
AST1100 Lecture Notes

9 - 10 The special theory of relativity:

Four vectors and relativistic dynamics

1 Worldlines

In the spacetime diagram in figure 1 we see the path of a particle (or any
object) through spacetime. We see the different positions (x, t) in space and
time that the particle has passed through. Such a path showing the points
in spacetime that an object passed is called a worldline. We will now study
two events A and B (on the worldline of a particle) which are separated by
a small spacetime interval ∆s. These events could be the particle emitting
two flashes of light or the particle passing through two specific points in
space. The corresponding space and time intervals between these two events
in the laboratory frame are called ∆t and ∆x. From the figure you see that
∆t > ∆x. You can see that this also holds for every small spacetime interval
along the path. This has to be this way: The speed of the particle at a given
instant is v = ∆x/∆t. If ∆x = ∆t then v = 1 and the particle travels at the
speed of light. That ∆t > ∆x simply means that the particle travels at a
speed v < c which it must. The worldline of a photon would thus be a line
at 45◦ with the coordinate axes. The worldline of any material particle will
therefore always make less than 45◦ with the time axis.

Events which are separated by spacetime distances such that ∆t > ∆x
are called timelike events. Timelike events may be causally connected since
a particle with velocity v < c would have the possibility to travel from one
of the events to the other event. There is a possibility that the second event
could have been caused by the first event since it is possible for a signal to
travel between the events. Timelike events have positive line elements,

∆s2 = ∆t2 − ∆x2 > 0.

Events for which ∆t = ∆x are called lightlike events. Only a particle
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Figure 1: The worldline, the trajectory of a particle in a spacetime diagram.
Two events A and B along the path of the particle have been marked.

traveling at the speed of light (v = ∆x/∆t = 1) could travel from the first
event to the second. Lightlike events have zero spacetime interval,

∆s2 = ∆t2 − ∆x2 = 0.

Note one consequence of this: Remember that the proper time interval ∆τ 2

equals the spacetime interval ∆s2. Thus, photons always have ∆τ = 0,
the wristwatch attached to a photon would not change. Photons and other
particles traveling at the speed of light do not feel the effect of time.

Events for which ∆x > ∆t are called spacelike events. For these events,
the spatial component of the distance is larger than the time component.
No worldline could ever connect two spacelike events as it would require a
particle to travel faster than light. Thus, spacelike events are not causally
connected. The first event could not have caused the second. The spacetime
interval for spacelike events is negative,

∆s2 = ∆t2 − ∆x2 < 0.

In figure 2 we see two events A and B and three different worldlines be-
tween these events. These events could be a car passing position xA and
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Figure 2: Different worldlines connecting the two events A and B.

position xB in the laboratory frame. In the spacetime diagram we see three
worldlines each corresponding to a car. The straight worldline must corre-
spond to a car driving with constant speed v = ∆x/∆t = constant. The two
other worldlines must correspond to cars accelerating (changing their speed
and thereby changing the slope of the worldline) along the way from xA to xB

but all cars reach point xB at the same time (event B). All cars also passed
point xA at the same time (event A). Same time here means ’same time’ for
all frames of reference: all the cars meet at event A and B, so if they meet
simultaneously in one frame of reference they must meet simultaneously in
all other frames of reference (did you get this? If not, read the sentences
again!).

We will now ask a question which answer may seem obvious in this case,
but which might not be so obvious in other situations. The question is:
Given a particle (or a car) going from event A to event B. If this particle
is in free float (in special relativity this means that no forces act on the
particle), which worldline will the particle take between event A and event
B? Looking back at figure 2 we see three possible worldlines but in fact there
is an infinite number of possible worldlines connecting the two events. The
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obvious answer in this case is that it will follow a straight line in spacetime,
i.e. the straight worldline corresponding to constant velocity. This is just
a modern way of saying Newton’s first law: A body which is not under the
influence of external forces will continue moving with constant velocity. But
is there a deeper principle behind? In the theory of relativity there is, and
this principle is called the principle of maximal aging. This is a fundamental
principle in the special as well as in the general theory of relativity.

The principle of maximal aging says that a particle in free float (no forces
act on the particle) will follow the worldline which corresponds to the longest
possible proper time interval between the two events. We remember that
proper time is the wristwatch time, the time measured on the clock attached
to the particle. So let different particles take different paths in spacetime
between the two events. Attach a wristwatch to each of the particles. At
event B, you look at the time interval between event A and B measured on
the wristwatch of each of the particles. The particle which measures the
longest proper time, i.e. the particle with the wristwatch which made most
ticks during the trip from event A to event B, is the particle taking the path
that a particle in free-float would take.

How do we calculate the proper time interval that a given particle takes
from event A to event B? The clue is to remember that the proper time
interval ∆τ between two events equals the spacetime interval, or the total
length of the path in spacetime ∆s taken between the two events. For the
worldline of a particle with constant velocity, we know that the distance in
spacetime traveled from event A to event B is just ∆s =

√
∆t2 − ∆x2 where

∆x and ∆t are space and time intervals measured in an arbitrary frame of
reference. To measure the total spacetime interval along the worldline of a
particle which does not move with constant velocity, we need to break the
path up into small path lengths ds. This path length is so small that we
can assume the velocity to be constant during the time it takes to travel
this interval in spacetime. We can thus write ds =

√
dt2 − dx2 where dx

and dt are the corresponding small space and time displacement measured
in the arbitrary frame of reference. To obtain the total length of the path
in spacetime traveled between two events A and B, we need to integrate all
these tiny spacetime intervals ds giving

ds =
∫ B

A

√
dt2 − dx2. (1)

This equals measuring the length s of a curved path between two points A
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and B in the x-y plane:

ds =
∫ B

A

√

dx2 + dy2.

