
AST1100 Lecture Notes

25-26: Cosmology: nucleosynthesis and inflation

1 A brief history of the universe

1. The temperature and energies in the very early universe (t < 10−30s)
were so high that we do not know the physics of this era. Some theories
suggest that the electromagnetic, strong and weak interactions were all
unified at these energies in the so-called GUT (Grand Unified Theory).
In this unified theory particles which only exist at huge temperatures
and which have so far never been observed may have dominated the
universe. We expect processes like

0
0γ +0

0 γ ⇀↽ X + X̄,

where X are yet unknown particles existing in the high energy theories.
Due to an asymmetry in these theories, there were more particles than
anti-particles present in the universe. The universe was filled with a hot
dense plasma of particles which are continiously decaying and created.

2. At a time ∼ 10−36s after the Big Bang a phase transition in the vacuum
may have caused the universe to expand exponentially for a period of
about 10−34s. This very rapid expansion is called inflation.

3. At the end of inflation in the so-called re-heating period, vacuum energy
produced huge amounts of matter and radiation.

4. As the universe expanded and cooled, the temperatures became suffi-
ciently low for the forces and laws of physics to follow currently known
theories. The unknown high energy particles decayed to known parti-
cles, baryons, mesons, leptons, photons and their antiparticles. Parti-
cles were created and destroyed continously in different processes.

5. At a temperature of about 1012K about 10−4s to 10−2s after the Big
Bang, the process

0
0γ +0

0 γ ⇀↽ µ+ + µ−
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ceased. The energy of the photons was not high enough to produce
the µ leptons and the µ leptons disappeared from the mixture by the
annhilation process (left arrow in this equation).

6. About 10−2s to 1s after the Big Bang, the temperature of the universe
was T = 1010K to 1011K. Up to this point, the neutrinos were inter-
acting with the other particles in the plasma. At this temperature the
interaction probability of the neutrinos has decreased to a level where
the neutrinos can be considered to be completely decoupled from the
rest of the plasma. From this period, less than one second after the
Big Bag, the neutrinos could travel freely without beeing scattered on
other particles. The neutrinos which decoupled in this period are still
present today as the neutrino background. If these neutrinos could be
observed, a huge amount of information about the universe a very short
time after the Big Bang could be obtained. Unfortunately, the neutri-
nos hardly interact with normal matter at all and detection is very
difficult.

7. During the first three minutes after the Big Bang with a temperature
of T = 109K to T = 1010K, the process

0
0γ +0

0 γ ⇀↽ 0
−1 e +0

1 ē

ceases and the positrons disappear from the primordial plasma leaving
only a small amount of electrons.

8. When the temperature of the universe reached 109K, the protons and
neutrons combined to form the first atomic nuclei. This era is called
the nucelosynthesis era.

9. About 50000 years after the Big Bang, the density of matter was now
higher than the density of radiation. The universe had reached the
epoch of matter-radiation equality.

10. About 360000 years after the Big Bang the temperature (T ≈ 3000K)
was sufficiently low for the electrons to combine with the atomic nuclei
and form the first neutral atoms in the universe. This era is called
recombination. Before recombination, the photons were continously
scattered on the electrons and photons. The collision cross section
for photons on neutral atoms is much smaller than for collisions with
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charged particles. For this reason, the photons could now free-stream
without being scattered. The photons were decoupled from the matter.
These photons which were released from the plasma at this period have
free-streamed until today and can be observed as the cosmic microwave

background. The redshift of the recombination period is z ≈ 1100. We
have learned that

R(t0)

R(t)
= 1 + z,

meaning that the universe has expanded with a factor of 1100 since
the recombination period. The wavelength of the photons emitted at
recombination has therefore been stretched with a factor of roughly
1100. The mean energy of photons in a photon gas is < Eγ >= kT
(can be shown in thermodynamics in the same way as you showed
that the mean energy of a particle in an ideal gas is (3/2)kT ) where
T is the temperature of the gas. We know that the energy of the
photons decrease as E ′ = E/(1 + z). Using that E = kT we have that
T ′ = T/(1 + z). Thus the temperature of the photon gas decreases
with a factor 1100. The temperature of the photons in the cosmic
background radiation is hence T = 3000K/1100 ≈ 2.7K. We observe
the cosmic microwave background as radiation from a black body with
a temperature of T = 2.7K whereas the real temperature of the black
body (the primoridal plasma) when the photons were emitted was T ≈
3000K.

