
AST1100 Lecture Notes

6 Electromagnetic radiation

1 The electromagnetic spectrum

To obtain information about the distant universe we have the following
sources available:

1. electromagnetic waves at many different wavelengths.

2. cosmic rays: high energy elementary particles arriving from super-
novae or black holes in our galaxy as well as from distant galaxies. The
galactic magnetic field changes the direction of these particles making
it impossible to determine the incoming direction and therefore the
exact sources of the rays.

3. neutrinos: these extremely light elementary particles interact very
rarely with other particles and can therefore arrive from huge distances
without being scattered on the way. This property also makes neutri-
nos very difficult to detect and therefore a source of information with
limited usefulness until better detection methods are discovered.

4. gravitational waves: spacetime distortions traveling through space
as a wave. These are predicted by Einstein’s general theory of rela-
tivity. Gravitational waves have still not been directly detected, but
experiments are on their way.

Of these sources, electromagnetic waves is by far the most important.
Practical problems limit the amount of information we can obtain from other
sources with current technology. Since electromagnetic radiation is almost
the only source which we use to get information about the distant universe,
it is of high importance in astrophysics to know the processes which produce
this kind of radiation. Here we will discuss some of the most important pro-
cesses along with some discussion on how the radiation from these different
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Figure 1: Intensity is the energy of radiation passing through area dA into a
solid angle dΩ per time, per wavelength.

processes is used to obtain information about the universe. Some important
types of radiation are

• thermal radiation: the thermal motion of atoms produces electro-
magnetic radiation at all wavelengths. For a black body (see later),
the radiation emitted at a given frequency is distributed according to
Planck’s law of radiation.

• synchrotron radiation: radiation produced by energetic charged par-
ticles accelerated in a magnetic field. This process emits electromag-
netic radiation at different wavelengths depending on the energies in-
volved in the process. Our own galaxy emits synchrotron radiation
as radio waves due to the acceleration of cosmic ray electrons in the
magnetic field of the galaxy.

• Bremsstrahlung: radiation produced by the ’braking’ of a charged
particle, usually an electron, by another charged particle, typically a
proton or atomic nucleus. Due to electromagnetic forces from ions, elec-
trons are deflected, and hence accelerated, producing electromagnetic
radiation at all wavelengths. The space between galaxies in the clus-
ters of galaxies is called the intergalactic medium (IGM). It contains a
very hot plasma of electrons and ions emitting brehmsstralung mainly
as X-rays. These X-rays constitute an important source of information
about distant clusters of galaxies.

• 21cm radiation: Neutral hydrogen emits radiation with wavelength
21 cm due to a so-called spin-flip: The quantum spin of the electron
and proton may change direction such that the spin vectors go from
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having their orientation in the same direction to having their orienta-
tion in opposite directions. In this process, the total energy of the atom
decreases and the energy difference between the two states is emitted
as 21cm radiation. This is a so-called forbidden transition, meaning
that it occurs very rarely. For a single atom one would on average
need to wait about 10 millions years for the process to occur. However,
in huge clouds of gas the number of hydrogen atoms is so large that
the intensity of 21cm radiation can be quiet large even for such a rare
process.

2 Solid angles

Before embarking on the properties of radiation, we will first introduce a
new concept which will be widely used: the solid angle. The solid angle
is a generalization of the concept of an angle from one to two dimensions.
Looking at figure 2, we see that an angle measured in radians is simply a
distance ∆s taken along the rim of the unity circle

θ = ∆s.

To convince you about this, remember that the circumference of the unity
circle, the full distance taken around the circle, is 2π. Now, the solid angle
is measured in units of steradians, for short sr, and is a part of the area of
the surface of the unit sphere as seen in figure 3. Thus,

Ω = ∆A.

The solid angle corresponding to the full unit sphere is then 4π sr which is the
full area of the surface of the unit sphere. If we imagine a source of radiation
in the center of the unit sphere, the solid angle can be used to describe the
amount of radiation going in a certain direction as the energy transported
per steradian. This is widely used in the study of radiative processes in stars.

3 Black body radiation

Thermal radiation is emitted from an object of temperature T because of
the thermal motion of atoms at this temperature. Black body radiation is
thermal radiation from a black body. A black body is defined as a body
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Figure 2: The angle measured in radians is defined as the length taken along
the rim of the unit circle.

