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NOTE: There might be errors in the solution. If you find something which
doens’t look right, please let me know

Partial solutions to problems: Lecture 6

Problem 1

1. From the lecture notes, Planck’s Radiation law is expressed as

2hv3 1

Bv) = 2 ohv/(kT) _ |

At large frequencies (or high energies), hv > kT. Then e/*T) — 1 ~
eM/(KT) " as the exponential dominates. In this limit,

2hv3
B(v) = CQV o—hv/(KT)

2. When frequncies are very low, then hry < k7. In this limit, we use that
for small values of z, then e ~ 1 + x (Taylor expansion) such that

2h13 1 2h3 KT 2kT
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3. Small frequencies correspond to large wavelength, so I radio astronomers
are most used to this equation.

Problem 2

1. Do it yourself
2. Do it yourself

3. You can start with the following code:

from scitools.all import *

#Function that calculates the value of eq. (8) for all elements in the x-array
def function():

f=...

plot_function(f, filename) #Call plot function

return f

#Plot-function
def plot_function(y, filename):



#Function that calculates the difference between the function value and 5
#squared for all values in the x-array
def diff():

delta = ... #Error-array

plot_function(delta, filename) #Call plot function

return delta

#Function that finds the x-value which gives the minimum value of
#the delta-function
def best_value():

R #Declare best-variables

for i in (...): #For-loop. Go through every element in the delta-array

if deltali] < best_delta: #Check if you have a better x-value
C #Update best-variables
print ’...° #Write best x-value to screen

#

#MAIN

#Constants

#Make x-array
x = linspace(x_min, x_max, ’number of points’)

#Calculations
func = function()
delta = diff()
best_value()

Problem 3

1. Assume the Sun is a perfect black-body. We use that the temperature at
the surface of the Sun is T'= 5778 K. We

AN =29-10"2Km

to obtain
291077

= Km ~
A FTRK m =~ 500nm

2. visible light
3. We use the Stefan-Boltzmann law:

F=0cT*



where o = 5.67 - 1078 —Z~ such that the total flux of the Sun is

sm2K*%

J
57T78'K* ~6.3-10"—
sm

Fy =5.67-1078
© sm2K*
which denotes the total energy per time per surface area.

. The following integration formulas can be directly implemented in your
pythoncode.

Box method

b
/ F@)dz = h[f(@)+ Fla+B) + fla+2h) + fa+3h) + .. + F(B)]

Simpson’s method

b
[ #@)de = 5 [7(@) + 4f(a-+ ) + 26+ 20) + 47+ 3) + 2F(a-+ 40) + .+ 18]

The constant h is the wavelength step.

Fluxdensity at the sun’s surface (box and simpson):
W
~ 7
Fo~6.3-10 3

. Total radiated power from the sun:

Lo = FodnR?,, ~ 3.81-10%°W

sun

. The luminosity of the Sun L is constant. Using that
L = 47r*F
we solve for F at » =earths orbital radius= 1AU.

L
F=—7— =1367TW/m?

- 2
47TTEarth

which is the flux pr m? at an Earth distance.

. As in before,
L

= 2
47TTSaturn

F = 13.38W/m?

where we used that the distance between Earth-Saturn is 10.11AU.

. Assuming 12% effiency, 1m? of solar panels produce 13.38 - 0.12 ~ 1.5V
In order to produce 40W, we need 40/1.5 ~ 27m? of solar panels.



Problem 4

1. Total incoming power on earth’s surface:
i = E 2 & 136TW - - (6371km)? ~ 1.74 - 101°W
2. Estimate of earth’s temperature:

ou 1/4 ou 1/4 1/4
oo (Fa TR/ Grre) V(T4 10T (63T ) \
oo o o 5.67-10-8W/m2K4

Since we consider the earth as a blackbody, the total emitted power is
exactly the same as the total incoming and absorbed power (FOU, =
Fé‘;rth). A blackbody emits the same amount in all directions, so the

outgoing fluxdensity must be smaller than the incoming (F'Z ., > Fout .

Problem 5

1. The intensity is B()) is defined as

dE
B() = dAdQdtd ) cos 0
such that

dE

B(\) is regarded as a constant when integrating dAdQ2. Integrating the
solid area (dQ2 = sin 8dfd¢), we find

27 /2
/ cos 6dS) = / / cos 6 sin 0dOd¢
half the sphere 0 0

The ¢ part is constant, such that
/2 1
:27r~/ cos@sin9d9:27r~§:7r
0

Integration of the area of the sphere gives A = 47R?, where R is the radius
of the star. Hence
L(\) = 47*R?B()\)

2. At distance r from the star, the area of the sphere is given as 47r2. As
the flux = luminosity / area, we obtain

472 R? R?
gy B(\) =7—B(\)

F(A) = L(\)/area = =

3. When obtaining Wien’s displacement law, B(\) was differentiated and set
equal to 0. This could also have been done using F'()\), as F(A) only
dependens on A through B(\). Morale: To determine the wavelength
of maximum intensity (and thereby the colour temperature) of an object,
using the measured flux directly instead of intensity works just as fine.