11. About 108 − 109 years (redshift 6 < z < 20) after the universe became
neutral in the recombination process, gravitational collapse had created
the first stars in the universe, the population III stars. The energetic
radiation from these stars and other objects like quasars which were
formed in this epoch ionized the neutral hydrogen gas. The universe
became reionized in the reionization epoch.

We will now discuss some of these epochs in some detail.

2 Nucleosynthesis

When the temperature of the primordial plasma was T ∼ 1012K the plasma
consisted of photons, electrons, positrons, neutrinos and their antiparticles.
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There was also a small number of protons and neutrons. The neutrons and
protons were continously converted into each other in processes like

1
0n ⇀↽1

1 p + 0
−1 e +0

0 ν̄e.

In statistical physics you will learn about the Boltzmann equation giving the
ratio between the abundance of two species in equilibrium. For neutron and
protons participating in the above process this equation can be written

nn

np

= e−(mn−mp)c2/kT . (1)

Here nn and np are the number densities (per real space volume) of neutrons
and protons. The exponential contains the energy difference between the
two states, the proton and the neutron state, divided by the thermal energy
kT . The neutron rest energy is slightly larger than the proton rest energy.
Looking at the equation we see that this leads to a smaller number of neutrons
than protons. We see from the equation that at high temperatures, the
reaction rate for this process is equal in both directions: the high temperature
makes the term in the expotential very small and therefore nn/np ≈ 1. When
the universe expands and cools, this changes. The mass difference between
the neutrons and protons start to be significant and the ratio decreases.

At a temperature of roughly 1010K (you will show this in the exercises)
the reverse reaction, protons and electrons colliding and creating neutrons,
stopped. At this temperature, the energy of the neutrino was so small that
its probability for taking part in reactions had decreased considerably making
it difficult for the reaction to take place (note that the neutrino is necessary
for the reaction (right to left) to take place, the electron and proton cannot
do it alone, then lepton number would not be conserved). At the same time,
the thermal energy of the photons had become so small that it could not
anymore create electron-positron pairs by the reaction

0
0γ +0

0 γ ⇀↽ 0
−1 e +0

1 ē.

As a result all positrons reacted with electrons and created photons, but
the photons were on average not sufficiently energic for the reverse process.
The positrons disappeared from the plasma and a small number of electrons
remained. Thus, there were suddenly much less neutronins and electrons
available for the above process to create neutrons from protons and electrons.
The reaction now went only in one direction

1
0n →1

1 p + 0
−1 e +0

0 ν̄e.

4



Inserting T = 1010K in equation 1, we find nn/np = 0.223. There were 223
neutrons for every 1000 protons. From this point on, the reaction only went in
one direction: reducing the number of neutrons in the neutron disintegration
process. This reaction could continue until the temperature in the plasma
was sufficiently low to allow atomic nuclei to be created. Neutrons bound in
atomic nuclei are much more stable.

At a temperature of T ≈ 109K, the temperature was sufficiently low for
the reactions

1
1p +1

0 n ⇀↽2
1 H +0

0 γ,

22
1H ⇀↽3

1 H +1
1 p,

3
1H +2

1 H ⇀↽4
2 He +1

0 n.

The first helium nuclei were formed. It took about 187 seconds (you will
show this in the exercises) from the temperature had decreased from 1010K
to 109K. During this time the number of neutrons had been reduced due to
neutron decay and the number of protons had increased due to the same
process. This ratio was now about 362 neutrons to 2084 protons (you will
calculate this in the exercises). Each helium atom has two neutrons so 181
helium atoms were made from the 362 neutrons and 362 protons. Thus
the helium to hydrogen ratio was now 181 helium nuclei to 2084-362=1722
hydrogen nuclei (protons). After all neutrons were bound in helium nuclei,
the mass fraction of helium in the universe could be written

XHe =
4 × 181

1722 + 4 × 181
≈ 0.296.