Ω

∆ A
R=1

Figure 3: The solid angle measured in steradians is defined as the area taken
on the surface of the unit sphere.
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which absorbs all radiation it receives, no radiation is reflected or can pass
through. Many objects in astrophysics are close to being a black body, a
star is a typical example. For a black body, an expression for the intensity of
the thermal radiation as a function of wavelength/frequency can be obtained
analytically. A black body emits thermal radiation at all frequencies, but
which frequency has the largest intensity depends on the temperature of the
black body. To calculate the distribution of radiation per frequency quantum
physics is needed. We will therefore not make the calculation here (you will
come to this in physics courses later), but rather state the result

B(ν) =
2hν3

c2

1

ehν/(kT ) − 1
.

This is called Planck’s law of radiation. Here ν is the frequency, T is the
temperature of the black body, h is Planck’s constant and k is the Boltzmann
constant. The quantity B(ν) is intensity defined such that

∆E = B(ν) cos θ∆ν∆A∆Ω∆t (1)

is the small energy passing through a small area ∆A into a small solid angle
∆Ω (see figure 4) per small time interval ∆t in the small frequency range
[ν, ν + ∆ν] measured in units of W/m2/sr/Hz. Here the factor cos θ comes
from the fact that energy per solid angle per area is lower by a factor cos θ
for an observer making an angle θ with the normal to the area emitting
radiation. Example: Imagine you have a light bulb which emits black body
radiation at a certain temperature. You set up a wall between you and the
light bulb and let light pass only through a small hole in the wall of area
∆A = 0.1mm2. Just around the hole you construct a unit sphere and put
a detector at an angle θ = 30◦ with a line orthogonal to the wall. The
detector occupies about 1/1000 of the unit sphere and thus absorbes light
from ∆Ω = 4π/1000sr. Finally, the detector contains a material which only
absorbes and measures radiation in the wavelenght range 600nm to 600.1nm,
such that ∆ν = 0.1nm. The energy that the detector measures from the
light during a period of 10−3s is then:

∆E = B(600nm) × cos(30◦) × 0.1mm2 × (4π/1000)sr × 0.1nm × 10−3s

In reality, the definition is made when we let all ∆ be infinitesimally small,
such that the definition reads

dE = B(ν) cos θdνdAdΩdt (2)
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Figure 4: Intensity is the energy of radiation passing through area dA into a
solid angle dΩ per time, per wavelength.

When we use differentials instead of finite differences ∆, we can use integrals
to obtain the energy over large intervals in area, frequency, solid angle or
time.

Note that in order to write Planck’s law in terms of wavelength λ instead
of frequency ν one can not simply replace ν = c/λ. B(ν) is defined in terms
of differentials, so we need to take these into account. When changing from
frequncy to wavelength, the energy should be the same, we are just changing
variables, so the energy should be constant. From equation 2, we thus see
that B(ν)dν = B(λ)dλ for the energy to be constant. We can write

B(ν)dν = −B(ν)
dν

dλ
dλ ≡ B(λ)dλ,

where the minus sign comes from the fact that λ and ν increase in opposite
directions, λ + |δλ| → ν − |δν|. We therefore obtain

B(λ) = −B(ν)
dν

dλ
= −B(ν)

(

− c

λ2

)

=
2hc2

λ5

1

ehc/(kTλ) − 1
.

Figure (5) shows the intensity as a function of wavelength for black bodies
with different temperature T . We see that the wavelength of maximum
intensity is different for different temperatures. We can use the position of
this peak to determine the temperature of a black body. We can find an
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Figure 5: Planck’s law for different black body temperatures.

analytical expression for the position of the peak by setting the derivative of
Planck’s law equal to zero,

dB(λ)

dλ
= 0

In the exercises you will show that the result gives

Tλmax = 2.9 × 10−3mK.

This is called Wien’s displacement law.

Another way to obtain the temperature of a black body is by taking the
area under the Planck curve, i.e. by integrating Planck’s law over all wave-
lengths. This area is also different for different temperatures T . Integrating
this over all solid angles dΩ and frequencies dν, we obtain an expression for
the flux, energy per time per area,

F =
dE

dAdt
.

The integral can be written as (here we are just integrating equation (2) over
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dν and dΩ)

F =
∫

∞

0
dν
∫

dΩB(ν) cos θ.

