized solutions R(t) of the Friedmann equations are correct: insert
the expressions for R̄(x) and t(x) into the first Friedmann equation
and show that this is indeed a solution to the equations. Some hints:

Use the first Friedmann equation taken at t = t0 to show that H2
0 =

k/(Ω0−1). Show that this for instance gives R̄(x) = (1/2)α(1−cos(x)),
t(x) = (1/2)α(x− sin(x)) where α is a constant for k = +1. Show also

that the first Friedmann equation can be written as ˙̄R
2
− α/R̄ = −k

when using equation 13.

2. Use Python/Matlab (or whatever) to plot R̄(t) as a function of t for an
open, flat and closed universe together on the same plot. Take Ω0 = 0.9
for the open universe and Ω0 = 1.1 for the closed universe.

3. Make a plot of R̄(t) as a function of t for a pressureless universe with
Ω0 = 1.5, how many years does it take from Big Bang to Big Crunch
in this universe?

4. In the text we have seen expressions for the time t(z) after the Big
Bang as a function of redshift z. Use the expression for R̄(t) in a flat
universe as well as equation 8 to show that the expression for t(z)/tH
is correct for flat universes.
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5. Now, choose either the open or the closed universe and repeat the
previous exercise for this universe using the parameterized expressions
for R̄(x) and t(x).

Problem 4 In the text you show that

ρm = ρm0

(

R0

R(t)

)3

,

for a pressureless universe. Study this derivation and make sure that you
understand every step in detail. Then you’re ready for this exercise: here we
will deduce a similar relation in a universe with the general equation of state
P = wρ. We will do the derivation step by step

1. Use the same approach as in the text to show that

d

dt
(ρR3(1+w)) = 0.

You might need write this derivative in terms of d/dt(ρR2) and then
identify the terms you have from the Friedmann equation in a similar
way as in the text.

2. Use the previous result to show that

ρ(t) = ρ0

(

R0

R(t)

)3(1+w)

problem 5 In the text we deduced how the scale factor R̄(t) changes
with time t in a pressureless flat universe. We found that

R̄k=0(t) = (6πGρ0)
1/3t2/3.

Here we will still look at flat universes, but with a general equation of state
P = wρ. We will skip the subscript k = 0 as all quantities in this exercise
are for the flat universe.

1. First show that we can rewrite the previous equation for the pressureless
universe as

R̄(t) =
(

t

t0

)2/3

,

when t0 is the time today.
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2. Now go back to the text and study in detail how we arrived at this
equation starting with the Friedmann equations. Then repeat exactly
the same procedure, but now use equation 14 to show that

R̄(t) =
(

t

t0

)

2
3(1+w)

problem 6

We used in the text that the luminosity distance can be written as

dL =
1

H0q2
0

[q0z + (q0 − 1)(
√

1 + 2zq0 − 1)].

We will now show this for the flat universe.

1. In a flat universe the value of q0 is known. Show that the previous
expression can be rewritten as

dL =
2

H0
[1 + z −

√
1 + z].

for a flat universe.

2. If we use the FRW metric, show that for a photon traveling from a
source at coordinate r at time t and received at Earth at coordinate
r = 0 at time t0 we have

0 = dt2 + R2(t)
dr2

1 − kr2

3. Show the following equation for the coordinate distance r to the object
∫ t0

t

dt′

R(t′)
=
∫ r

0

dr′
√

1 − k(r′)2
.

4. Assume a flat pressureless universe (all objects that we observe emitted
light in the era of the pressureless universe) and use the form of R(t)
in such a universe. Use the previous equation for a light beam to show
that the coordinate distance r that light emitted at time t and received
at time t0 has traveled is

r =
3t0

R(t0)

[

1 −
(

t

t0

)1/3
]

for a flat pressureless universe.
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5. Now use the expression relating R(t0)/R(t) to the redshift z and deduce
the above expression for the luminosity distance in a flat pressureless
universe.

6. Insert the expression for the luminosity distance (the general expression
including q0) into the relation between apparent and absolute magni-
tude and show that

m−M = 5 log(q0z+(q0−1)(
√

1 + 2zq0−1))−10 log(q0)−5 log(H0×10pc)

7. We will now make a plot with m − M on the y-axis and redshift z on
the x-axis. Include values of redshift up to z = 2. Assume the current
value of the Hubble constant H0 = 71 km/s/Mpc. Plot three models
of the universe on the same plot, Ω0 = 0.3, Ω0 = 1 and Ω0 = 1.5.
Constrain the range on the y-axis of the plot for values of m − M
between 37 and 46. Explain how you can use this plot, combined
with observations of supernovae to find the geometry of the universe.
Then, use the plot to answer the following two questions: (a) in order
to find the geometry of the universe, would you observe nearby or
distant supernovae ? (b) Roughly what minimum redshift should the
supernovae that you observe have in order for you to easily find the
geometry of the universe ?