A more detailed calculation gives 0.24 which is exactly the observed ratio
between hydrogen and helium in the universe today. This is one of the most
important confirmations of the Big Bang theory, the theory that the universe
in its early phase was very hot and very dense. After making the related
exercise, read through this section once again and make sure you understand
every step.

3 The flatness problem and the horizon prob-

lem

Observations have shown that the universe is flat to a very high precision.
The WMAP (Wilkinson Microwave Anisotropy Probe) satellite has observed
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the temperature fluctuations in the cosmic microwave background with high
resolution and sensitivity. Using these measurements one finds that Ω0 =
1.01±0.01. Even if Ω0 is not exactly one today, it must have been very close
to one in the beginning. We can see this by looking at the first Friedmann
equation. Using that

ρ(t) = Ω(t)ρc(t) = Ω(t)
3H2(t)

8πG

the first Friedmann equation can be written

Ṙ2(t) − Ω(t)H2(t)R2(t) = −k

Dividing by R2(t) on both sides and using the definition of H(t) we get

(Ω(t) − 1) =
k

R2(t)H2(t)
(2)

If we use the results from a matter dominated universe R(t) ∝ t2/3 giving
H(t) = t−1 we get

(Ω(t) − 1) ∝ t2/3.

When t → 0 we see that Ω(t) → 1. A similar result is found using R(t)
for a radiation dominated universe. We see that even if the universe is not
completely flat today it must have been very close to flat in early epochs.
The question then is why the universe is flat or very close to flat. Is there a
physical mechanism which makes it flat? This is called the flatness problem

in cosmology.
Another problem is the horizon problem. The horizon at a time t is the

distance that a photon could have travelled from the Big Bang t = 0 and to
time t. Thus, two points A and B in space which are separated by a distance
larger than the horizon have never been in causual contact: since a photon
could not have managed to go from point A to point B during the life time
of the universe, no signal could have communicated any information between
these two points. Today we cannot se further out in the universe than to
the horizon since photons emitted at the Big Bang from a place further away
than the horizon would not have had time to reach us today. But as time
goes, the horizon grows. We will find the proper distance to the horizon by
considering a photon emitted at r = 0 at t = 0 and find the distance that the
photon has reached at time t. The proper distance to the horizon (or any
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other proper distance) is as always found by setting ∆t = 0 in the FRW line
element. We also set ∆φ = ∆θ = 0 since the photons moves radially away
from r = 0. Thus we have for the proper distance dh to the horizon

dh = R(t)
∫ r

0

dr′
√

1 − k(r′)2
.

We found in the previous lectures that by using ds = 0 in the FRW-metric
for a photon we can write

dh(t) = R(t)
∫ r

0

dr′
√

1 − k(r′)2
= R(t)

∫ t

0

dt′

R(t′)
.

If we consider an epoch in the matter dominated area, we use that R(t) ∝ t2/3

giving dh(t) = 3t. Thus the size of the observable universe today is roughly
three times the age of the universe, about 13.2 × 3 ≈ 40Gly (1Gly= 109ly).

At recombination, the photons were decoupled from matter and allowed to
travel freely. In figure 1 we see photons from the recombination era (r = rrec

and t = trec) streaming to us (r = 0) and received at present time t = t0. In
the figure I have also indicated the size of the horizon in the recombination era
(t = trec). Point B is at a distance equal to the horizon at t = trec away from
point A. We observe the points A and B in the cosmic microwave background
at an angular distance ∆θh in the sky. Two points with an angular distance
larger than ∆θh have never been in causual contact. We will try to calculate
this angle ∆θh in order to find how far away points that we observe in the
background radiation can be and still have been in causual contact.