Using that dΩ = dφ sin θdθ = dφ(d cos θ) and substituting u = hν/kT , we
get

F =
∫ 2π

0
dφ
∫ 1

0
d cos θ cos θ

∫

dν
2hν3

c2

1

ehν/(kT ) − 1

=
2k4T 4π

h3c2

∫
u3du

eu − 1

=
2πk4T 4

h3c2
ζ(4)
︸ ︷︷ ︸

π4/90

Γ(4)
︸ ︷︷ ︸

3!

=
2π5k4

15h3c2
︸ ︷︷ ︸

≡σ

T 4.

Here the solution of the u-integral can be found in tables of integrals ex-
pressed in terms of ζ , the Riemann zeta-function and Γ, the gamma-function,
both of which can be found in tables of mathematical functions. The final
result is called the Stefan-Boltzmann law,

F = σT 4,

the flux emitted from a black body is proportional to the temperature to the
fourth power.

We see that we have two ways of measuring the temperature of a star, by
looking for the wavelength were the intensity is maximal, or by measuring the
energy per area integrated over all wavelengths. If a star had been a black
body, these two temperatures would have agreed. However, a star is not a
perfect black body. A star has different temperatures at different depths in
the star’s atmosphere. At different wavelengths we receive radiation from
different depths and the final radiation is a combination of Planck radiation
at several temperatures. Since the intensity as a function of wavelength is not
a perfect Planck curve at a fixed temperature T , the two ways of measuring
the temperature will also disagree,

• From Wien’s displacement law, we get the color temperature, T =
constant/λmax.
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• From Stefan-Boltzmann’s law we get the effective temperature, T =
(F/σ)1/4.

The first temperature is called the color temperature since it shows for which
wavelength the radiation has it’s maximal intensity and hence which color
the star appears to have. The second temperature is based on the total
energy emitted.

We have so far introduced two measures for the energy of electromagnetic
radiation:

• intensity: energy received per frequency, per area, per solid angle and
per time:

I(ν) =
dE

cosθdνdAdΩdt

• flux: (or total flux) total energy received per area and per time:

F =
dE

dAdt

You will now soon meet the following expressions:

• flux per frequency: total energy received per area, per time and per
frequency. The total flux above is just the flux per frequency integrated
over all frequencies.

F (ν) =
dE

dAdtdν

• luminosity: total energy received per unit of time (thus integrated
over the whole area which the radiation reaches):

L =
dE

dt

• luminosity per frequency: total energy received per frequency per
time. The total luminsity above is just the luminosity per frequency
integrated over all frequencies.

L(ν) =
dE

dtdν

You will soon see more uses of all these expressions in practise, but it is
already now a good idea to memorize the meaning of intensity, flux and
luminosity.
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4 Spectral lines

When looking at the spectra of stars you will discover that they have thin
dark lines at some specific wavelengths. Something has obscured the radi-
ation at these wavelengths. When the radiation leaves the stellar surface
it passes through the stellar atmosphere which contains several atoms/ions
absorbing the radiation at specific wavelengths corresponding to energy gaps
in the atoms. According to Bohr’s model of the atom, the electrons in the
atom may only take certain energy levels E0, E1, E2, .... The electron cannot
have an energy between these levels. This means that when a photon with
energy E = hν hits an atom, the electron can only absorb the energy of the
photon if the energy hν corresponds exactly to the difference between two
energy levels ∆E = Ei − Ej . Only in this case is the photon absorbed and
the electron is excited to a higher energy level in the atom. Photons which
do not have the correct energy will pass the atom without being absorbed.
For this reason, only radiation at frequency ν with photon energy E = hν
corresponding to the difference in the energy level of the atoms in the stellar
atmosphere will be absorbed. We will thus have dark lines in the spectra at
the wavelengths corresponding to the energy gaps in the atoms in the stellar
atmosphere (see figure 6). By studying the position of these dark lines, the
absorption lines, in the spectra we get information about which elements are
present in the stellar atmosphere.

The opposite effect also takes place. In the hotter parts of the stellar
atmospheres, electrons are excited to higher energy levels due to collisions
with other atoms. An electron can only stay in an excited energy level for
a limited amount of time after which it spontaneously returns to the lowest
energy level, emitting the energy difference as a photon. In these cases we
will see bright lines, emission lines, in the stellar spectra at the wavelength
corresponding to the energy difference, hν = ∆E (see figure 7).