Note again a huge difference here: The minus sign in the spacetime interval.
We know from Euclidean geometry that the shortest path s between two
points A and B in the plane, is the straight line. The minus sign in the
line element for Lorentz geometry gives rise to the opposite result (which we
will not derive here): The longest path s between two events A and B in
spacetime is the straight worldline. Therefore, if we measure the length of the
spacetime path for all the three worldlines in figure 2 using the integral in (1),
we find that the longest path in spacetime is the straight worldline, i.e. the
worldline of the car driving with constant velocity. Remember again that the
length of the spacetime interval ∆s equals the total proper time ∆τ measured
on the wristwatch of the particle. So the longest proper time interval between
two events is measured on the particle taking the straight line in spacetime,
i.e. the particle which has constant velocity. We have just deduced Newton’s
first law from the principle of maximal aging. When we come to the general
theory of relativity, we will see that the spacetime geometry and hence the
form of the line elements ∆s is different in a gravitational field. We will need
the principle of maximal aging to tell us how a free float particle is moving
in this case.

2 Four-vectors

We are used to vectors in three-dimensional space giving the position of a
point in space,

~x = (x1, x2, x3),

where I have used (x1, x2, x3) instead of (x, y, z) for the components in the
three spatial dimensions. A 4-vector is similarly defined to give the position
of an EVENT in four dimensional spacetime,

x = (x0, x1, x2, x3),

or if you wish (t, x, y, z). For components of a normal three dimensional vec-
tor, we use Latin letters, typically i and j, for the indices: The components
of ~x are xi where i goes from 1 to 3. For the components of a 4-vector, we use
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Greek indices, typically µ and ν. The components of a four-vector x are xµ

where µ run from 0 to 3, 0 being the time component. If we wish to separate
the time and space part of a four-vector we might also write it as x = (t, xi)
where xi refers to all three spatial components.

The four-vector xµ points to an event in spacetime for a given frame of
reference. We have already learned that in order to transform spacetime
coordinates from one frame of reference to another, we need the Lorentz
transformations. Thus, we may write the transformation of a four-vector xµ

in one frame of reference to x′

µ in another frame of reference by a matrix
multiplication,
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Compare with the expression for the Lorentz transformation in the previous
lecture notes. Check that the matrix multiplication gives you the correct
equations. (Compare this equation with matrices which are used to rotate
between coordinate systems in two spatial dimensions, do you see a similar-
ity? Remember the analogy used in the previous lecture notes between a
coordinate change in the (x, y) plane and the (x, t) diagram).

We can write this matrix equation as

x′

µ =
3

∑

ν=0

cµνxν ,

where cµν is the matrix above. This is the equation which transforms any
four-vector from one frame of reference to another. We will now write this
equation using the so-called Einstein conventions. This is just a rule which
will save you from a lot of writing. Instead of writing the sum symbol, we
simply say that when two factors in a term contain the same index, there is
an implicit sum over this index. If the index is Latin, then there is a sum
over the three spatial dimensions, if the index is Greek, there is a sum over
the three spatial dimensions plus time. Using this convention we can write
the previous equation simply as

x′

µ = cµνxν (2)
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It can be shown that four-vectors follow the normal rules for summations
and subtractions (see exercises). We will now look at the scalar product. For
three dimensional vectors, the scalar product can be written as,

~x · ~y =
3

∑

i=1

xiyi = xiyi,

where the Einstein convention was used in the last expression. We can also
define a scalar product for four-vectors. Instead of writing a dot between the
vectors, one usually writes the scalar product with one upper index and one
lower index,

xµyµ = x0y0 − xiyi.

One index µ is written high and the other low to show that this is the scalar
product and NOT a normal sum. Note that the scalar product is defined
with a minus sign in front of the spatial part. If we had written both indices
low, this would mean,

xµyµ = x0y0 + xiyi,

using the Einstein summation convention. This is different from the scalar
product. It should be clear where the minus sign comes from, consider a
spacetime interval ∆xµ (a spacetime interval is an interval between two points
x1

µ and x2

µ in time and space such that ∆xµ = x1

µ − x2

µ = (∆t, ∆x, ∆y, ∆z)).
The scalar product of a spacetime interval with itself gives,

∆xµ∆xµ = ∆t2 − ∆x2 = ∆s2

(assuming ∆y = ∆z = 0). The result is the scalar ∆s2. A scalar is a quantity
which is invariant, which has the same value in all frames of reference. We
already knew that the spacetime interval ∆s2 is a scalar (where did we learn
this?). For infinitesimal distances between events, we may write this as,

ds2 = dxµdxµ.

We learned above that a four vector is a vector which transforms ac-
cording to the Lorentz transformation (equation 2) when changing from one
frame of reference to another frame of reference having velocity v with re-
spect to the first. This has an important consequence: You cannot choose 4
numbers on random, put them together and call it a 4-vector! The numbers
entering in a four-vector need to be physical quantities which are such that
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the 4-vector transforms accoring to equation 2. We thus need to take care
when performing mathematical operations with 4-vectors: The result may
not necessarily be a 4-vector.

As an example we will now investigate what happens with a 4-vector when
multiplying it with some number. Say that you for some reason need to mul-
tiply a spacetime distance ∆xµ = (∆t, ∆x, ∆y, ∆z) with the corresponding
time interval ∆t forming

∆yµ = ∆t∆xµ.

Is ∆yµ a 4-vector? We can easily check this by checking whether it transforms
according to equation 2 when changing frame of reference. We know that ∆xµ

follows this transformation. We also now that ∆t′ = (1/γ)∆t when changing
frame of reference. We thus have for ∆y′

µ in a new frame of reference

∆y′

µ = ∆t′∆x′

µ = (1/γ)∆tcµν∆xν = (1/γ)cµν∆yν .

