
The following people have participated in creating these solutions:

Nicolaas E. Groeneboom, Magnus Pedersen Lohne, Karl R. Leikanger

NOTE: There might be errors in the solution. If you find something which

doens’t look right, please let me know

Partial solutions to problems: Lecture 3

Problem 1

1. vr ≈ 12 m/s, yes!

2. vr ≈ 0.1 m/s, no!

3. Using formulae in the text, you should find that vr ∝ 1/
√

a such that the
radial velocity decreases for larger distances a.

4. 1.2 × 106 km.

Problem 2

1. We assume that the orbits of all planets are circular. In the previous
exercise, we found the speed of the sun’s wobbling due to Jupiter was
given as v∗ = 12.20m/s. The radius a∗ the sun wobbles is given from

v∗ =
2πa∗

P

such that

a∗ =
v∗P

2π

What we are interested in is the maximum distance from us to the star,
and this is given by θ = (a∗/d). Note: When using this approximation
(tan θ ∼ θ for small values of θ), it is important to perform the actual
computations using radians and not degrees. Now,

d = 2 ∗
a∗

θ
=

v∗P

πθ

where θ = 0.1′′ = 1
60

1
60

2π
360

= 4.848 · 10−7 radians. The extra factor 2 is
added, as the star wobbles with a magnitude a∗ in two directions, doubling
the effect.

When inserting the values for Jupiter, one obtains

d ≈ 3.04 · 1015m = 0.32ly

which is the distance from us the star needs to be in order to detect
any wobbling. Note that the distance to Sun’s closest neighbour Proxima
Centauri is 4.22 ly.

2. d ≈ 0.0002ly.

1

3. First of all, wikipedia states that Proxima Centauri contains 0.123 solar
masses. We use a formula presented in chapter 2, giving a relation between
different orbit sizes. We have:

a1 =
µa

m1

where a1 = a∗ is the radius of the orbit of the wobbling star about the
center of mass, m1 = m∗, a ≡ ad is the distance between the star and
the planet while the reduced mass µ̂ ∼ mp can be approximated to be the
mass of the orbiting planet. Thus,

mp =
m1a1

a
=

m∗a∗

ad

We need to decide on a∗. Now, in order to detect wobbling, θ = 0.1′′, and
we know d = 4.22ly such that a∗ must be

2a∗ = dθ

inserting this into 3, we find

mp =
m∗dθ

2ad
=

0.123 · Msun · 4.22ly · 0.1·2π
60·60·360

1AU · 2
≈ 8 Jupiter masses

4. 1.6mjupiter

Problem 3

1. Answer found in the text.

2. 14 km/s.

3. v∗r ≈ 445 m/s, P ≈ 97 hours.

4. mp ≈ 4.4mjupiter.

5. Answer found in the text./

6. ∆t ≈ (1.685−1.665)×105 ≈ 2000 seconds, vp ≈ 140 km/s, rp ≈ 140×103

km, ρ ≈ 700kg/m3

7. gas planet.

Problem 4

Here is an outline of a Python code which can be used:

from scitools.all import *

#STAR CLASS

class star:

2

#Constructor

def __init__(self, filename):

#Declare self-variables/lists

self.filename = filename

self.time = []

self.flux = []

self.lambda_obs = []

...

...

#Calculations/call functions

self.read_file()

self.rad_velocity()

self.pec_velocity()

self.light_curve()

self.vel_curve()

self.model()

#Function that reads data from the file self.filename

def read_file(self):

...

self.time.append(...) #Store data in self-lists

self.flux.append(...)

self.lambda1.append(...)

...

#Make arrays

...

#Function that calculates the radial velocity for each observed wavelength

def rad_velocity(self):

self.rad_vel = ... #Use Doppler’s formula

#Function that calculates the peculiar velocity

def pec_velocity(self):

self.pec_vel = sum(..)/len(..) #sum(array) - sum all elements in an array

#len(array) - length of array

#Write to file

...

#Function that plots the light-curve

def light_curve(self):

#Plot flux vs time

...

#Function that plots the velocity-curve

3

def vel_curve(self):

#Relative velocity - Deviation of the radial velocity from the peculiar

#(average) velocity

self.rel_vel = self.rad_vel - self.pec_vel

#Plot relative velocity vs time

...

#Function that evaluates the best values of the constants v_r, P and t_0

#in the cosine-model, based on the least-square method

def model(self):

#Ask in screen

planet = float(raw_input(’Does %s have a planet eclipsing? (yes/no)’ % (self.name)))

if planet == ’yes’:

#Read in min and max possible value of t0, vr and P from screen

t0_min = float(raw_input(’ ... ’))

t0_max = ...

vr_min = ...

...