The exact energy levels in the atoms and thus the wavelengths of the
absorption and emission lines can be calculated using quantum physics, or
they can be measured in the laboratory. However, the actual wavelength
where the spectral line is found in a stellar spectra may differ from the
predicted value. One reason for this could be the Doppler effect. If the star
has a non-zero radial velocity with respect to the Earth, all wavelengths and
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Figure 8: Broadening of spectral lines due to thermal motion.

hence also the position of the spectral lines will move according to

∆λ

λ0
=

vr

c
,

where vr is the radial component of the velocity. By taking the difference
∆λ between the observed wavelength (λ) and predicted wavelength (λ0) of
the spectral line, one can measure the velocity of a star or any other astro-
physical object as we discussed in the lecture on extrasolar planets.

Note that even if the star has zero-velocity with respect to Earth, we
will still measure a Doppler effect: The atoms in a gas are always moving
in random directions with different velocities. This thermal motion of the
atoms will induce a Doppler effect and hence a shift of the spectral line.
Since the atoms have a large number of different speeds and directions, they
will also induce a large number of different Doppler shifts ∆λ with the result
that a given spectral line is not seen as a narrow line exactly at λ = λ0, but
as a sum of several spectral lines with different Doppler shifts ∆λ. The total
effect of all these spectral lines is one single broad line centered at λ = λ0
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(see figure 8). The width of the spectral line will depend on the temperature
of the gas, the higher the temperature, the higher the dispersion in velocities
and thus in shifts ∆λ of wavelengths.

We can estimate the width of a line by using some elementary thermo-
dynamics. From the above discussion, we see that we will need information
about the velocity of the atoms in the gas. For an ideal gas at temperature
T (measured in Kelvin K), the number density of atoms (number of atoms
per volume) in a given velocity range [v, v + dv] is given by the Maxwell-
Boltzmann distribution function,

n(v)dv = n
(

m

2πkT

)3/2

e−
1

2

mv
2

kT 4πv2dv.

Here the mass of the atoms in the gas is given by m and n is the total number
density of atoms per unit volume. The meaning of the function is thus the
following: if you insert the mass of the atoms in the gas m, the temperature
T of the gas and the number density of the gas, n, you can now find out
how many atoms in this gas which have a velocity in the range [v, v + ∆v].
Say you need to find out how many atoms have the velocity in the range
between 2 and 2.01 km/s. Then you insert v = 2 km/s to obtain n(v), and
use ∆v = 0.01km/s and use n(v)∆v to find the total number of atoms with
the given velocity per volume.

In figure 9 we see two such distributions (what is plotted is n(v)/n), both
for hydrogen gas (the mass m has been set equal to the mass of the hydrogen
atom), solid line for temperature T = 6000K which is the temperature of the
solar surface and dashed line for T = 373K (which equals 100◦C). We can
thus use this distribution to find the percentage of molecules in a gas which
has a certain velocity. Now, before you read on, go back and make sure that
you understand well the meaning of the function n(v).

We see that the peak of this distribution, i.e. the velocity that the largest
number of atoms have, depends on the temperature of the gas,

dn(v)

dv
= 0 → d

dv
(e−mv2/(2kT )v2) = 0.

Taking the derivative and setting it to zero gives the following relation

v2
max =

2kT

m
,
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Figure 9: The Maxwell-Boltzmann distribution for hydrogen gas, showing
the percentage of molecules in the gas having a certain thermal velocity at
temperature T = 6000K (solid line) and T = 373K (dashed line)
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i.e. the most probable velocity for an atom in the gas is given by vmax (NOTE:
’max’ does not mean highest velocity, but highest probability). Most of
the atoms will have a velocity close to this velocity (see again figure 9).