Problem 6

This is a suggestion to a code which could be used:

from scitools.all import *

#DAY-CLASS
class day:
#Constructor
def __init__(self, day):
#Declare self-variables/lists
self.day = day
self.filename = day + ’.txt’
self.lambda_obs = []
self.flux = []

#Calculations/Call functions
self.read_data()
self.plot_spec()
self.star_velocity()
self.model ()

#Function that reads data from self.filename
def read_data(self):

#Store data in self-lists
#Convert from lists to arrays

#Function that plots the flux vs observed wavelength
def plot_spec(self):

#Function that calculates the velocity of the star

def star_velocity(self):
#Read in (by eye measurement) the wavelength of minimum flux
lambda_min = float(raw_input(’...’))

#Calculate radial velocity by Doppler’s formula
v_rad = ...

#Write result to file - Same file for all days

if self.day == ’day0’:
file = open(filename, ’w’)
else:

file = open(filename, ’a’)



R #Write to file
file.close()

#Function that calculates the best value of the parameters Fmin, sigma

#and lambda_central, and computes the radial velocity of the star by using the
#model-value of lambda_central

def model(self):

#Read in min and max values of Fmin, sigma and lambda_central
F_min = float(raw_input(’...”))
F_max = float(raw_input(’...?”))

#Declare arrays

points = ... #Number of evaluation-points per parameter
Fmin = linspace(F_min, F_max, points) #Fmin array

sigma = ... #sigma array

lambda_central = ... #lambda_central array

#Declare best-variables
best_Fmin = ...

#Determine the best values of Fmin, sigma and lambda_central by
#least-square method
for i in range(points):
for j in range(points):
for k in range(points):
flux_model = ... #Calculate the model-value by eq. (9)
delta = sum((...)**2) #Calculate the error-array
if delta < best_delta: #Check if you got a better const. set
#Update best-variables

#Write the best parameters to file - Collect the parameters for each day

#in the same file (see pervious problem)

#Calculate the radial velocity of the star by using the best value of
#lambda_central

#Write the radial velocity to file - Collect the values for each day in
#the same file



#Make day-objects
day0O = day(’day0’)
day67 = day(’day67°)

day133

day200 =
day267 =

day333

day400 =
day467 =
dayb33 =

day600

#Collect
velocity

day(’day133?)
day(’day200?)
day(’day267?)
day(’day333°)
day (’day400°)
day(’day467°)
day(’day533?)
day(’day600?)

the values of the radial velocity (model-value) from each day object

= array([day0.mod_vel_star, day67.mod_vel_star,

, day600.mod_vel_star])

#Plot the deviation of the radial velocity from the peculiar velocity vs time
x = array([0, 67, ... , 600]) #Time-array

#Plot and store

In figure 1 we see the resulting velocity curve (mean value subtracted). From
this curve we estimated the minimum ’planet’ mass to be M ~ 0.4M which,
judging from the large mass, probably is a small star or a brown dwarf star
rather than a planet.

Problem 7

We use that the absolute magnitude is given as

Sirius

r
M =m — 5l —
m oglo(lopc)

Sirius resides at a distance of 8.6ly with apparent magitude m = —1.47 such
that M ~ 1.45.

Vega

Vega resides at a distance of 24.27ly with apparent magitude m = 0.0 such that

M ~ 0.56

Sun

The Sun resides at a distance of 1AU with apparent magitude m = —26.7 such
that M ~ 4.87.
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Problem 8

1. The flux of the Sun at Earth-distance was in a previous exercise found to
be Fyun = 1367J/s/m?. The luminosity of Vega is (wiki) Lyega = 37Lsun,
such that the recieved flux at earths distance from vega (r, = 24.27ly) is
given as

L 37L
Fyega = 2 = SN~ 2.7-10780/s/m>.
97 Y2 T 4 (24.270y)2 /s/m

Using that the apparent magnitude of Vega is zero, we have

1337

37 10-8 1078) ~ —26.7

mip —mg =m; = —2.5log10(

2. Let m; = —26.7 be the apparent magnitude of the Sun, while mo = 30 is
the maximum apparent magnitude. Using

L/(4n(1AU)?

mi1—me = 72510910(F1/F/2) = 72'510910 L/(47TT2

= —5log10(1AU/r)

such that

30+26.7

r=1AU-10" 5 =~ 1.1Mpc

3. This problem is solved as in the previous question, but where the lumin-
osities cancelled, we're now left with 2 - 10!, This implies:

mo—m1q

r=1AU-/(2-10'1)- 10" 5 = ~ 447Gpc

This is well beyond the observable universe, but looking at large distances
also means looking backwards in time to an epoch when no galaxies exis-
ted. We will therefore never see galaxies at very large distances.