#Declare t0, vr and P - arrays

t0 = linspace(t0_min, t0_max, ’number of evaluation-points per constant’)

vr = ...

P = ...

#Declare best-variables (set equal the first value in their arrays)

best_t0 = ...

best_vr = ...

best_P = ...

#Go through every combinations of the constants t0, vr and P, one

#for-loop for each constant-array

for i in range(len(t0)):

for j in (...):

for k in (...):

#Calculate the array of model-velocity, use t0[i], vr[j] and P[k]

rel_vel_model = ...

#Calculate the sum of the difference between all the elements

#in the self.rel_vel-array and the rel_vel_model-array squared.

delta = sum((self.rel_vel - rel_vel_model)**2)

#Check if you have a better constant-set (t0[i], vr[j] and P[k])

#than the previously stored best values

if delta < best_delta:

...

...

4

#Plot the result, use hold(’on’) to plot two graphs in the same

#figure, remember to use hold(’off’) afterwords

...

#Write the best constant-values to file - write all star-values in 1 file

if self.name = ’star0’:

file = open(’filename’, ’w’)

else:

file = open(’filename’, ’a’)

... #Write to file

file.close()

#____

#MAIN

#Make star-objects

star0 = star(’star0.txt’)

star1 = star(’star1.txt’)

star2 = star(’star2.txt’)

star3 = star(’star3.txt’)

star4 = star(’star4.txt’)

star5 = star(’star5.txt’)

star6 = star(’star6.txt’)

star7 = star(’star7.txt’)

star8 = star(’star8.txt’)

star9 = star(’star9.txt’)

The best program approach is to make a star-class. In this way we get a
compact and well-presented program where we don’t have too many variables
to think of. For each star object that we make (in the beginning of main), with
argument ’filename’, the constructor function automatically runs. Since all the
functions are called from the constructor, all the calculations are carried out
by just making the object. If we were to do more calculations in main, and
especially if we needed variables inside the star objects, the gain in the class
approach would be even clearer. But even in this problem it should be fairly
obvious what we gain by the class approach.

In the following we will present results for star0, a similar apporach should
be used for the other stars.

1. We do not present all the plots here, but give a summary of what you
should have found. The following table shows the results for star0-9:
Star0 has peculiar velocity 10 km/s.

2. We again assume that the inclination i = 90◦. We then use the formula

mp =
m

2/3
∗ v∗rP

1/3

(2πG)1/3

From the radial velocities of star0 above, note that vmax = 220m/s,

5

Star Planet Eclipse M

0 Y Y 0.8
1 N N 2.8
2 N N 0.5
3 Y Y 0.5
4 Y Y 1.8
5 Y N 0.7
6 Y N 1.6
7 N N 2.1
8 Y N 7.0
9 Y N 8.0

orbiting a period of P = (t1 − t0) ∼ 3.5 · 105s. Inserting, we find

mp = 3.15 · 1027 ∼ 1.5 Jupiter masses.

This is a Jupiter-sized planet.

3. From the light curves, it is easy to see that star0 has an eclipsing planet,
but it is hard to estimate the exact slope of the curve. By looking at the
second “bump”, we estimate (t1 − t0) ∼ 1 · 1300 seconds, such that

R ∼
1

2
· ((220 + 220 ∗ (m∗/mp))m/s · 1 · 103s ∼ 56000km.

or a little more than the radius of Jupiter, again a Jupiter-sized planet.
The density is thus

ρ =
mp

4/3!piR3
≈ 1200kg/m3

which is a gas planet as expected. Note that the final answer may differ
quite a lot depending on the value you find for R. And there will be
large uncertainties in the value you find for R because of uncertainties in
reading off the values from the light curve (which again comes from the
noise in the data).

4. We now have a data set for the radial velocities taken at different times,
namely vi. We are now interested in fitting a cosine-curve model to the
data, and thus determining three parameters: The orbital period P , the
initial time t0 and the amplitude vr. This is done by using least-square

fitting, we calculate

lsq ∼
∑

data

(data − model)2 (0.1)

We assume the cosine model to follow

vmodel
r = vr cos ((2π/P) (t − t0))

where we let vr, P and t0 vary linearly within a selected interval. Select
fitting intervals for varying parameters “by eye” from the graph of the
radial velocities of star0: [vstart, vstop] = [150, 300] m/s, [Pstart, Pstop] =

6

[500, 700] (measured in index elements of the data vector) and [t0start, t0stop] =
[400, 550] (measured in index elements of the data vector). It may be
convenient to operate with the index elements instead of proper time in
seconds in the code. When you have finally found the result for P and t0
you can convert from index to seconds. The final results will depend a bit
on how the grid is chosen, but should for star0 not be very different from
the ’bye eye’ result above.

7