The Maxwell-Boltzmann distribution only tells you the absolute value v
of the velocity. When measuring the Doppler effect, only the radial (along
the line of sight) component vr has any effect. The atoms in a gas have
random directions and therefore atoms with absolute velocity v will have
radial velocities scattered uniformly in the interval vr = [−v, v] (why this
interval? do you see it?). Since the most probable absolute velocity is vmax

the most probable radial velocity will be all velocities in the interval vr =
[−vmax, vmax] (you see that for instance vr = 0 is in this interval, do you
understand why vr = 0 is at as common as vr = vmax?) . The atoms with
absolute velocity vmax will thus give Doppler shifts uniformly distributed
between ∆λ/λ0 = −vmax/c and ∆λ/λ0 = vmax/c. Few atoms have a much
higher velocity than vmax and therefore the spectral line starts to weaken (less
absorption/emission) after |∆λ|/λ0 = vmax/c. We will thus see a spectral line
with the width given roughly by

2∆λ =
2λ0

c
vmax =

2λ0

c

√

2kT

m
,

using the expression for vmax above. Do you see how this comes about? Try
to imagine how the spectral line will look like, thinking how atoms at differ-
ent velocities (above and below the most probable velocity) will contribute
to vr and thereby to the the spectral line. Try to make a rough plot of how
F (λ) for a spectral line should look like. Do not proceed until you have made
a suggestion for a plot for F (λ).

Of course, there are atoms at speeds other than vmax contributing to the
spectral line as well. The resulting spectral line is thus not seen as a sudden
drop/rise in the flux at λ0 − ∆λ and a sudden rise/drop again at λ0 + ∆λ.
Contributions from atoms at all different speeds make the spectral line ap-
pear like a Gaussian function with strongest absorption/emission at λ = λ0.
We say that the line profile is Gaussian. More accurate thermodynamic cal-
culations show that we can approximate an absorption line with the Gaussian
function

F (λ) = Fcont(λ) + (Fmin − Fcont(λ))e−(λ−λ0)2/(2σ2), (3)

where Fcont(λ) is the continuum flux, the flux F (λ) which we would have if
the absorption line had been absent. The width of the line is defined by σ.
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For a Gaussian curve one can write σ in terms of the Full Width at Half the
Maximum (FWHM, see figure 10) as σ = ∆λFWHM/

√
8 ln 2 where

∆λFWHM =
2λ0

c

√

2kT ln 2

m
,

We see that this exact line width differs from our approximate calculations
above only by

√
ln 2. With this expression we also have a tool for measuring

the temperature of the elements in the stellar atmosphere.

5 Stellar magnitudes

The Greek astronomer Hipparchus (about 150 BC) made a catalogue of about
850 stars and divided them into 6 magnitude classes, depending on their
brightness: the brightest stars were classified as magnitude 1 stars, and the
stars which could barely be seen were classified as magnitude 6. Little did
Hipparchus know about the fact that more than 2000 years later his system
would still be used, and not only that, it would be used by all astronomers
in the (now much bigger) world. Whereas Hipparchus classified the stars by
eye, a more scientific method is used today. The eye reacts to differences in
the logarithm of the brightness. For this reason, the magnitude classification
is logarithmic. For a difference in magnitude of 5 between two stars, the ra-
tio of the fluxes (energy received per area per time F = dE/dt/dA) of these
stars is defined to be exactly 100.

The flux we receive from a star depends on the distance to the star. We
define the luminosity L of a star to be the total energy emitted by the whole
star per unit time (dE/dt). This energy is radiated equally in all directions.
If we put a spherical shell around the star at distance r, the energy received
per unit area on this shell would equal the total energy L divided by the
surface area of the shell,

F =
L

4πr2
.

Thus, the larger distance r, the larger the surface area of the shell 4πr2

and the smaller the energy received per unit area (flux F). If we have two
stars with observed fluxes F1 and F2 and magnitudes m1 and m2, we have
learned that if F1 = F2 then m1 = m2 (agree?). We have also learned that if
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Figure 10: A Gaussian profile: The horizontal line shows the Full Width
at Half Maximum (FWHM) which is where the curve has fallen to half of
its maximum value. This is an emission line, an absorption line would look
equal, just upside down.
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F1 = 100F2 then m2 −m1 = 5 (remember that in Hipparchus’ system m = 1
stars were the brightest and m = 6 stars were the faintest).

The magnitude scale is logarithmic, thus we obtain the following general
relation between magnitude and flux

F1

F2
= 100(m2−m1)/5,

or

m1 − m2 = −2.5 log10

(
F1

F2

)

.

(Check that you can go from the previous equation to this one!) Given
the difference in flux between two stars, we can now find the difference in
magnitude.