Before we start to calculate the angular extension ∆θh of the horizon at
recombination, we will try to find the angular extension ∆θ of an object at
coordinate distance r (using r = 0 for the Earth) and proper extension D
taken at the time when light was emitted from the object. The situation
is depicted in figure 2. We remember from the theory of relativity that the
proper length of an object, which in this case is D, is found by measuring
the the distance between the end points at the same time, ∆t = 0. This time
t is the moment when light was emitted from both ends of the object. The
end points A and B of the object are situated at the same position r such
that ∆r = 0 and we orient it such that also the φ coordinate of A and B are
the same such that ∆φ = 0. The FRW line element then gives

D = ∆s = rR(t)∆θ =
r∆θ

1 + z
,
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r=0
t=t0

r=r
t=t

rec
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d  (t   )h rec

h

Figure 1: Photons emitted at two points A and B in the recombination epoch.
The points A and B were seperated by the size of the horizon dh at the time
of recombination. Points separated by larger distances had thus never been
in causal contact before recombination. We should therefore not observe any
correlation between the temperature of cosmic background radiation photons
emitted at points separated by distances larger than the distance between A
and B
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Figure 2: Photons emitted at the two points of a galaxy with proper distance
D at the time of emission.
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where z is the redshift of the object. We have set R0 = 1 and used the
expression R0/R(t) = 1 + z from the previous lectures. We are now in the
position to find the angular extension ∆θh of the horizon at recombination.
We found above that the proper size of the horizon is D = 3t. We thus have

∆θh =
(1 + z)3trec

rrec
(3)

In order to be able to insert numbers here, we need the coordinate distance
rrec of recombination. To find the coordinate distance we will follow a photon
emitted at recombination. In a flat universe k = 0, we have from the FRW-
metric that

rrec = −
∫ 0

rrec

dr′ =
∫ t0

trec

dt′

R(t′)
,

where we again used that ∆s = 0 for light and that the light moves radially
∆φ = ∆θ = 0. Note that the minus sign disappears since from the FRW met-
ric dt2 = R2(t)dr2 giving dt = ±R(t)dr where we need to choose the negative
sign since the photon is moving towards the origin. Since recombination, the
universe was matter dominated and we therefore have R(t) = (t/t0)

2/3 giving

rrec =
∫ t0

trec
dt′

(

t0
t′

)2/3

= 3t0

[

1 −
(

trec
t0

)1/3
]

.

Inserting this in equation 3 we have

∆θh =
(1 + z)trec

t0

[

1 −
(

trec
t0

)1/3
]

−1

.

Inserting the redshift of recombination zrec ≈ 1100, the current age of the
universe t0 ≈ 13.2 × 109 years and the time of recombination trec ≈ 360000
years, we have ∆θh ≈ 1.8◦. The real angular extension of the horizon at
recombination is smaller since no photon can move directly in a straight line
from A to B without being scattered on other particles. One should really
use the sound speed in the plasma which is roughly

√
3 times smaller than

the speed of light, such that D =
√

3trec. Dividing by this correction factor
of

√
3 we obtain a result very close to the correct number ∆θ ≈ 1◦. Thus, if

we observe the microwave background at two points in the sky separated by
more than about one degree, these points were never in contact with each
other, no information can have travelled from one point to the other.
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Figure 3: The observed tempertature of the cosmic microwave background
measured in different directions on the sky. The map is in galactic coor-
dinates. The points along the equator of this sphere are observaions made
towards the galactic plane. Emission from the galaxy contaminates the ob-
servations of the background radiation in this direction. Signal processing
techniques have been used to remove the galactic emission to ’see through’
the galaxy in this picture.
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In figure 3 we see the latest obsevation of the cosmic microwave back-
ground from the WMAP satellite. We see the temperature of the background
radiation measured in different directions on the sky. The mean temperature
of T = 2.7126K has been subtracted such that we only see the fluctuations
around the mean temperature. These fluctuation come from the density fluc-
tuations in the plasma at recombination. Many of the fluctuations you see
in figure 3 have an angular extension of several degrees. This means that the
density fluctuations at recombinations, the lumps in the plasma, were larger
than the horizon. But how can lumps which are larger than the horizon
form? In order to create lumps in the plasma, the two end points must have
been in contact gravitatonally, which they cannot have been. This is the
horizon problem.