Because of the factor 1/γ we see that ∆yµ does not transform according to
equation 2 and ∆yµ is therefore NOT a 4-vector. We thus cannot multiply a
4-vector with a time interval and obtain a 4-vector.

A four-vector which is multiplied by a scalar however, is itself a four-
vector. If instead of multiplying ∆xµ with ∆t, we multiply it with the cor-
responding spacetime interval ∆s we get

∆yµ = ∆s∆xµ.

Transforming to a different frame of reference we have again ∆x′

µ = cµν∆xν

since ∆xµ is a four-vector and ∆s′ = ∆s since ∆s is a scalar. We thus have

∆y′

µ = ∆s′∆x′

µ = ∆scµν∆xν = cµν∆yµ

which does follow equation 2. In this case ∆yµ is a four-vector. We thus
have generally that when Aµ is a four vector and f is a scalar, the product

Bµ = fAµ,

is a 4-vector. In the exercises you will show that the results of summing or
subtracting 4-vectors are 4-vectors.
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3 Four-velocity

Can we define a four dimensional velocity Vµ, that is, a four dimensional vec-
tor showing the direction of motion in spacetime of a particle with coordinates
xµ? By analogy to normal three dimensional velocity, the four-velocity Vµ

should be the the rate of change of xµ. A natural choice would be dxµ/dt,
but this is not a four-vector: As we discussed above, ∆t or dt is not a scalar,
it has different values in different frames of reference. Thus dxµ/dt does not
transform as a 4-vector, i.e. you cannot use the Lorentz transformation to
transform it from one frame of reference to another. But in order to have
velocity, we need the rate of change with respect to some time interval ∆t.
Which measure of time can we use?

Remember that proper time τ is a scalar, it is defined as the time ob-
served on the wristwatch of an observer. All observers will measure the same
time interval ∆τ between two events (how do they measure ∆τ?). Consider
the example with the train and observer P who is jumping up and down.
Measured on the wrist watch of observer P, one jump takes one second, thus
one second of proper time for the frame of reference of the train. According
to observer O’s wristwatch, the jump takes 1.7 seconds, but this is not the
proper time for the train (remember the definition of proper time!). But
observer O can take his binoculars and read of the time between each jump
on observer P’s wristwatch. He will then find, in agreement with observer P,
that in proper time units for the train, each jump takes one second.

Note that proper time needs to be defined with respect to some frame of
reference (in this case the train), but once this is defined, everybody agrees
on the proper time interval between two events taking place at the same spot
in that frame. In the case of four-velocity, there is no doubt about which
proper time we are speaking about: Four-velocity is the velocity of a particle
or an object (for instance a train) and the proper time ∆τ which we use to
define four velocity is the time measured in the rest frame of this object. So
four-velocity can be defined as

Vµ =
dxµ

dτ
.

Let us find the length (absolute value) of the four-velocity (the square root
of the scalar product of the vector with itself). The square of the length is
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Figure 3: The observer on the ground measuring a velocity vx for the airplane,
wondering which velocity v′

x the driver of the car measures for the same
airplane.

(as for normal vectors) given by

VµV
µ =

dxµ

dτ

dxµ

dτ
=

dxµdxµ

dτ 2
=

ds2

dτ 2
=

dτ 2

dτ 2
= 1.

(did you understand every step here?) Taking the square root of this we still
get 1. The length of the four-velocity is thus always one. Remember that
a velocity of one means the velocity of light. All particles move with the
velocity of light in spacetime! For each proper time interval ∆τ a particle
moves an equal interval ∆s in spacetime.

We can write the four-velocity in terms of normal 3-velocity as

Vµ = (
dt

dτ
,
dxi

dτ
) = (

dt

dτ
,
dt

dτ

dxi

dt
) =

dt

dτ
(1, ~v) = γ(1, ~v),

where we have used that ∆t/∆τ = dt/dτ = γ from the previous lecture
notes (go back and check how you derived this, it is important!). Now we are
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ready to answer a question that has bothered us all the time since we learned
about the Lorentz transformations: We know how to transform between
coordinates (x, t) and (x′, t′) in two different frames of reference. But how do
you transform a velocity vx from one frame to the other? Say that you stand
on the ground and look at a passing airplane. You measure the velocity of
the airplane along the x-axis to be vx. A car is passing you on the street
with velocity vrel along the same x-axis and you note that the driver is also
watching the airplane. You start to wonder which velocity v′

x that the driver
is measuring for the airplane. The situation is depicted in figure 3. In
normal non-relativistic physics you know that the answer should read v′

x =
vx − vrel, but we have learned that this does not work for velocities close
to the velocities of light (for instance, look back at the Michelson-Morley
experiment). Assuming that there are no motions in the y and z direction,
we can now write the four velocity of the airplane from our laboratory frame

as Vµ = γ(1, vx) and from the car as V ′

µ = γ′(1, v′

x) where γ = 1/
√

1 − v2
x

and γ′ = 1/
√

1 − (v′

x)
2. We know that four-velocity is a four-vector and that

four-vectors by definition transform from one frame of reference to the other
under the Lorentz transformation,

V ′

µ = cµνVν ,

or written in terms of matrices as










γ′

γ′v′

x

γ′v′

y

γ′v′

z











=











γrel −vrelγrel 0 0
−vrelγrel γrel 0 0

0 0 1 0
0 0 0 1





















γ
γvx

γvy

γvz











where γrel = 1/
√

1 − v2

rel
. From this matrix equation, we obtain two equations

for the velocity vx and v′

x,

γ′ = (γrel − vrelγrelvx)γ

γ′v′

x = (−vrelγrel + γrelvx)γ.