We have so far discussed the apparent magnitude m of a star which de-
pends on the distance r to the star. If you change the distance to the star,
the flux and hence the magnitude changes. We can also define absolute mag-
nitude M which only depends on the total luminosity L of the star. The
absolute magnitude M does not depend on the distance. It is defined as the
star’s apparent magnitude if we had moved the star to a distance of exactly
10 pc. We can find the relation between apparent and absolute magnitude
of a star,

Fr

Fr=10pc
=

L/(4πr2)

L/(4π(10pc)2)
=
(

10pc

r

)2

= 100(M−m)/5,

giving

m − M = 5 log10

(

r

10pc

)

.

With this new more precise definition, stars can have magnitudes lower
than 1. The brightest star in the sky, Sirius, has apparent magnitude -1.47
(note that the logarithmic dependence actually gives the brightest stars neg-
ative apparent magnitude). The planet Venus at maximum brightness has
apparent magnitude -4.7 and the Sun has magnitude -26.7. The faintest
object in the sky visible with the Hubble Space Telescope has apparent mag-
nitude of about 30, about 1005 times fainter than the faintest star visible
with the naked eye. Originally the zero point of the magnitude scale was
defined to be the star Vega. This has now been slightly changed with a more
technical definition (outside the scope of this course).
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NOTE: In order to define the magnitude we use the flux which we receive
on Earth, the received flux. In some situations you will also need the emitted
flux, the flux measured on the surface of the star emitting the radiation. It
is important to keep these apart as they are calculated in a different manner
(what is the difference?).

6 Problems

Problem 1 (20-30 min.)) At very large (hν >> kT ) and very small
(hν << kT ) frequencies, Planck’s law can be written in a simpler form.
The first limit is called the Wien limit and the second limit is called the
Rayleigh-Jeans limit or simply the Rayleigh-Jeans law.

1. Show that Planck’s law can be written as

B(ν) =
2hν3

c2
e−hν/(kT )

in the Wien limit.

2. Show that Planck’s law can be written as

B(ν) =
2kT

c2
ν2

in the Rayleigh-Jeans limit. What kind of astronomer do you think
uses Rayleigh-Jeans’ law regularly ?

Problem 2 (60 min. - 90 min.) Now we will deduce Wien’s displace-
ment law by finding the peak in B(λ).

1. Use the expression in the text for B(λ) and take the derivative with
respect to λ. After taking the derivative, replace λ everywhere with x
given by

x =
hc

kTλ
.

2. To find the peak in B(λ), we need to set the derivative equal to zero.
Show that this gives us the following equation

xex

ex − 1
= 5.
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3. We now want to solve this equation numerically. We see that all we
need to do is to find a value for x such that the expression on the
left hand side equals 5. The easiest way to do this is to try a lot of
different values for x in the expression on the left hand side. When the
expression on the left hand side has got a value very close to 5, we have
found x.

(a) The solution to x will be in the range x = [1, 10]. Define an array
x in Python with 1000 elements going from 1.0 as the lowest value
to 10.0 as the highest value. Make a plot of the expression on the
left hand side as a function of the array x. Can you see by eye
at which value for x the curve crosses 5 ? Then you have already
solved the equation.

(b) To make it slightly more exact, we try to find which x gives us the
closest possible value to 5. We define the difference ∆ between
our expression and the value 5 which we want for this expression

∆ = (
xex

ex − 1
− 5)2,

where we have taken the square to get the absolute value. Define
an array in Python which contains the value of ∆ for all the values
of x. Plot ∆ as a function of x. By eye, for which value of x do
you find the minimum ?

(c) Use Python to find the exact value of x (from the 1000 values
defined above) which gives the minimum ∆.

(d) Now use the definition of x to obtain the constant in Wien’s dis-
placement law. Do you get a value close to the value given in the
text ?

Problem 3 (optional 1 hour - 90 min. ) Here we will assume that
the Sun is a perfect black body. You will need some radii and distances. By
searching i.e. Wikipedia for ’Sun’ or ’Saturn’ you will find these data.

1. The surface temperature of the Sun is about T = 5778K. At which
wavelength λ does the Sun radiate most of its energy?

2. Plot B(λ) for the Sun. What kind of electromagnetic radiation domi-
nates?
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3. What is the total energy emitted per time per surface area (flux) from
the solar surface?

