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Partial solutions to problems: Lecture 17

Problem 1

1. The relativistic e�ective potential is given as

Veff (r) =

√
(1− 2M

r
)(1 +

(L/m)2

r2
) =

√
1− 2M

r
+

(L/m)2

r2
− 2M(L/m)2

r3

We �nd the minimum of the potential by dV/dr = 0:

dV

dr
= 0 =

2M
r2
− 2(L/m)2

r3
+ 6M(L/m)2

r4√
(1− 2M

r )(1 + (L/m)2

r2
)

When we're interested in when a fraction n/m is zero, we only need to
focus on the nominator n. Dividing by two, we see that

M

r2
− (L/m)2

r3
+ 3

M(L/m)2

r4
= 0

Multiplying by r4 and obtain a second-order equation in r:

Mr2 − (L/m)2r + 3M(L/m)2 = 0

Using the standard solution r = 1
2a(−b±

√
b2 − 4ac), we obtain

r =
1

2M

(
(L/m)2 ±

√
(L/m)4 − 4M · 3M(L/m)2

)
and extract the (L/m)2:

r =
(L/m)2

2M

(
1±

√
1− 12M2

(L/m)2

)
For r to stay real and not complex, then 12M2

(L/m)2
< 1. In this case,

the maximum of the potential is given by the minus sign (as seen by
insertion into V (r)). We already knew that the top of the potential
is closer to the black hole than the minimum so it was clear that the
minus sign gives the position of the top.
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2. Here I will give only some hints, not the detailed solution. The angular
momentum was obtained in equation (5) in the lecture notes as

L

m
= r2dφ

dτ

This equation is written in terms of the proper time dτ which is the
wristwatch time of the moving object. We need to express it in terms of
velocities measured by a local shell observer. Thus, one needs to �nd a
way to transform this equation to shell coordinates. Shell observers see
Lorentz geometry for events measured within a very short time interval.
If you have Lorentz geometry, you already know how to transform from
lab-frame time to the proper time of an object, you don't even need
general relativity.

This is all we need in order to arrive at the correct expression. Remem-
ber that for changing coordinates in a derivative you need to use a rule
which you have used many times in this course. The angular coordinate
φ is the same for the shell observer and the far-away observer.

The local tangential speed is given by

vφ,shell = vshell sin θ =
d`

dtshell
,

where d` is the proper distance (we use ` for proper distance instead
of L as before in order not to confuse with the angular momentum)
which an object has moved along the tangential direction during the
time interval dtshell measured on a local shell clock. We know that in
the theory of relativity (we used this already several times in special
relativity), we �nd a proper distance by measuring the end points of
the interval at the same time such that dt = 0. Since we have tan-
gential movement, we also have that dr = 0. Inserting this in the
Schwarzschild line elements we have

d` = ds = rdφ

Combining all this, you �nd that

L

m
= rγshellvshell sin θ

3. Again we will only hint on the solution. Starting with the general
expression for Energy

E

m
=
(

1− 2M/r
) dt
dτ

all we need to do is to transfer from Schwarzschild coordinates to shell
coordinates in order to express this in terms of local shell velocity. In
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the lecture notes you have learned to transform from Schwarzschild
coordinate intervals dr and dt to corresponding intervals measured by
shell observers. Combine this with some principles from the previous
exercise and you �nd

E

m
= γshell

√
1− 2M/r

4. Inserting numbers, we have that L/m ≈ 38M giving a minimum in the
potential at r = 1426M and a maximum at r = 3M . The values of the
e�ective potential at these points are Veff/m = 0.9997 and Veff/m =
7.3.

5. For the rocket to be be captured, we need to decide if E/m is larger
or less than V (rmax). Using the expression for the energy per mass
above using the numbers for r = 20M we get E/m = 8.03 which is
larger than V (rmax)/m = 7.3 (as we found in the previous question),
the rocket is therefore captured.

