
To solve the numerical problems you will have to include the scitools-package (which most of you
know from INF1100) in your programs. This package contains the numpy-module, math-module,
plot-module etc. If you want to install this package on your personal computer, go to the web-page
http://www.ifi.uio.no/∼inf3330/software/. To inlcude all functions in scitools, write the following
line in the beginning of your python-program;

from scitools.all import *

To solve the numerical problems you will often have to read in data from file, write data to file,
and plot results. The following standard python/scitools methods might be very useful.

Read data from file

#In this case, the data is written in columns. One column for each data type.

def read_data(x0, x1, ..., xN):

file = open(’filename’, ’r’) #Open the file, r stands for read

for line in file: #For-loop: Go through every line, one by one

data = line.split() #Split line in columns and store in array

x0.append(float(data[0])) #Store the values in lists

...

...

xN.append(float(data[N]))

file.close() #Close the file

x0 = array(x0) #Convert from list to array

...

xN = array(xN)

return x0, ... , xN #Return arrays

Write data to file

#In this case, the arguments are arrays of equal length

def write_file(x0, ... , xN):

file = open(’filename’, ’w’) #’w’ - overwrite, ’a’ - append

for i in range(len(x0)):

#Writecommand, here floatnumbers with 3 decimals, \n = lineshift

file.write(’%.3f (...) %.3f \n’ % (x0[i], ... , xNi[i]))

file.close()

Plot

def plot_function(x, y):

plot(x,y) #Plot-command, x and y are arrays

xlabel(’...’) #Label x-axis

ylabel(’...’) #Label y-axis

title(’...’) #Title

axis([xmin,xmax,ymin,ymax]) #Axis length (if you want to define)

hardcopy(’filename.eps’, color=True) #Make an eps-file of the plot

Using scipy arrays (vectors) in python

from scipy import *

1

Read a table of data from a file. It returns a two-dimensional scipy array

with the numbers from the file.

def read_table(file):

return array([[float(w) for w in line.split()] for line in open(file,"r")])

To use this to read data from file "data.txt", I would do:

data = read_table("data.txt")

Scipy arrays can be easily sliced. So if the first column of my file is

the time, and I want that alone in its own array, I would do

time = data[:,0]

The good thing about scipy arrays is that you can avoid lots of loops with them.

For example, if I want a new array of the sin of all of the times in my "time"

array, I could do something like a = array([sin(t) for t in time]), or the

equivalent but less elegant

a = []

for t in time: a.append(sin(t))

a = array(a)

but a much smarter choice would be to just do

a = sin(time)

I could have done this directly, of course, without going through the

intermediate variable time:

a = sin(data[:,0])

You can do pretty much whatever you would expect to with these. The example

below calculates the sum of the squares of the difference between our

array a and the second column of the data file we read in.

chisq = sum((a-data[:,1])**2)

These arrays also let you work with vectors. Let’s say you have n particles

in m dimensions, so that each particle would have coordinates x, y, and z if

m = 3, for example. Instead of actually having variables like x1, y1, z1

for particle 1, x2, y2, z2 for particle 2 and so on, which would become

very unwieldy, you can make a positions array like this for 1000 particles

in 2 dimensions

n = 1000

m = 2

positions = zeros([n, m])

The x-position of the first particle would then be positions[0,0].

The distance between the first and second particle would be

(using Pythagoras):

dist = sum((positions[0,:] - positions[1,:])**2)**0.5

As you can see, there is no reason not to use vectors.

Here is a bonus iterator, which you’ll have to figure out what the

point of is yourselves:

def grid(lens):

i, it = 0, array(lens)*0

while i < len(it):

yield it

i = 0

while i < len(it):

2

it[i] += 1

if it[i] < lens[i]: break

it[i], i = 0, i+1

3