4. Repeat the previous exercise, but now by numerical integration. Do the
integration with the box method (rectangular method) and Simpson’s
method. Compare the results. Compare your answer to values that
you find in internet. If there is a difference, why do you think that is?

5. Use this flux to find the luminosity L (total energy emitted per time)
of the Sun ? (here you need the solar radius)

6. What is the flux (energy per time per surface area) that we receive
from the Sun? (here you need the Sun-Earth distance) (see figure 11).

7. Spacecrafts are often dependent on solar energy. What is the flux re-
ceived from the Sun by the spacecraft Cassini-Huygens orbiting Saturn
? (here you need the distance Sun-Saturn)

8. Assume that the efficiency of solar panels is 12%, i.e. that the electric
energy that solar panels can produce is 12% of the energy that they re-
ceive. How many square meters of solar panel does the Cassini-Huygens
spacecraft need in order to keep a 40W light bulb glowing ?

Problem 4 (optional 30 min. - 60 min.) We will now study a
simple climate model. You will here need the results from question 1-6 in
the previous problem.

1. We assume that the Earth’s atmosphere is transparent for all wave-
lengths. How much energy per second arrives at the surface of Earth?
The flux that you calculated in the previous exercises is the flux received
by an area located at the earth’s surface with orientation perpendicular
to the distance-vector between the Sun and the Earth. Hint - Since
the Earth is a sphere, the flux is not at all constant over the surface.
However, we do not need to calculate the density for each square meter
(fortunately). We can just look at the size of the effective absorption
area (shadow area) which is shown in figure 12. Since the distance be-
tween the Sun and the Earth is so large, we can assume that the rays
arriving at earth are travveling in the same direction (parallell). The
radius r of the shaddow area is then equal to Earth’s radius. The rest
should be straight forward.
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Figure 11: Radiation from the Sun. The flux is constant on a spherical
surface with center at the Sun’s center of mass.
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Figure 12: Shaddowarea (effective absorption area)
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2. You are now going to estimate Earth’s temperatur by using a simple
climate model that just takes into account the radiation from the Sun
and the Earth. We still assume that the atmosphere is transparent for
all wavelengths. The model says that the Earth is a blackbody with
a constant temperature. This means that it absorbs all incoming ra-
diation and emits the same amount (in energy/sec) in all directions.
Calculate the Earth’s temperature by using the simple climate model.
You will need the result from the previous question and Stefan Boltz-
mann’s law. Compare your result to the empirical average value Tav ≈
290K? Why do you think there is a difference?

Problem 5 (20 min. - 30 min.)
Here you will deduce a general expression for the flux per wavelength,

F (λ) = dE/dA/dt/dλ, that we receive from a star with radius R at a distance
r with surface temperature T . Assume that the star is a perfect black body.
You can solve this problem in two steps,

1. Find the luminosity per wavelength L(λ) = dE/dλ/dt, i.e. the energy
per time per wavelength, emitted from the star. The intensity B(λ)
is defined as dE/dA/dΩ/dλ/dt/cosθ. You need to integrate over solid
angle and area to obtain the expression for the luminosity. hint: Look
at the derivation of Stefan-Boltzmann’s law in the text.

2. Find the flux F (λ) using L(λ)

3. Does the expression for the flux peak at the same wavelength as for
Planck’s law? Can we simply use the maximum wavelength from flux
measurements to obtain λmax to be used in Wien’s displacement law?

Problem 6 (4 hours - 4.5 hours) I have produced a set of simulated
spectra for a star. You will find the spectra in 10 files at

http : //folk.uio.no/frodekh/AST1100/lecture6/spectrum day ∗ .txt

These files show spectra taken of the same star at 10 different moments.
The filename indicates the time of observation given in days from the first
observation taken at t = 0. The first column of the file is the wavelength of
observation in nm, the second column is the flux relative to the continuum
flux around the spectral absorption line Hα at λ0 = 656.3nm. Due to the
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Doppler effect, the exact position of the spectral line is different from λ0. You
will also see that this difference changes in time. As we have seen before,
real life observations are noisy. It is not so easy to see exactly at which
wavelength the center of the spectral line is located.

