
The following people have participated in creating these solutions:

Nicolaas E. Groeneboom, Magnus Pedersen Lohne, Karl R. Leikanger

NOTE: There might be errors in the solution. If you find something which
doens’t look right, please let me know

Partial solutions to problems: Lecture 6

Problem 1

1. From the lecture notes, Planck’s Radiation law is expressed as

B(ν) =
2hν3

c2

1

ehν/(kT) − 1

At large frequencies (or high energies), hν ≫ kT . Then ehν/(kT)
− 1 ∼

ehν/(kT), as the exponential dominates. In this limit,

B(ν) =
2hν3

c2
e−hν/(kT)

2. When frequncies are very low, then hν ≪ kT . In this limit, we use that
for small values of x, then ex

∼ 1 + x (Taylor expansion) such that

B(ν) =
2hν3

c2

1

ehν/(kT) − 1
∼

2hν3

c2

kT

1 + hν − 1
=

2kT

c2
ν2

3. Small frequencies correspond to large wavelength, so I radio astronomers
are most used to this equation.

Problem 2

1. Do it yourself

2. Do it yourself

3. You can start with the following code:

from scitools.all import *

#Function that calculates the value of eq. (8) for all elements in the x-array

def function():

f = ...

plot_function(f, filename) #Call plot function

return f

#Plot-function

def plot_function(y, filename):

...

1

#Function that calculates the difference between the function value and 5

#squared for all values in the x-array

def diff():

delta = ... #Error-array

plot_function(delta, filename) #Call plot function

return delta

#Function that finds the x-value which gives the minimum value of

#the delta-function

def best_value():

... #Declare best-variables

for i in (...): #For-loop. Go through every element in the delta-array

if delta[i] < best_delta: #Check if you have a better x-value

... #Update best-variables

print ’...’ #Write best x-value to screen

#____

#MAIN

#Constants

...

#Make x-array

x = linspace(x_min, x_max, ’number of points’)

#Calculations

func = function()

delta = diff()

best_value()

Problem 3

1. Assume the Sun is a perfect black-body. We use that the temperature at
the surface of the Sun is T = 5778K. We

λT = 2.9 · 10−3Km

to obtain

λ =
2.9 · 10−3

5778K
Km ≈ 500nm

2. visible light

3. We use the Stefan-Boltzmann law:

F = σT 4

2

where σ = 5.67 · 10−8 J
sm2K4 such that the total flux of the Sun is

F⊙ = 5.67 · 10−8 J

sm2K4
57784K4

≈ 6.3 · 107 J

sm2

which denotes the total energy per time per surface area.

4. The following integration formulas can be directly implemented in your
pythoncode.

Box method

∫ b

a

f(x)dx = h [f(a) + f(a + h) + f(a + 2h) + f(a + 3h) + ... + f(b)]

Simpson’s method

∫ b

a

f(x)dx =
h

3
[f(a) + 4f(a + h) + 2f(a + 2h) + 4f(a + 3h) + 2f(a + 4h) + ... + f(b)]

The constant h is the wavelength step.

Fluxdensity at the sun’s surface (box and simpson):

F⊙ ≈ 6.3 · 107 W

m2

5. Total radiated power from the sun:

L⊙ = F⊙4πR2
sun ≈ 3.81 · 1026W

6. The luminosity of the Sun L is constant. Using that

L = 4πr2F

we solve for F at r =earths orbital radius= 1AU .

F =
L

4πr2
Earth

= 1367W/m2

which is the flux pr m2 at an Earth distance.

7. As in before,

F =
L

4πr2
Saturn

= 13.38W/m2

where we used that the distance between Earth-Saturn is 10.11AU .

8. Assuming 12% effiency, 1m2 of solar panels produce 13.38 · 0.12 ≈ 1.5W .
In order to produce 40W , we need 40/1.5 ≈ 27m2 of solar panels.

3

Problem 4

1. Total incoming power on earth’s surface:

P in
earth = F in

earthπr2
earth ≈ 1367W · π · (6371km)2 ≈ 1.74 · 1017W

2. Estimate of earth’s temperature:

Tearth =

(

F out
earth

σ

)1/4

=

(

Lout
earth/(4πr2

earth)

σ

)1/4

≈

(

1.74 · 1017W/(4π(6371km)2)

5.67 · 10−8W/m2K4

)1/4

≈ 279K

Since we consider the earth as a blackbody, the total emitted power is
exactly the same as the total incoming and absorbed power (Fout

earth =
Fin

earth). A blackbody emits the same amount in all directions, so the
outgoing fluxdensity must be smaller than the incoming (F in

earth > F out
earth).

Problem 5

1. The intensity is B(λ) is defined as

B(λ) =
dE

dAdΩdtdλ cos θ

such that
∫

B(λ) cos θdΩdA =
dE

dtdλ
≡ L(λ)

B(λ) is regarded as a constant when integrating dAdΩ. Integrating the
solid area (dΩ = sin θdθdφ), we find

∫

half the sphere

cos θdΩ =

∫ 2π

0

∫ π/2

0

cos θ sin θdθdφ

The φ part is constant, such that

= 2π ·

∫ π/2

0

cos θ sin θdθ = 2π ·
1

2
= π

Integration of the area of the sphere gives A = 4πR
2, where R is the radius

of the star. Hence
L(λ) = 4π2R2B(λ)

2. At distance r from the star, the area of the sphere is given as 4πr2. As
the flux = luminosity / area, we obtain

F (Λ) = L(λ)/area =
4π2R2

4πr2
B(λ) = π

R2

r2
B(λ)

3. When obtaining Wien’s displacement law, B(λ) was differentiated and set
equal to 0. This could also have been done using F (λ), as F (λ) only
dependens on λ through B(λ). Morale: To determine the wavelength
of maximum intensity (and thereby the colour temperature) of an object,
using the measured flux directly instead of intensity works just as fine.