Dividing the second equation by the first, we obtain

v′

x =
vx − vrel

1 − vrelvx

, (3)

which is the Lorentz transformation for velocities. Note that when the speed
of the airplane approaches the speed of light, vx → 1 then v′

x → 1 showing
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that the laboratory observer and the observer in the car will both measure
the speed of light for the airplane. This solves the weird result obtained by
Michelson and Moreley: The speed of light is the same from all frames of
reference.

4 Relativistic momentum and energy

What about momentum and energy? We have learned that the velocity v
of an object as measured from two different frames of reference transform
according to the Lorentz transformation (equation 3). This must necessar-
ily have consequences for how we measure momentum p = mv and energy
E = 1/2mv2 from two different frames of reference. There must be some
corresponding Lorentz transformations for momentum and energy. We have
learned a simple and easy recipe for finding the transformation equations
between different frames: Construct a four-vector and use the transforma-
tion properties for four-vectors. This worked for velocity so let’s try with
momentum and energy.

We start with momentum. In order to construct a four-vector Pµ for
momentum, let’s try a form which is as similar as possible to the Newtonian
form ~p = m~v. Rest mass (the mass measured in the rest frame of the object)
is a scalar quantity, so

Pµ = mVµ

is a four-vector. Using that Vµ = γ(1, ~v), we can write momentum as

Pµ = mγ(1, ~v) = γ(m, ~p),

where ~p is the Newtonian momentum. Taking the spatial part of this equation
we see that relativistic momentum can be written in three dimensions simply
as

~prelativistic = γm~v, (4)

where ~v is the normal 3-velocity of an object. What is the meaning of the
time component P0 = γm of the momentum 4-vector? In order to investigate
this let us write it in the Newtonian limit. For v << 1 (velocity much lower
than the velocity of light) we can make a Taylor expansion in v,

P0(v) = P0(v = 0) +
dP0

dv
(v = 0)v +

1

2

d2P0

dv2
(v = 0)v2,
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where the derivatives taken at v = 0 are (check it!) P0(v = 0) = m,
dP0/dv(v = 0) = 0 and d2P0/dv2(v = 0) = m. We get

P0 = m +
1

2
mv2.

The last term is just the expression for Newtonian kinetic energy. The first
term is the rest energy of a particle, converted to normal units it can be
written as the more well known E = mc2. The rest energy is the energy of a
particle at rest, it is the energy in the mass of the particle. Thus, the time
component of the momentum four-vector is relativistic energy,

Erelativistic = mγ, (5)

which in the Newtonian limit reduces to the Newtonian kinetic energy plus
an energy term which did not exist in Newtonian physics, the energy of the
mass of the particle. So the 4-vector Pµ is not just a momentum 4-vector, it
is the momentum-energy 4-vector which time component is energy and space
component is momentum. It means that energy and momentum are related
in the same way as space and time are. In the same manner as we talk about
spacetime, indicating that space and time are basically two aspects of the
same thing, we can call energy and momentum collectively as momenergy.
The four-vector Pµ is simply the momenergy four-vector.

What is the length of the momenergy four-vector? Using that Pµ = mVµ

we have for the square of the length

PµP
µ = m2VµV

µ = m2.

The length is the square root of m2 which is m. The length of the momenergy
four-vector is an invariant and it is thus simply the mass. We have seen that
we can write Pµ = γ(m, ~p) giving (using equations 4 and 5)

Pµ = (Erelativistic, ~prelativistic).

From now on we will drop the subscript ’relativistic’ and always refer to the
relativistic energy and relativistic momentum using E and p. But how can
we be so sure? How can we know that this is the correct expression for en-
ergy and momentum? What is the criterion for a quantity to be energy or
momentum? We know that energy and momentum are conserved quantities.
The total energy and momentum of particles after a collision should always
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be the same as the total energy and momentum before the collision. So this
is easy to check: Measure the total energy and momentum of particles before
and after a collision, if they are the same we have found the correct expres-
sions for momenergy. This has been tested thousands of times in particle
accelerators with particles moving close to the speed of light. It turns out
that the Newtonian energy and momentum are not conserved in these colli-
sions. The relativistic energy and momentum defined as we have done above
however, are conserved.

By now we have got used to measure time and space in the same units
and therefore we have also got used to add these quantities ∆x+∆t without
hesitating. We see that the result of measuring time and space in the same
units is that momentum and energy are also measured in the same units,
the units of mass. We remember that since space and time are measured
in the same units, the speed v is a dimensionless number. The factor γ is
clearly also dimensionless, so the momentum p = mγv can be measured in
the units of mass (kg). The same goes for energy E = mγ, which also has
dimension mass. So both energy and momentum are measured in kg and
these quantities can therefore be added, just as we can add intervals in time
and distances in space. The momenergy four-vector is Pµ = (E, ~p), taking
the scalar product we have (remembering the result above that the length of
Pµ is just m),

PµP
µ = E2 − p2 = m2,

we can thus write energy in terms of momentum as

E =
√

m2 + p2.

A photon is massless, so for photons this relation is just

E = p,

or by using normal units E = pc which is a more known form of this expres-
sion.