1. Plot each of the spectra as a function of wavelength. Can you see the
absorption line ?

2. Make a bye-eye estimate of the position of the center of the spectral
line for each observation. Use the Doppler formula to convert this into
relative velocity of the star with respect to Earth for each of the 10
observations (neglect the fact that the velocity of the Earth changes
with time).

3. Now we will make a more exact estimate of the spectral line position
using a least squares fit. As discussed in the text, we can model the
spectral line as a Gaussian function (see equation(3)),

Fmodel(λ) = Fmax + (Fmin − Fmax)e
−(λ−λcenter)2/(2σ2).

When λ = λcenter, the model gives Fmodel(λ) = Fmin. When λ is far
from λcenter the model becomes Fmodel(λ) = Fmax as expected (check!).
Thus the flux in this wavelength range if there hadn’t been any spectral
line would equal Fmax. The flux at the wavelength for which the absorp-
tion is maximal is Fmin. The spectra are normalized to the continuum
radiation meaning that Fmax = 1. We are left with three unknown
parameters, Fmin, σ and λcenter. The first parameter gives the flux at
the center of the spectral line, the second parameter is a measure of the
width of the line and the third parameter gives the central wavelength
of the spectral line. In order to estimate the speed of the star with
the Doppler effect, all we need is λcenter. But in order to get the best
estimate of this parameter, we need to find the best fitting model to
the spectral line, so we need to estimate all parameters in order to find
the one that interests us. Again we will estimate the parameters using
the method of least squares. We wish to minimize

∆(Fmin, σ, λcenter) =
∑

λ

(F obs(λ) − Fmodel(λ, Fmin, σ, λcenter))
2,

where F obs(λ) is the observed flux from the file and the sum is per-
formed over all wavelengths available.
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(a) For each spectrum, plot the spectrum as a function of wavelength
and identify the range of possible values for each of the three
parameters we are estimating. Define three arrays fmin, sigma
and lambdacenter in Python which contain the range of values
for each of Fmin, σ and λcenter where you think you will find the
true values. Do not include more values of the parameters than
necessary, but make sure that the true value of the parameter
must be within the range of values that you select. Do not use
more than 50 values for each parameter, preferably less. hint:
The FOR loop over λ might be easier if you use indices instead
of actual values for λ. That is, the FOR loop runs over index i in
the array, and then you find the lambda value which corresponds
to this index to use in the expression for ∆.

(b) Define a 3-dimensional array delta where you calculate ∆ for all
the combinations of parameters which you found reasonable.

(c) Find for which combination of the parameters Fmin, σ and λcenter

that ∆ is minimal. These are your best estimates.

(d) Repeat this procedure for all 10 spectra and obtain 10 values for
the Doppler velocity vr.

4. Make an array of the 10 values you have obtained for the velocities and
plot it as a function of time.

5. Assume that the change of velocity with time indicates the presence
of a planet around the star (is there something in your observations
which indicates this ?). The mass of the star was found to be 0.8 solar
masses. Find the minimum mass of this planet (find vr and the period
’by eye’ looking at the velocity curve). Is this really a planet? hint:
Remember that you need to subtract the peculiar velocity (velocity of
the center of mass of the system), found by taking the mean of the
velocity.

Problem 7 (10 min. - 15 min.)

In the text you find the apparent magnitudes of Sirius, Vega and the Sun.
Look up the distances to these objects (again, wikipedia is a useful source
of information) and calculate the absolute magnitude. Which of these three
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stars is actually the brightest?

Problem 8 (15 min. - 20 min.)

1. Use the flux calculated in Problem 3.6 to check that the apparent mag-
nitude of the Sun used in the text is correct. In order to calibrate the
magnitude you also need to know that the star Vega has been defined
to have zero apparent magnitude (actually with newer definitions it has
magnitude 0.03) and that the absolute magnitude of Vega is 0.58. You
also need to know the luminosity of Vega: Look it up in Wikipedia.

2. The faintest objects observed by the Hubble Space Telescope (HST)
have magnitude 30. Assume that this is the limit for HST. How far
away can a star with the same luminosity as the Sun be for HST to see
it? (here you will need the luminosity of the Sun calculated in problem
3.5)

3. Assume that the luminosity of a galaxy equals the luminosity of 2×1011

Suns. How far away can we see a galaxy using HST?
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