4

Problem 6

This is a suggestion to a code which could be used:

from scitools.all import *

#DAY-CLASS

class day:

#Constructor

def __init__(self, day):

#Declare self-variables/lists

self.day = day

self.filename = day + ’.txt’

self.lambda_obs = []

self.flux = []

...

#Calculations/Call functions

self.read_data()

self.plot_spec()

self.star_velocity()

self.model()

#Function that reads data from self.filename

def read_data(self):

...

... #Store data in self-lists

... #Convert from lists to arrays

#Function that plots the flux vs observed wavelength

def plot_spec(self):

...

#Function that calculates the velocity of the star

def star_velocity(self):

#Read in (by eye measurement) the wavelength of minimum flux

lambda_min = float(raw_input(’...’))

#Calculate radial velocity by Doppler’s formula

v_rad = ...

#Write result to file - Same file for all days

if self.day == ’day0’:

file = open(filename, ’w’)

else:

file = open(filename, ’a’)

5

... #Write to file

file.close()

#Function that calculates the best value of the parameters Fmin, sigma

#and lambda_central, and computes the radial velocity of the star by using the

#model-value of lambda_central

def model(self):

#Read in min and max values of Fmin, sigma and lambda_central

F_min = float(raw_input(’...’))

F_max = float(raw_input(’...’))

...

...

#Declare arrays

points = ... #Number of evaluation-points per parameter

Fmin = linspace(F_min, F_max, points) #Fmin array

sigma = ... #sigma array

lambda_central = ... #lambda_central array

#Declare best-variables

best_Fmin = ...

...

#Determine the best values of Fmin, sigma and lambda_central by

#least-square method

for i in range(points):

for j in range(points):

for k in range(points):

flux_model = ... #Calculate the model-value by eq. (9)

delta = sum((...)**2) #Calculate the error-array

if delta < best_delta: #Check if you got a better const. set

... #Update best-variables

#Write the best parameters to file - Collect the parameters for each day

#in the same file (see pervious problem)

...

#Calculate the radial velocity of the star by using the best value of

#lambda_central

...

#Write the radial velocity to file - Collect the values for each day in

#the same file

...

#____

#MAIN

6

#Make day-objects

day0 = day(’day0’)

day67 = day(’day67’)

day133 = day(’day133’)

day200 = day(’day200’)

day267 = day(’day267’)

day333 = day(’day333’)

day400 = day(’day400’)

day467 = day(’day467’)

day533 = day(’day533’)

day600 = day(’day600’)

#Collect the values of the radial velocity (model-value) from each day object

velocity = array([day0.mod_vel_star, day67.mod_vel_star, ... , day600.mod_vel_star])

#Plot the deviation of the radial velocity from the peculiar velocity vs time

x = array([0, 67, ... , 600]) #Time-array

... #Plot and store

In figure 1 we see the resulting velocity curve (mean value subtracted). From
this curve we estimated the minimum ’planet’ mass to be M ≈ 0.4M⊙ which,
judging from the large mass, probably is a small star or a brown dwarf star
rather than a planet.

Problem 7

We use that the absolute magnitude is given as

M = m − 5log10(
r

10pc
)

Sirius

Sirius resides at a distance of 8.6ly with apparent magitude m = −1.47 such
that M ∼ 1.45.

Vega

Vega resides at a distance of 24.27ly with apparent magitude m = 0.0 such that
M ∼ 0.56.

Sun

The Sun resides at a distance of 1AU with apparent magitude m = −26.7 such
that M ∼ 4.87.

7

Figure 1: Velocity curve

8

Problem 8

1. The flux of the Sun at Earth-distance was in a previous exercise found to
be Fsun = 1367J/s/m2. The luminosity of Vega is (wiki) Lvega = 37Lsun,
such that the recieved flux at earths distance from vega (rv = 24.27ly) is
given as

Fvega =
Lvega

4πr2
v

=
37Lsun

4π(24.27ly)2
≈ 2.7 · 10−8J/s/m2.

Using that the apparent magnitude of Vega is zero, we have

m1 − m2 = m1 = −2.5log10(
1337

2.7 · 10−8
) ≈ −26.7

2. Let m1 = −26.7 be the apparent magnitude of the Sun, while m2 = 30 is
the maximum apparent magnitude. Using

m1−m2 = −2.5log10(F1/F/2) = −2.5log10
L/(4π(1AU)2

L/(4πr2
= −5log10(1AU/r)

such that
r = 1AU · 10

30+26.7

5 ≈ 1.1Mpc

3. This problem is solved as in the previous question, but where the lumin-
osities cancelled, we’re now left with 2 · 1011. This implies:

r = 1AU ·

√

(2 · 1011) · 10
m2−m1

5 ≈ 447Gpc

This is well beyond the observable universe, but looking at large distances
also means looking backwards in time to an epoch when no galaxies exis-
ted. We will therefore never see galaxies at very large distances.

9

