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Partial solutions to problems: Lecture 7-8

Problem 1

1. If cylinder B gets a smaller radius, it could pass through the inside of
cylinder A.

2. From the reference of cylinder B, then cylinder A will have its radius
shortened. Hence cylinder A will pass through the inside of cylinder
B. This contradicts the results in the previous question.

3. y 6= y′ and z 6= z′ would give causal contradictions, as discussed in the
previous question.

problem 2

1. The strength of an electric field E at a distance L from a point source
is given as

|E′| =
e

4πǫ0

1

|L0|2

2. From SR we know that during constant velocity, the length L becomes
contracted by a factor 1/γ =

√
1 − v2. Thus the electric field strength

during constant velocity in the L-direction becomes

|E| =
e

4πǫ0

1

|L0/γ|2
=

e

4πǫ0

1

|L0

√
1 − v2|2

= E′/(1 − v2)

3. The principle of relativity states that the speed of light is equal in all
reference frames, so the electric field measured in the laboratory frame
is stronger than the field measured in the train frame.

Problem 3

1. In the Earth-frame, a muon travelling 15km at 0.999c spends 15km/0.999c ≈
5.005 · 10−5s

2. Ignoring relativistic effects: the muons on average live for 2 · 10−6

seconds each travelling at 0.999c and can therefore travel 2 · 10−6 ·
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0.999c ≈ 600m, which is less than 15km. We should therefore not ex-
pect to detect muons at the surface of Earth, when ignoring relativistic
effects.

3. We will calculate the distance to the Earth and the time it takes to
reach the Earth in both the Earth frame and the muon frame.

(a) In the Earth frame we have that ∆x = 15km = 5 · 10−5s and
∆t = 5.005 · 10−5s.

(b) ∆x′ = 0

(c) ∆t′ =
√

∆t2 − ∆x2 = 2.2µs.

The muon decays in 2µs so some neutrinos which live a little longer
than the average will reach the surface of the Earth (remember that
2µs is the mean life time).

4. In the reference frame of the relativistic particle, ∆s2 = ∆t2−02 = ∆t2.
In the reference frame of the galaxy, ∆s′2 = ∆t′2 −∆x′2. Equating the
line elements and solving for ∆t, we find

∆t =
√

∆t′2 − ∆x′2 =

√

( 100000ly

0.999999999999

)2 − (100000ly)2 ≈ 50days

Whether this gives hope to future space travels or not: Transversing
the galaxy in 50 days seems like a good thing, but there are a few
negative sides:

1. The universe will have aged considerably during these 50 days
(calculate for yourself)

2. The energies needed to accelerate / decelerate to 0.999999999999c
are tremendous (E ∼ E/(1 − v2) → ∞ as v → 1).

3. The acceleration process would take much more than 50 days.
A person can only handle a couple of G before turning liquid -
accelerating to almost c + decelerating + assuming constant 5G
would take over 140 days alone.

Problem 4

1. In the reference frame of the clock, the time it takes for the light to
travel between the two mirrors is L0 (remember c = 1).

2. We use this representation: (coordinate, time).
In the stationary frame:

A : (0, 0)
B : (L0, L0)
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C : (L0 · v, L0)

The line element in the stationary frame is given as ∆s2

AB
= |(B −

A)|2 = (L0 − 0)2 − (L0 − 0)2 = 0. This reflects that the line element
for light is always zero.

In the train frame:

A : (0, 0)
B : (x′

B
, t′

B
)

C : (0, t′
C

)

The line element in the train frame is given as ∆s′2
AB

= |(B − A)|2 =
t′2
B
− x′2

B
.

3. Setting the line elements equal (∆s2

AB
= ∆s′2

AB
) shows that t′

B
= x′

B
.

Since the speed of light is the same in all frames, light follows ∆x = ∆t
along all points of the tracetory.

4. In the stationary frame

∆s2

AC = |(C − A)|2 = L2

0 − (vL0)
2

In the train frame

∆s′2AC = |(C − A)|2 = t′2C

Invariance of the line element gives

t′2C = L2

0 − (vL0)
2

such that
t′C = L0

√

1 − v2 = L0/γ

5.

∆s2

BC = |(C − B)|2 = (L0 − L0)
2 − (L0v − L0)

2 = −(L0v − L0)
2

∆(s′BC)2 = |(C − B)|2 = (t′c − t′B)2 − (0 − x′

B)2 = (L0/γ − t′B)2 − t′2B

Using the invariance of the line element:

(L0/γ − t′B)2 − (t′B)2 = (L2

0/γ
2 − 2L0/γt′B) = −L2

0(1 − v)2

Using that 1/γ2 = (1 − v2) and solving for t′
B

:

t′B =
γL0

2

(

(1 − v2) + (1 − v)2
)

= L0γ(1 − v)
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6. In the stationary frame, D = (0, 2L0) while in the train frame, D =
(v · t′

D
, t′

D
). In the stationary frame,

∆s2

AD = |(D − A)|2 = 4L2

0

while in the train frame

∆(s′AD)2 = |(D − A)|2 = t2D − v2t′2D

Equating these line elements gives:

4L2

0 = |(D − A)|2 = t2D − v2t′2D

Solving for t′
D

gives

t′D =
2L0√
1 − v2

= 2L0γ

7. In the frame of the train: ∆t′
AB

= t′
B
− t′

A
= t′

B
= L0γ(1 − v) while

∆t′
BD

= t′
D
− t′

B
= 2L0γ −L0γ(1− v) = L0γ(1 + v). In the stationary

reference frame, ∆tAB = L0 while ∆tBD = 2L0 − L0 = L0. As the
speed of light is equal in all reference frames, the time experienced is
different in the two coordinate systems.

problem 5

1. We convert to the physical distance, using r = dθ. We find

r = 2.6 · 109ly · (2. · 10−3) · 2π/60/60/360 ≈ 2.7425.2ly′

Dividing by 3 years:

v = 25.2ly/3 ≈ 8.4c

2. The observed time signal ∆tobs we observed equals the real time inter-
val ∆t minus the length the jet transversed in the radial coordinate.
This length is given as s = v∗∆t, and projecting the jet onto the radial
coordinate gives s = ∆tv cos θ, such that

∆tobs = ∆t − ∆tv cos θ

3. We use that
vobs =

sobs

∆tobs

From the figure in the exercise description, we note that the transverse
length is given as ∆tv sin θ such that

vobs =
∆tv sin θ

∆t − ∆tv cos θ
=

v sin θ

1 − v cos θ
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4. We use that sin θ = cos θ = 1/
√

2. Insert and ask what values of
observed velocity will be greater than the speed of light:

v/
√

2

1 − v/
√

2
> c

v√
2 − v

>
√

2c

Solve for v:

v >
c
√

2

1 + c
≈ 0.7c

Problem 6

1. The coordinates are defined as (position, time). Event A happens at
(0, 0) in both the laboratory and moving frame, while event B happens
at (x, t) in the laboratory frame and (0, t′) in the moving frame. Then
∆tAB = t and ∆t′

AB
= t′. We then use that ∆t = γ∆t′, or t = γt′.

This resembles the first equation (8) from the problem text:

t = f(v)x′ + g(v)t′ = γt′.

Since x′ = 0 we have that g(v) = γ.

2. Event B happens at position x = vt in the laboratory frame, or x =
vt = vγt′. Equation (9) then gives

x = h(x)x′ + k(v)t′ = 0 + k(v)t′ = vγt′

as x′ = 0 in the moving frame. Hence k(v) = vγ.

3. Even A is still the same as in question 1, but event B is now (L0, t
′)

in the moving frame and (L, 0) in the laboratory frame. Equation (6)
shows that L = L0/γ such that x = x′/γ. Then equation (11) reads

x′ = h(−v)x − vγt = h(−v)x = γx

such that h(v) = h(−v) = γ (we used that t = 0 since A and B are
simultaneous in the lab frame and A happens at t = 0)

4. We only need to decide on f(v). The space-time interval ∆s2

AB
is then

expressed as

∆s2

AB = |(B − A)|2 = t2 − x2 = (f(v)x′ + γt′)2 − (γx′ + vγt′)2

while
∆s′2AB = |(B − A)|2 = t′2 − x′2
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Equating these two line elements and expanding the square:

t′2 − x′2 = f(v)2x′2 + γ2t′2 + 2f(v)x′γt′ − γ2x′2 − v2γ2t′2 − 2γ2x′vt′

The simplest way to show f(v) = γv is by insertion:

t′2 − x′2 = γ2v2x′2 + γ2t′2 + 2vx′γ2t′ − γ2x′2 − v2γ2t′2 − 2γ2x′vt′

Extract the γ2:

t′2 − x′2 = γ2(v2x′2 + t′2 + 2vx′t′ − x′2 − v2t′2 − 2x′vt′)

Notice how two of the terms cancel. So:

t′2 − x′2 = γ2(v2x′2 + t′2 − x′2 − v2t′2)

which equals

t′2 − x′2 = γ2(v2(x′2 − t′2) + (t′2 − x′2)) = γ2(t′2 − x′2)(1 − v2)

But γ2 = 1/(1 − v2), and the equation holds. Thus, f(v) = γv

Problem 7

1. This is done as in problem 4: We use this representation: (coordinate, time).
In the stationary frame:

A : (0, 0)
B : (L0, L0)
D : (0, 2L0)

In the train frame:

A : (0, 0)
B : (x′

B
, t′

B
)

D : (x′

D
, t′

D
)

2. The lorentz transformations states that

t′B = f(−v)xB + g(−v)tB = −γvL0 + γL0 = γL0(1 − v)

t′
D

is then

t′D = f(−v)xD + g(−v)tD = 2γL0
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as from problem 4. For the third thick we have x3 = L0 and t3 = 3L0

giving
t′3 = −vγL0 + 3γL0 = γL0(3 − v).

Finally the fourth tick happening at x4 = 0 and t4 = 4L0 gives

t′4 = 4γL0,

so that the time between the next to ticks is ∆t′
34

= γL0(4− (3−v)) =
γL0(1 + v) exactly as for the first two ticks.
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