We return to the above example with the airplane and the passing car.
You measure the relativistic energy and momentum of the airplane from the
laboratory frame (the ground) and you wonder what energy and momentum
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the driver of the car measures for the same airplane. The momenergy four-
vector is a four-vector which means that it can be transformed from one
frame of reference to the other by the Lorentz transformation,

P ′

µ = cµνPν ,

or in matrix form (remember that there were no movements in the y and z
direction)











E ′

p′x
p′y
p′z











=











γrel −vrelγrel 0 0
−vrelγrel γrel 0 0

0 0 1 0
0 0 0 1





















E
px

py

pz











Giving the following transformation equations for momentum and energy

E ′ = γrelE − vrelγrelpx

p′x = γrelpx − vrelγrelE

where vrel is the relative velocity between the two frames of reference, the
observer on the ground and the car (see figure 4).

We will now use these equations to answer the following question: What
energy and momentum (E ′, p′x) does a person passing you in his car with
a velocity v (relative to you) measure that you have? From your frame of
reference in which you are at rest, your momentum is by definition zero
p = 0 and you energy equals your mass E = m. We will now transform these
quantities to the driver of the car measuring your energy and momentum to
be E ′ and p′. The relative velocity of the car with respect to you is simply
vrel = v. Then the energy and momentum that the driver in the car measures
that you have is simply (using the equations above, check that you get the
same result),

E ′ = γE p′x = −vγE

Note that γ > 1 so the driver in the car measures, not only a larger absolute
momentum, but also larger energy.

From the point of view of Newtonian mechanics this was to be expected:
with respect to the driver you have a non-zero velocity and kinetic energy,
thus both your momentum and energy are clearly larger with respect to him
than with respect to your rest frame. But from the point of view of geometry
it might seem strange: In your rest frame the four-vector Pµ only has a time
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Figure 4: The observer on the ground measuring a velocity vx for the airplane,
wondering which velocity v′

x the driver of the car measures for the same
airplane.

component and no space component. In the frame of the driver, both the
time and space component of the vector are larger than in your frame. But
the length of the momenergy vector Pµ is always the same, equal to m. Going
back to normal 3D geometry this would not be possible. Imagine a vector
~a = (f, g, 0) and another vector ~b = (2f, h, 0). If the length of these vectors
are the same, then we have that h < g. We see that from normal geometry
you would expect that if the length of a vector is constant, then if you increase
one component of the vector the other should decrease. The reason for this
discrepancy with normal geometry is that spacetime has Lorentz geometry
whereas 3D space has Euclidean geometry. Lorentz geometry has a minus
sign in the definition of the scalar product (which also defines the length of
the vector) making such an effect possible.

Now you know the basics of the special theory of relativity and you have
got the necessary preparations to start studying the general theory of rel-
ativity. In the general theory of relativity we will study how masses curve
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spacetime, making the expression for the line element ∆s different close to a
large mass. This change in the line element changes the dynamics and gives
rise to what we in Newtonian terms call the force of gravity.

5 List of expressions you should know by now

world line → page 1
timelike → page 1
lightlike → page 1
spacelike → page 2
principle of maximal aging → page 4
wrist watch time → page 4
scalar → page 7
four vector → page 7
four velocity → page 9
momenergy → page 13

6 Problems

Problem 1 (2 - 3 hours) Before embarking on the problems with four
vectors and relativistic dynamics, we have one more important case to study
from the previous lecture. This is the so-called ’twin paradox’. This long
and detailed exercise is very important to gain some basic understanding for
the underlying physics of many of the so-called paradoxes in the theory of
relativity.

You are an astronaut traveling to the star Rigel, 800 light years from
Earth. You start at x = x′ = 0 and t = t′ = 0 where (x, t) are Earth
frame coordinates and (x′, t′) are spaceship coordinates. You travel in your
spaceship at a velocity of v = 0.99995. We assume that Earth and Rigel do
not move with respect to each other and that they therefore are in the same
frame of reference.

1. Event A is you departing from Earth. Event B is you arriving at Rigel.
In the Earth frame it took 800/0.99995 ≈ 800.04 years to arrive at
Rigel. We know that for you it took a factor γ = 1/

√
1 − v2 less (∆t =

γ∆t′, ∆t is measured in Earth frame, ∆t′ is measured in spaceship
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Figure 5: The elevator between Earth and Rigel.
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frame). How long time did it take for you (on your wristwatch) to
arrive at Rigel?

2. After arriving at Rigel, you make the necessary scientific measurements
(which takes very little time and can therefore be ignored) and start
the return flight. You fly with exactly the same speed v = 0.99995
towards Earth. Event C is when you arrive back on Earth. Use the
same arguments (or symmetry arguments) to find the time ∆t and ∆t′

it took from Rigel and back to Earth in the two frames of reference.

3. If you have done your calculations correct, here is a summary of the
situation: In the Earth frame, it took you 1600.08 years to go to Rigel
and return. On your wristwatch it took you 16 years to go to Rigel
and back. So while hundreds of generations have passed on Earth, you
return only 16 years older.

4. We will now make the same calculations again, but just switch the
frames: The laboratory frame (x, t) is now the frame of the spaceship
and the moving frame (x′, t′) is the Earth frame. Because of the prin-
ciple of relativity we are allowed to switch the roles and we should
arrive at exactly the same result using the same laws of physics. From
this point of view, this is what is happening: You sit in you space-
ship which is now the laboratory frame defined to be at rest and at
x = x′ = 0 at t = t′ = 0 (event A), the Earth starts moving away from
you with velocity v = 0.99995 and Rigel starts approaching you with
the same velocity. After a time ∆t Rigel arrives at your position (event
B). We know from previous calculations that the trip took 8 years in
your frame of reference which is now the laboratory frame. Using again
that ∆t = γ∆t′ (and make sure not to confuse ∆t and ∆t′) show that
the clocks on Earth at the moment when Rigel arrives at your position
show 0.08 years. Only 0.08 years had passed on Earth during the 8
year (on your watch) trip to Rigel.