8. In problem 3 of the lecture notes on the ’end state of stars’, you used
a simplified model of a supernova to find the absolute magnitude and
thereby the distance of the supernova. Study this exercises once more
since we will now use the same assumptions about the supernovae to
find the geometry of the universe. In that problem, we observed the
velocity v of the expanding shell and the temperature T of the shell a
time ∆t after the explotion. We will in the following use these observa-
tions, as well as the observed redshift z of supernovae to estimate the
geometry of the universe.

9. Using this model of the expanding shell, show that you can write m−M
for the supernova as

m − M = m − 86.7 + 10 log10(T ) + 5 log10(v) + 5 log10(∆t),

where m is apparent magnitude and M is absolute magnitude (not
observed directly), the temperature T is measured in Kelvin, the shell
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velocity v is measured in m/s and the time delay ∆t is measured in
seconds.

10. You will now look at three files. Each file contains a list of 1000 ob-
served (simulated) supernovae. Each file is for observations made by
different creatures living in universes with different values of Ω. The
files can be found here:

http : //folk.uio.no/frodekh/AST1100/lecture25/supernovadata ?.txt

There are five columns in each file: first column is the redshift (the su-
pernovae are ordered by increasing redshift), the second column is the
apparent magnitude, the third column is the measured surface temper-
ature of the expanding shell, the fourth column is the shell velocity in
km/s and the last column is the time of observation measured in days
after the supernova exploded. Load these data and construct an array
which gives m−M as a function of redshift. Make a plot with m−M
on the y-axis and redshift z on the x-axis for one of the universes. Use
the same range on the y-axis for m − M as indicated above. On top
of this plot, plot the same three lines for the same three models that
you plotted above. Can you use this plot to tell if the universe you are
looking at is open, flat or closed? Repeat for the other two universes.
Which of these three set of observations do you think were made by us
(human beings) in our universe?

11. You have now seen how you can use observations of supernovae to get
an idea of the geometry of the universe. Now we will see how wrong you
were and how easy it is to fool yourself if you don’t make a thorough
analysis of the data. We will now make a better analysis by the now
well known least square fitting. The function on which we will make
least square fitting is (m−M). You have models of m−M for different
values of q0 (and thereby Ω0) and you have a set of observations of
m − M . So we will again try to find the model, that is, the value of
q0, which gives the smallest possible difference between the model and
the data. Show that you can write the above expression for the model
in terms of q0 as

m−M = 5 log(q0z+(q0−1)(
√

1 + 2zq0−1))−5 log(q2
0)−5 log(H0×10pc)
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It is very important that you use exactly this expression in your com-
puter code otherwise you may run into some numerical problems.

12. We can now construct the function to minimize, i.e. the sum of the
square of the model minus the data, summed over all redshifts. This is
given by

∆(q0) =
2
∑

z=0

[(m − M)data − (m − M)model]
2

=
2
∑

z=0

[(m − M)data − (5 log(q0z + (q0 − 1)(
√

1 + 2zq0 − 1))

−5 log(q2
0) − 5 log(H0 × 10pc))]2.

You can now construct a code in exactly the same way as you did before
with least square minimization: make an array for ∆(q0). Then make
a loop over a set of possible values of q0 and calculate ∆(q0) each time.
You should choose the range of q0 to go from q0 = −0.25 to q0 = 2. Use
about 1000 different values for q0 in this range. Then find the value
of q0 which minimizes ∆(q0). Which Ω0 does this value correspond to?
You should get a surprise in one of these models. You will find in that
model that the universe accelerates and you get a negative value for Ω0.
For that model, Ω0 is clearly not negative, it is the relation between
q0 and Ω0 which is wrong in this case. You will not learn the correct
relation in this corse, but explain the physical reasons why we may get
a negative q0. What is happening?

13. Now we will return to the question above and see if you have changed
your mind: which of these three sets of supernova observations do you
think is most similar to observations made in our universe?

14. We will finally look into a problem which we have with this way of
measuring the geometry of the universe. Make the least square fitting
above for the model with negative q0, but this time you only include
the supernovae up to redshift z = 0.2 Which value of q0 do you get?
Why did you get a different value this time? Supernovae in the nearby
universe z < 0.2 are much easier to find and observe than distant
supernovae. We therefore have much more data for supernovae with
low redshift. This can make measurements of q0 uncertain. We have
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not included error bars in our analysis, but you have already got an
idea of the size of the errors if we only include nearby supernovae.

15. We have used a very simple model of the supernova. A more sophisti-
cated model is used in the real analysis. But these models are based
on observations in the nearby universe. One of the big debates in cos-
mology novadays is whether we can trust that the same model for the
supernova is true for the distant supernovae. Clearly if the model is
wrong, also the q0 obtained with least square fitting is wrong. Can
you find a good reason why a model for supernovae which is found to
be correct for nearby supernova is not necessarily correct for distant
supernovae? (think back to the lectures on stellar evolution)
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