4 Inflation

In 1981 Alan Guth suggested a solution to these two problems using particle
physics. He suggested that the universe started with a false vacuum state.
In quantum physics, vacuum itself can have potential energy and an energy
state. This happens if a so-called quantum field φ, a three-dimensional field,
is present. In figure 5 we see an example of the possible potential energy of the
vacuum. The x-axis shows the value of a quantum field φ. The y-axis shows
the potential energy as a function of φ for a set of different temperatures T .
The true shape of this potential as a function of the quantum field φ and
temperature T is not known in detail, it is strongly dependent on unknown
high energy particle physics.

At high temperatures T (T = T1 in the figure), the field φ is zero which
according to the figure is a stable minimum of the potential. At this temper-
ature the vacuum was the true vacuum. But as the universe expanded, the
temperature decreased and the potential V (φ, T ) changed its shape. After
a certian critical temperature (T = T3), the potential had a new minimum
which was lower than the minimum at φ = 0. The vacuum was not anymore
in the lowest possible energy state. The vacuum had acquired a constant
energy density larger than the minimum energy in the universe defined by
the minimum of the potential. We have previously seen what happens with
space if the vacuum has a constant energy density. This is exactly what
happens in the presence of dark energy. We deduced that the result is that
space starts to expand exponentially R(t) ∝ eCt. According to most theories
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Figure 4: The potential of the quantum field φ as a function of φ and the tem-
perature of the universe T . We see the shape of the potential for increasing
temperature T1 > T2 > T3 > T4 > T5. The minimum of the potential changes
when the temperature falls below the criticual temperature Tc denoted T3 in
this figure.
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this happened about t ∼ 10−36s after the Big Bang when the temperature
of the universe was about T ∼ 1028K. The universe expanded expotentially
until the quantum field had rolled down the potential to the new minimum
at φ = φ′. The potential energy of the vacuum was released and matter and
radiation was created from the vacuum. From this point, the classical hot
Big Bang model with a dense plasma of particles and radiation discussed
above starts.

It turns out that the period of expotential expansion of the universe a
very short time after the Big Bang solves both the problems mentioned above.
Inserting R(t) ∝ eCt where C is a constant in equation 2 above gives

(Ω(t) − 1) ∝ e−4ct.

Clearly Ω → 1 rapidly, no matter what the value of Ω was just before infla-
tion. The result of inflation is that the density is driven towards the critical
density. This can be understood by the following analogy: If the radius of
a curved sphere is increased sufficiently, a two-dimensional creature living
on the surface of the sphere will experience the geometry of the sphere to
be locally flat. This is exactly what we experience on Earth. The surface
appears flat to us because of the huge size of the sphere. Inflation works in
exactly the same manner: the scale factor R(t) is increased so much that
space locally looks flat to us and we measure Ω ≈ 1.

Inflation also solves the horizon problem. When we calculated the hori-
zon at recombination, we assumed that the universe was matter dominated
(R(t) ∝ t2/3) from the beginning. If inflation took place in the early universe,
then R(t) ∝ eCt for a period and the horizon becomes much larger than if
the universe had been only radiation/matter dominated. Two points in space
could have been in causual contact before inflation. After inflation, the dis-
tance between these two points has increased immensly. Thus two points
which are very far apart in space and which appears to be so far away that
they have never been in causual contact, could have been in contact before
inflation. Actually, calculations show that space could have expanded with
a factor of up to e100 during the period of inflation which may have lasted
about 10−34s. Two points seperated by a distance similar to the atomic nu-
cleus before inflation could be seperated by a distance larger than the current
observable universe after inflation.