5. Now, this might look like a paradox, but we will show further down
that it is not. No matter how strange this might sound, it is consistent.
The paradox is still to come. After making your investigations of Rigel,
Rigel departs and Earth approaches you again at the speed of v =
0.99995. Making the same calculations again you will find that it takes
the Earth 8 years to return to you. Let’s again check carefully how
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long it takes on the Earth clocks for Earth to return at your position:
At the moment you have finished your investigations, the Earth clocks
show t′ = 0.08 years and your clock shows t = 8 years. It takes Earth
again ∆t = 8 years to arrive at your position. We have as always that
∆t = γ∆t′. How long did it take for Earth to return to your position
measured on Earth clocks?

6. If you made the last calculation correct, this is now the situation: It
took you 16 years from Earth departed to Earth returned. However, on
Earth clocks it took 0.16 years. So while you are 16 years older, only
two months have passed on Earth. Above we found that 1600 years
had passed on Earth. Now, this is a paradox!

7. Clearly we made an error somewhere in the calculations. Or maybe we
simply forgot some basic principles from special relativity? It appears
at first sight that the two roles are equal,that we can choose whether
we consider the Earth frame as the laboratory frame or the spaceship
frame as the laboratory frame. But are the two roles really identical?
What is the difference between the two observers, the Earth observer
and the spaceship observer?

8. Don’t read on until you have found an answer to the previous question.
Here comes the solution: The difference is that whereas the Earth
observer always stays in the same frame of reference, the spaceship
observer changes frames of reference: The spaceship needs to accelerate
at Rigel in order to change direction and return to Earth. The Earth
does not undergo such an acceleration. The expression ∆t = γ∆t′ was
derived for constant velocity (look back at its derivation). It is not valid
when the velocity is changing. In order to solve this problem properly
one needs to either use general relativity which deals with accelerations
or we can view the acceleration as an infinite number of different free
float frames, frames with constant velocity, and apply special relativity
to each of these frames. We will not do the exact calculation here, but
we will do some considerations giving you some more understanding
of what is happening. We will now consider three frames of reference.
The Earth frame (x, t), the outgoing spaceship frame (x′, t′) and the
returning spaceship frame (x′′, t′′). Instead of spaceships we will look
at it as elevators going between Earth and Rigel. There are boxes
going in both directions. At x = x′ = 0 and t = t′ = 0 you jump
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into one of these boxes leaving for Rigel. There are other observers
in other boxes before you and after you. The situation is depicted in
figure 5. In the following use the Lorentz transformations to transform
between the coordinate systems. We write the distance between Earth
and Rigel in the Earth frame as L0. Event A happens at xA = x′

A = 0
and tA = t′A = 0. Event B is again the moment when you arrive at
Rigel. At what time tB in the Earth frame do you arrive at Rigel?
(express the answer in terms of L0 and v)

9. Use the Lorentz transformations to find t′B, the time on your wristwatch
when you arrive at Rigel. Insert numbers and check that you still find
that the trip takes 8 years for you.

10. We now define event B’. At the same time as you arrive at Rigel (in
your frame of reference which is now the frame of the outgoing eleva-
tor),another observer in another box in your elevator (thus another ob-
server in your frame of reference using clocks synchronized with yours)
passes the Earth at position xB′ = 0. Event B’ is the event that he
looks out and checks what time it is on Earth. So event B’ takes place
at the position of the Earth, but at the same time as you arrive at
Rigel (same time in the outgoing reference frame). Show that the time
tB′ he reads on the Earth clocks can be written as tB′ = L0/v − vL0.
Insert numbers. hint: You first need to find the position x′

B′ of event
B’ in the outgoing elevator frame.

11. Insert numbers in your previous result. Explain the result which we
found earlier when using the spaceship as the laboratory frame: Namely
that when Rigel arrived at the spaceship, we calculated that on the
Earth clocks only 0.08 years had passed. Why is this not a surprise?
Those who were surprised earlier, do you know understand which error
you made when you got surprised? Which basic principle of relativity
had you forgotten?

12. We learned in the previous question that even if the Earth clocks were
observed at the same moment as the spaceship/elevator arrived at Rigel
(in the outgoing frame), these two events (the observation of the Earth
clocks and the arrival at Rigel) were NOT simultaneous in the Earth
frame. For you, sitting in the outgoing elevator, only 0.08 years have
passed on Earth when you arrive at Rigel. For observers on the Earth
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on the other hand, you arrived at Rigel when 800 years had passed.
At Rigel you meet a box in the returning elevator. You jump over to
the box in the returning elevator at event B where you meet person
P who has been traveling in the elevator from far away. Actually, at
the same time (in the Earth frame) as you started your journey from
Earth, person P started his journey from the other side of Rigel. We
call the event when person P started his journey for event D. Event A
and event D are simultaneous in the Earth frame. In order for you and
person P to meet at event B, person P must have started on a planet
a distance 2L0 from Earth (a distance L0 from Rigel) as measured in
the Earth frame. In that way you both cover a distance L0 with the
same speed v and therefore you can both meet at Rigel at time L0/v
as measured on Earth clocks. We call the coordinate system of the
returning elevator (x′′, t′′). The clocks in the system of the returning
elevator are set to zero at the moment when person P starts his journey.
In the following, we will use spacetime intervals instead of the Lorentz
transformation: The reason for this is that the returning elevator is not
synchronized with the Earth frame at x = 0, t = 0. This was assumed
when we deduced the form of the Lorentz transformation which we
use in this course. Therefore, we will now again use invariance of the
spacetime interval to obtain our answers. We will first check what
the wristwatch of person P shows when he meets you at event B. In
analogy to your own travel, it should intuitively show the same as your
wristwatch: Both of you started at t = 0 on Earth clocks as well as on
your own wristwatch. Both of you travel a distance L0 (as measured
in the Earth frame) at velocity v. But we have learned not to trust
our intuition when working with relativity, so let’s check. We will now
consider the spacetime interval ∆sBD in order to find t′′B, the time on
the wristwatch of person P at event B. Write down the space and time
intervals ∆xBD, ∆tBD, ∆x′′

BD and ∆t′′BD. Show that invariance of the
spacetime interval gives

L2

0

v2
− L2

0
= (t′′B)2,

which gives t′′B = L0/(vγ), exactly as we thought. Your wristwatches
agree at event B. Reassuring to see that our intiution still gives som
reasonable results every now and then.