6. We need to �nd a new expression for dr/dt. We will now call the total
energy per mass of the rocket E0/m which is a constant. Going back
to the previous lecture and repeating the calculations for �nding dr/dt
of a freely falling object you now �nd

dr

dt
= −

(
1− 2M

r

)√
1− m2

E2
0

(
1− 2M

r

)
Repeating the calculation of the time to reach the singularity made in
this lecture using the new total energy per mass E0/m you then �nd
that the total time to reach the singularity is given by

τ = −
∫ 0

2M
dr

(
E2

0

m2
− 1 +

2M
r

)−1/2

Using the Integrator you �nd that the solution is

τ = −

[
1
a

√
a+

b

r
r − b

2a
√
a

ln

(
b+ 2ar + 2

√
a

√
a+

b

r
r

)]0

2M

,

where a = E2
0/m

2 − 1 and b = 2M . We now insert numbers. Using
the expression for the total energy above, inserting r = 20M and
vshell = 0.993 we �nd E0/m = 8.03 and therefore a = 63.5 and b =
8×106M� = 8×106×1482m. Before inserting numbers in the previous
expression we rewrite it in the following manner (in order to get a
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dimensionless number inside the logarithm), check that you understand
how to arrive at this expression

τ =
1
a

√
a+

b

2M
2M − b

2a
√
a

ln

b+ 2a2M + 2
√
a
√
a+ b

2M 2M

2M


which can be written even simpler using b = 2M

τ =
2M
a

√
a+ 1− M

a
√
a

ln(1 + 2a+ 2
√
a
√
a+ 1)

which gives about 10 seconds.

7. The astronaut will be stretched in the radial direction, but will also be
compressed in the tangential direction: he/she/it is falling towards a
point singularity, so the forces don't work in the same direction! The
astronaut will have the shape of spaghetti just before being swallowed
by the black hole.

Problem 2

You should write a code that calculates the trajectory of a �spaceshuttle�
that falls into a black hole, with given initial conditions. It should plot the
trajectory of the shuttle and the Schwardschild radius in the same �gure,
and print the angular coordinate when the shuttle approaches the horizon.

For convenience we de�ne M = 1.
Problem 17.2.7: The plot. Units: M .

Problem 3

In this exercise, we switch from normal stationary coordinates to a special
coordinate system following an ingoing observer. The reason for this is that
the light-cones from the shell observer will collapse at the event horizon.
This is not true for the observer falling into the black hole - the light-cone
will rather be rotated, as depicted in the exercise text.

1. Shell observers using local coordinates see Lorentz geometry and we
can use the normal Lorentz transformations, de�ning the r direction
to be the x direction.
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2. Inserting the relation between shell-coordinates and Schwarzschild-
coordinates:

drshell =
dr√

1− 2M/r

and
dtshell = dt

√
1− 2M/r

into the expression from the Lorentz transformation in the previous
question we obtain

dt′ = − vγdr√
1− 2M/r

+ γ
√

1− 2M/rdt (0.1)

where v and γ are based on shell-velocities.

3. In the previous lectures, equation (8) states the velocity measured by
a shell-observer of a freely falling particle (into a black hole). This was
given as

v = −(1− 2M/r)
√

2M/r ≈
√

2M/r

where the approximation is viable for a shell-observer su�ciently far
away. Inserting this velocity into equation (??) yields

dt′ = − 1√
1−GM/r

√
2M/rdr√

1− 2M/r
+

1√
1−GM/r

√
1− 2M/rdt

such that

dt = dt′ −
√

2M/rdr

1− 2M/r
(0.2)