Inflation also solves another problem: where did the structures in the
universe come from? The universe is clearly not completely homogenous at
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small scales, it consists of clusters of galaxies, galaxies and stars. These
structures have formed by the gravitational collapse of overdense regions
in the primordial plasma. But before the theory of inflation, there was no
theory to explain how these overdensities were created. Inflation offers an
easy explanation: quantum fluctuations. Tiny quantum fluctuations in the
vacuum during inflation were inflated to much larger dimensions during in-
flation. Thus, at the end of inflation, the plasma contained some areas with
higher and some areas with lower densities. The size of these overdensities
were similar to the size of clusters of galaxies. By gravitational collapse these
overdense regions became clusters of galaxies. Thus, by studying the largest
structures in the universe today, we are studying quantum fluctuations at
the beginning of the universe, fluctuations which are normally so small that
they cannot be observed directly.

5 Growth of structure in the universe

We now explain the origin of structure in the universe with quantum fluctu-
ations from inflation. But the density in these fluctuations is only slightly
higher than the density in the sorrounding area. As time goes by, these
density fluctuations, the areas in space with higher density than the mean
density of the universe, will start collapsing due to their own gravitation.
But the radiation pressure in the early radiation dominated phase of the uni-
verse was too high to have enabled these structures to grow to galaxies and
clusters of galaxies during the time from the Big Bang until today. The only
way to solve this would be if there was a kind of matter present that does
not react with normal matter. This matter would not feel the pressure from
radiation and could thus grow much faster than normal matter during the
radiation dominated phase. At the end of the radiation dominated phase,
also the normal matter could start forming structure. The dark matter had
already formed massive lumps with a large gravitational potential. When the
radiation pressure was gone, the normal matter started falling into the grav-
itational potential from the invisible matter and clusters of galaxies could
form. This invisible matter which is necessary for galaxies, stars and planets
to form from the initial quantum fluctuations must have the same properties
that the dark matter has. It has also been calculated that the amount of
dark matter necessary to form clusters of galaxies equals the amount of dark
matter observed in the universe today. This is another important confirma-
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Figure 5: The ’ingredients’ of the universe. Figure taken from NASA/WMAP
homepage.

tion of the existence of dark matter. The total energy density of the universe
can be written as

Ω0 = Ωb0 + ΩDM0 + Ωr0 + ΩΛ0 ≈ 1,

where all densities are taken today at t = t0. The density of baryons divided
by the critical density is given by Ωb0, the density of dark matter by ΩDM0,
the density of radiation Ωr0 and the energy density of dark energy ΩΛ0.
The current best estimates of these values from various observations are
Ωb0 ≈ 0.04, Ωr0 ≈ 10−4, ΩDM0 ≈ 0.23 and ΩΛ0 ≈ 0.73.
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6 Problems

Problem 1 We will go a little bit into details about the nucleosynthesis
process and show some numbers that we used in the text. Before starting
the exercise, read carefully through the chapter on nucleosynthesis.

1. At some point well before the onset of nucleosynthesis, the process

1
0n →1

1 p + 0
−1 e +0

0 ν̄e. (4)

which so far had been going in both direction could only go from left
to right. That is, at some temperature T , neutrons were not anymore
created by proton-electron collisions so the number density of neutrons
could not increase. However,after this point and until nucleosynthesis
started, the neutrons stilled decayed. Free neutrons decay with a half-
life of 10.3 minutes. After nucleosynthesis, all neutrons were bound in
atomic nuclei and the decay probability became practically zero. Thus,
after nucleosythesis the number of neutrons in the universe was frozen
until today. For this reason we can use nucelosynthesis to predict the
number of neutrons present in the universe today if the theory of Big
Bang is correct. We will start by calculating the temperature T when
neutrons could not anymore be produced from protons and electrons
(or at least not with a very high probability, there will always be a few
electrons and protons present with an energy much higher than the
average, but the probability for that is low). Neglect the neutrino and
use energy considerations to find the minimum temperature when the
above process could still go from right to left with a high probability
(proton mass = 1.6726× 10−27 kg, neutron mass = 1.6749× 10−27 kg,
electron mass = 9.1 × 10−31 kg). hint: assume ideal gas