13. We will now try to find out what the time is on Earth for persons in
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the returning elevator. In the frame of the outgoing elevator, we used
a person who was situated in an elevator box at the same position of
the Earth and looked out at the clocks on Earth exactly at the same
time as event B happened (in the frame of the outgoing elevator). We
called this event B’ (looking at the clocks on Earth). We found that
only 0.08 years had passed on Earth when you arrived at Rigel. We
will now make the same check from the returning elevator. A person
in an elevator box of the returning elevator being at the position of
the Earth exactly at the same time as event B happens (now from
the frame of the returning elevator) looks at the clocks on Earth. We
call this event B” (the person in the box at the position of the Earth
looking at the Earth clocks). We will now try to find out what he saw,
i.e. which time tB′′ he observed on the Earth clocks. For this we will
use spacetime interval ∆sDB′′ . Show that the space and time intervals
from each frame are the following:

∆xDB′′ = 2L0

∆tDB′′ = tB′′

∆x′′

DB′′ = L0/γ

∆t′′DB′′ = L0/(γv)

You might be a bit surprised by one of these results, but if you have
doubts, do the following: Make one drawing for event D and one for
event B”. Show the position of the zero-point (the position of person
P is the zero point of the x′′ axis) of each of the x-axes in both plots
and find the distances between events. Did it make it clearer?

14. Use invariance of the spacetime interval to show that

tB′′ =
L0

v
+ L0v

Setting in for numbers this gives you t′′B′′ = 1600.00 years. Surprised?
What has happened? You are still at event B, you made a very fast
jump so almost no time has passed since you were in the outgoing ele-
vator. But just before the jump, only 0.08 years had passed on Earth
since you started your journey. Now, less than the fraction of a second
later, 1600 years have passed on Earth. So in the short time that you
jump lasted, 1599.92 years passed on Earth! This is were the solution
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to the twin paradox is hidden: When you jump, you change reference
frame: You are accelerated. Special relativity is not valid for acceler-
ated frames (actually one could solve this looking at the acceleration as
an infinite sum of reference frames with different constant velocities).
When you are accelerated, you experience fictive forces. This does not
happen at Earth, the Earth does not experience the same acceleration.
This is the reason for the asymmetry: If you speed had been constant,
you and Earth could exchange roles and you would get consistent re-
sults. But since you are accelerated in the jump while the Earth is not,
there is no symmetry here, you and the Earth cannot switch roles.

15. Let’s summerize the situation: In your frame, you started your journey
at t = t′ = 0 and arrived at Rigel at t′ = 8 years. In the Earth frame
you arrived at Rigel after 800.04 years of travel. In your frame, the
clocks on Earth show 0.08 years when you arrive at Rigel. Only 0.08
years have passed on Earth at the time you arrive at Rigel, seen from
your frame. Then you jump to the returning elevator. Your watch still
shows t′ = t′′ = 8 years. But now you have switched frame of reference.
Now suddenly 1600 years have passed on Earth, clocks on Earth went
from 0.08 years to 1600 years during the jump, as seen from your frame.
As seen from Earth, the clock showed 800.04 years during your jump.

16. Seen from the Earth, you need 800.04 years to return, so the total
time of your travel measured in the frame of reference of the Earth is
t = 1600.08 years. In your own frame, the return trip took 8 years (by
symmetry to the outgoing trip), so the total travel time for yourself is
16 years. But according to your frame of reference, the Earth clocks
again aged 0.08 years during your return trip (by symmetry to the
outgoing trip). When you were at Rigel, the observer in your frame of
reference saw that the Earth clocks showed 1600 years. In your frame,
0.08 years passed on Earth during your return trip. So consistenly you
find the Earth clocks to show 1600.08 years when you set your feet on
the Earth again. This is also what we find making the calculation in the
Earth frame 800.04 × 2 = 1600.08. But hundreds of generations have
passed, and you have only aged 16 years. But after all these strange
findings I’m sure you find this pretty normal by now. Everything clear?
Read through one more time.

Problem 2 (30 min. - 45 min.) You are in the laboratory frame
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watching two cars passing from position x = 0 at t = 0 (event 1) and
arriving simultaneously at position x = L some time t = TL (event 2) later
(all coordinates taken in the laboratory frame). Car A moves with constant
velocity vA = c/2 whereas car B accelerates from v = 0 at x = 0 and
accelerates such that it reaches x = L simultaneously with car A. In the
following you will draw some spacetime diagrams. We are not interested
in exact numbers in this exercise, only roughly correct relative distances
and slopes on the worldlines showing that you have understood the basic
principles.

1. Make a spacetime diagram in the laboratory frame showing the world-
lines of yourself and the two cars.

2. Make a spacetime diagram in the reference frame of car A showing the
three same worldlines.

3. Make a spacetime diagram in the reference frame of car B showing the
three same worldlines.

4. Return to the first spacetime diagram, the diagram for the laboratory
frame. The wristwatch of the driver of car A makes exactly 10 ticks
from event 1 to event 2. The first tick happens at event 1 and the
last tick happens at event 2. Draw a dot on the worldline of car A at
roughly the position of each of the ticks. The important point here is
to have correct relative spacings between each tick.