4. We continue by �u�ng the substitute coordinates into the original
Scwartzschild line element:

ds2 = dτ2 = (1− 2M/r)dt2 − dr2

1− 2M/r
+ r2dΩ2

where dΩ2 is the spherical area element. Inserting equation (??) yields

ds2 = dτ2 = (1− 2M/r)
(
dt′ −

√
2M/rdr

1− 2M/r

)2
− dr2

1− 2M/r
+ r2Ω2

expanding the terms gives

ds2 = dτ2 = (1−2M/r)
(
dt′2−2

√
2M/r

1− 2M/r
dt′dr+

2M/rdr2

(1− 2M/r)2

)
− dr2

1− 2M/r
+r2dΩ2

happily, the denominators cancel such that

ds2 = dτ2 = (1−2M/r)dt′2−
√

2M/rdt′dr+2
2M/rdr2

(1− 2M/r)
− dr2

1− 2M/r
+r2dΩ2
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we now use the fact that

x

1− x
− 1

1− x
=
x− 1
1− x

= −1

on the third and fourth term. In the end,

ds2 = dτ2 = (1− 2M/r)dt′2 − 2
√

2M/rdt′dr − dr2 + r2dΩ2

So. What has happened? We have switched to a coordinate system
in which the line element (metric) is no longer orthogonal. A line
element (metric) is orthogonal if all dxidxj = 0 for all i 6= j. In our
case, we have �restored normality� for the r-coordinate - the dr2 does no
longer depend on r. The price we paid was coupling the new auxiliary
time-coordinate t′ to the r coordinate - the dt′dr-coupling. The reason
- there is no longer a singularity at the Schwarzschild-radius r =
2M/r! This is because the new coordinate system follows the ingoing
observer - and therefore the event horizon is removed. Remember that
the event horizon exists for a stationary observer outside the black
hole, the freely falling observer will not register anything weird at the
event horizon. That is, except a rather horrible imminent (but quick)
death at some point after passing the horizon..

5. Light travel in world-lines corresponding to dτ = dt′ = 0. This means
that photons don't experience time, which is true of all massless par-
ticles: the entire universe happened to exist in 0 time. Therefore, all
spacetime distances are 0 for photons. The Schwarzschild-metric is
thus

0 = (1− 2M/r)dt′2 − 2
√

2M/rdt′dr − dr2

assuming radial velocity only (dφ = 0). Solving for dr yields a normal
second-order equation. Using b = −2

√
2M/rdt′, a = −1 and c =

(1− 2M/r)dt′2 yields

dr

dt′
= −1

2

(
b±
√
b2 + 4c

)
= −1

2

(
2
√

2M/r±
√

4(2M/r) + 4(1− 2M/r)
)

Giving

dr

dt′
=
(
−
√

2M/r ±
√

(2M/r) + (1− 2M/r)
)

=
(
−
√

2M/r ± 1)

and done! Note that far o� (r � 2M) then dr/dt′ = ±1, which yields
�normal� 45◦ light-cones. At r = 2M , then dr/dt′ = {0,−2}. The
�rst solution giving a light speed of 0(the outgoing world-line of light
goes straight up (90◦)). The second solution shows a light beam going
with 2 times the speed of light towards the center. For r < 2M , both
solutions are always negative meaning that even the light beam emitted
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outwards away from the center is moving towards the center. We see
that the speed of light in this case can be zero, but as discussed in
the text for another case, this is not a speed which can be measured
locally by any observer: It is the change in Schwarzshild coordinate as
a function of time measured on the wristwatch of the infalling observer.

6. As discussed in the previous point, at r = 2M , the light speed for
the outwards light beam is zero so the wordline goes straight upwards.
Inside the horizon, the outwards light beam always has negative light
speed, i.e. the beam goes inwards towards the center and the world-
lines therefore go to the left. The inwards light beam will have speeds
approaching in�nity as r → 0 so the inclination of the worldline will
be larger and larger and eventually horizontal very close to the center.

7. We see that even something which is sent out with the speed of light
in the direction away from the centere will move towards the center
(immediately, no phase of decceleration and acceleration), one can view
it like this: The spacetime geometry is now such that all directions
point to the center, no matter in which direction you point, you point
towards the center.
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