2. In order for the above process (right to left) to run, there must be a
high abundance of electrons available. At a temperature T , the process

0
0γ +0

0 γ ⇀↽ 0
−1 e +0

1 ē.

which so far had been going in both directions, could only go from right
to left, not from left to right (again, there will always be photons present
with an energy higher than the average but very few so the probability
for the process will be very low). The result is that electrons rapidly
disappear from the plasma, (almost) no more electrons are created by

17



this process. The mean energy per photon in a photon gas is kT . At
what temperature did this process (left to right) cease?

3. In the previous two questions, you should have found two reasons why
no more neutrons were created after a temperature of about T = 1010

K. You should have found both processes to cease before T = 1010 K.
We will now assume that both ceased exactly at T = 1010 K. In the
text, we calculated that at this temperature there were 223 neutrons
per 1000 protons (if you haven’t already done it, now is the time to
check that calculation). From now on, neutrons will disappear from the
plasma and protons will be created. The process responsible for this is
equation 4. This continues until the onset of nucleosynthesis at T = 109

K. If we can find the time it takes from T = 1010 K to nucelosynthesis
starts at T = 109 K we can calculate how many neutrons disappear
and how many protons are produced. We will now do this calculation
in steps, here comes the first step: Use the fact that the density of a
photon gas is given by ρr = aT 4 (a is the radiation constant) as well as
the equation for how the energy density of a photon gas decrease with
the scale factor (which you deduced in the problems last week) to show
that

T (t) ∝
1

R(t)
,

where T (t) is the temperature of the universe at time t and R(t) is the
scale factor.

4. Use the form of the scale factor in a flat radiation dominated universe
to show that

T (t1)

T (t2)
=

√

t2
t1

(5)

for the temperature and age at two times t1 and t2 in the radiation
dominated epoch.

5. We want to find the age of the universe t1 when T = 1010 K and t2
when T = 109 K. The difference between these to ages is the time it
takes from the universe had a temperature of T = 1010 K to T = 109

K. If we know either t1 or t2 we can use equation 5 to obtain the other.
Before we can use this equation, we therefore need to find the time (say
t1) at which T = 1010K. We can do this by using this equation with t1
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being the time when T = 1010K and t2 being some known time with
known temperature. To find the age of the universe when T = 1010 K
we therefore need to compare with a period when we know both the age
and the temperature of the universe. This period has to be in or close
to the radiation dominated epoch so that the above equation is valid.
We can use the period of matter-radiation equality. In the previous
lecture, we calculated that the age of the universe at matter-radiation
equality was about 60000 years. We do not know the temperature of
the universe in this period but can easily find it by using another fact:
we also calculated that the recombination period took place when the
age of the universe was 360000 years and the temperature was 3000 K.
But this was already in the matter dominated epoch. Show that for a
matter dominated universe,

T (t1)

T (t2)
=

(

t2
t1

)2/3

,

and use this to show that the temperature at matter-radiation equality
was about 10000K.

6. Now you know the temperature and age of the universe at matter-
radiation equality. Use these two facts to show that the age of the
universe when T = 1010K was t ≈ 1.89 s.

7. Use the same equation to show that the universe was about 189 seconds
old when nucleosynthesis started.

8. The equation for radiavtive decay is

n(t1)

n(t2)
= e−λ(t1−t2),

where n(t1) is the number density of nuclei at time t1 and n(t2) is the
number density of nuclei at time t2. Here t2 is before t1. The half life
τ of the decay process is given by λ from the relation

λ =
ln 2

τ
.

For neutron decay, the half life is 10.3 minutes. Show that from the
period when no more neutrons were created to nucelosynthesis started,
a total of 181 remained of the original 223 neutrons. Show also that
1000 protons had grown to 1042 protons.
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9. Finally show that the mass fraction XHe of helium after nucelosynthesis
must be roughly 0.296.
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