5. The driver of car B has an identical wristwatch making ticks with ex-
actly the same frequency in the rest frame of the watch. Use the prin-
ciple of maximal aging to judge whether driver B will experience more
or less ticks on his watch from event 1 to event 2.

6. Again, draw a dot on the worldline of car B at the positions where
the wristwatch of the driver makes a tick. Again, the exact position is
not important, but the relative distances between the dots should be
correct.hint: For each dot you draw, look at the slope of the worldline.

Problem 3 (10 min. - 30 min.) A four vector is defined to be a vector
in spacetime which transforms from one frame of reference to another (from
xµ to x′

µ) using the Lorentz transformation

x′

µ = cµνxν .
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To check if a four dimensional vector is a four-vector, you need to check
whether this relation is true or not. We will now test if four-vectors follow
the normal rules of addition, that the sum of two four-vectors is really a
four-vector. Assume you have two four-vectors Aµ and Bµ. You sum the two
to make a vector Dµ,

Dµ = Aµ + Bµ.

You now need to show that the result, Dµ, is also a 4-vector. Use the trans-
formation properties of Aµ and Bµ to obtain these vectors in a different frame
A′

µ and B′

µ. Find an expression for the sum of the two vectors, D′

µ, in the
other frame expressed by Dµ in the laboratory frame and show that Dµ is
indeed a four vector.

Problem 4 (90 min. - 2 hours) A free neutron has a mean life time
of about 12 minutes after which it disintegrates into a proton, an electron
and a neutrino. We will ignore the neutrino here, assuming that the only
products of disintegration are a proton and an electron. A neutron moves
along the positive x axis in the laboratory frame with a velocity v = 0.99. It
disintegrates spontaneously and a proton and an electron is seen to continue
in the same direction as the neutron. Use tables to find the mass of the
electron, proton and neutron. We will try to calculate the speed of the
proton and the electron in the lab-frame. The easiest way to do this is in the
rest frame of the neutron where the neutron has a very simple expression for
energy and momentum. In the lab frame this would have been a lot more
work since all three particles have velocities.

1. In the rest frame of the original neutron (which has now disintegrated),
what was the total energy and momentum of the neutron before dis-
integration? Write the answer in terms of a momenergy four-vector
P ′

µ(neutron).

2. In the rest frame of the original neutron, write the momenergy four-
vector P ′

µ(proton) of the proton expressed in terms of the proton mass
mp and the unknown proton velocity v′

p in the neutron rest frame.

3. Still in the neutron frame, write the expression for the momenergy four-
vector P ′

µ(electron) in terms of the electron mass me and the unknown
electron velocity v′

e measured in the neutron frame.
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4. Use conservation of momenergy

P ′

µ(neutron) = P ′

µ(proton) + P ′

µ(electron),

to find the velocity of the proton and the electron in the rest frame of
the original neutron. (insert numbers). hint: This can be ugly if you
don’t do it right: Write the momentum part of the equation in terms
of γ-factors only, then substitute for one of the γ from the energy part
of the eqaution. Then you will avoid second order equations.

5. Use the transformation properties for four-vectors

P ′

µ(electron) = cµνPν(electron),

to find the energy and momentum of the electron and proton in the
laboratory frame. (insert numbers:what units do your results have if
you keep c = 1)

6. Use the numbers you have obtained for energy or momentum to obtain
the speed of the electron and proton in the laboratory frame.

7. As an independent check (and to see an alternative way of doing it),
use the relativistic formula for addition of velocities to obtain the speed
of the proton and electron in the lab frame, using only the speed you
have obtained for the proton in the neutron frame as well as the speed
of the neutron seen from the lab frame.

8. For those who like long and ugly calculations only: Do everything from
the beginning, but use only the lab-frame to obtain the same results.
Do you see the advantage of using 4-vectors and change of frames?

Problem 5 (90 min. - 2 hours) An electron and a positron (the anti
particle of the electron having the same mass) are approaching each other
with the same velocity v = 0.995 in opposite directions in the laboratory
frame. In the collision, both particles are annihilated and two photons are
produced. One photon travels in the positive x direction, the other in the
negative x direction. Use tables to find the mass of an electron.

1. What is the velocity of the positron in the rest frame of the electron?

2. Write down the momenergy four-vectors Pµ(electron) and Pµ(positron)
of the positron and the electron in the laboratory frame (use numbers).
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3. Use the transformation properties of four-vectors to write down the
momenergy four-vectors P ′

µ(electron) and P ′

µ(positron) of the positron
and the electron in the rest frame of the electron (again use numbers).

4. Show that the momenergy four-vector of a photon traveling in the
positive x-direction can be written

P γ
µ = (E, E, 0, 0),

where E is the energy of the photon.

5. Use conservation of momenergy in the laboratory frame to argue that
the two photons must have the same energy seen from the laboratory
frame.

6. What is the energy of the photons and thereby the wavelength in the
laboratory frame?

7. Use transformation properties for four-vectors to show that the energy
of a photon in a frame moving with velocity v with respect to the
laboratory frame is

E ′ = Eγ(1 − v)

8. What is the energy of each of the two photons in the rest frame of the
electron?

9. Use the expression for E ′ in terms of E to derive the relativistic Doppler
formula

∆λ

λ
=





√

1 + v

1 − v
− 1





10. Show that the relativistic Doppler formula is consistent with the normal
Doppler formula for low velocities. hint: Make a Taylor expansion of

f(v) =
√

(1 + v)/(1 − v) for small v.
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