
AST1100 Lecture Notes

19: Nuclear reactions in stellar cores

Before embarking on the details of thermonuclear reactions in stellar cores,
we need to discuss a few topics. . .

1 Some particle physics

Nature is composed of three kinds of elementary particles: leptons, quarks,
and gauge bosons. Nature also has four forces acting on these elementary
particles: the strong and weak nuclear forces, the electromagnetic force
and the force of gravity (from the point of view of general relativity the
latter is not a force, from the point of view of particle physics, it is).
Actually, it has been discovered that the weak nuclear force and the elec-
tromagnetic force are two aspects of the same thing. At higher energies
they unify and are therefore together called the electroweak force.

The leptons can be divided in two groups, the 3 ‘heavy’ (with much more
mass than in the other group) leptons and 3 light leptons called neutrinos
(with a very small mass). Each heavy lepton has a neutrino associated
with it. In all there are thus 6 leptons

• the electron and the electron associated neutrino.

• the muon and the muon associated neutrino.

• the tau particle and the tau associated neutrino.

In collisions involving the electron, an electron (anti)neutrino is often cre-
ated, in collisions involving the muon, a muon (anti)neutrino is often cre-
ated and the same goes for the tau particle. Each lepton has lepton number
+1 whereas an antilepton has lepton number -1. This is a property of the
particle similar to charge: In the same way as the total charge is conserved
in particle collisions, the total lepton number is also conserved.

There are also 6 kinds of quarks grouped in three generations. In the order
of increasing mass these are

• the up (charge +2/3e) and down (charge −1/3e) quarks.

• the strange (charge −1/3e) and charm (charge +2/3e) quarks.
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• the bottom (charge −1/3e) and top (charge +2/3e) quarks.

A quark has never been observed alone it is always connected to other
quarks via the strong nuclear force. A particle consisting of two quarks is
called a meson and a particle consisting of three quarks is called a baryon.
Mesons and baryons together are called hadrons. A proton is a baryon
consisting of three quarks, two up and one down quark. A neutron is
another example of a baryon consisting of two down and one up quark.

In quantum theory, the forces of nature are carried by so-called gauge
bosons. Two particles attract or repel each other through the interchange
of gauge bosons. Normally these are virtual gauge bosons: Particles ex-
isting for a very short time, just enough to carry the force between two
particles. The energy to create such a particle is borrowed from vacuum:
The Heisenberg uncertainty relation

∆E∆t ≤ h

4π
, (1)

allows energy ∆E to be borrowed from the vacuum for a short time interval
∆t. The gauge bosons carrying the four forces are

• gluons in the case of the strong nuclear force

• W and Z bosons in the case of the weak nuclear force

• photons in the case of the electromagnetic force

• (gravitons in the case of the gravitational force: note that a quantum
theory of gravity has not yet been successfully developed)

In quantum theory, the angular momentum or spin of a particle is quan-
tized. Elementary particles can have integer spins or half integer spins.
Particles of integer spins are called bosons (an example is the gauge bosons)
and particles of half integer spin are called fermions (leptons and quarks
are examples of fermions. Fermions and bosons have very different statis-
tical properties, we will come to this in the next lecture.

Finally, all particles have a corresponding antiparticle: A particle having
the same mass, but opposite charge. Antileptons also have opposite lepton
number: -1. This is why a lepton is always created with an antineutrino in
collisions. For instance, when a free neutron disintegrates (a free neutron
only lives for about 12 minutes), it disintegrates into a proton and electron
and an electron antineutrino. A neutron is not a lepton and hence has
lepton number 0. Before the disintegration, the total lepton number is
therefore zero. After the disintegration, the total lepton number is: 0
(for the proton) + 1 (for the electron) -1 (for the antineutrino) = 0, thus
lepton number is conserved due to the creation of the antineutrino.

Now make a schematic summary of all the elementary particles and forces
that have been observed in nature.
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Figure 1: Info-figure: The Standard Model of particle physics is a the-
ory concerning the electromagnetic, weak, and strong nuclear interactions,
which mediate the dynamics of the known subatomic particles. The model
includes 12 fundamental fermions and 4 fundamental bosons. The 12 ele-
mentary particles of spin 1/2 (6 quarks and 6 leptons) known as fermions
are classified according to how they interact, or equivalently, by what
charges they carry. Pairs from each classification are grouped together to
form a generation, with corresponding particles exhibiting similar physical
behavior. Fermions respect the Pauli exclusion principle, and each fermion
has a corresponding antiparticle. Gauge bosons (red boxes) are defined as
force carriers that mediate the strong, weak, and electromagnetic interac-
tions. (Note that the masses of certain particles are subject to periodic
reevaluation by the scientific community. The values in this graphic are
as of 2008 and may have been adjusted since.) (Figure:Wikipedia)
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2 Mass in special relativity

Another topic which we need to discuss before studying nuclear reactions
is the notion of mass in the special theory of relativity. We have already
seen that the scalar product of the momenergy four-vector equals the mass
of a particle,

PµP
µ = E2 − p2 = m2. (2)

Imagine we have two particles with mass m1 and m2, total energy E1 and
E2 and momenta p1 and p2. Assume that they have opposite momenta
p1 = −p2 = p,

P 1
µ = (E1, p), P 2

µ = (E2,−p)

with E1 =
√

m2
1 + p2 and E2 =

√
m2

2 + p2 These two particles could for
instance constitute the proton and the neutron in a deuterium nucleus.
The question now is, what is the total mass of the two-particle system
(deuterium nucleus)? Let us form the momenergy four-vector for the
nucleus

Pµ = P 1
µ + P 2

µ = (E1 + E2, 0).

Using equation 2 we can now find the total mass of the two-particle system
(the nucleus),

M2 = PµP
µ = (E1 + E2)

2 = E2
1 + E2

2 + 2E1E2

= m2
1 + m2

2 + 2p2 +
√

(m2
1 + p2

1)(m
2
2 + p2

2)

where M is the total mass of the nucleus. We have two important obser-
vations: (1) Mass is not an additive quantity. The total mass of a system
of particles is not the sum of the mass of the individual particles. (2) The
mass of a system of particles depends on the total energy of the particles
in the system. The energy of particles in an atomic nucleus includes the
potential energy between the particles due to electromagnetic and nuclear
forces.

Consider an atomic nucleus with mass M . This nucleus can be split into
two smaller nuclei with masses m1 and m2. If total mass of the two nuclei
m1 and m2 is smaller than the total mass of the nucleus, the rest energy
is radiated away when the nucleus is divided. This is a nuclear fission
process creating energy. Similarly if the total mass of m1 and m2 is larger
than the total mass of the nucleus, then energy must be provided in order
to split the nucleus. The same argument goes for nuclear fusion processes:
Consider two nuclei with masses m1 and m2 which combine to form a larger
nucleus of mass M . If M is smaller than the total mass of the nuclei m1

and m2 then the rest mass is radiated away and energy is ’created’ in the
fusion process. In some cases (particularly for large nuclei), the mass M
is larger than the total mass of m1 and m2. In this case energy must be
provided in order to combine the two nuclei to a larger nucleus. We will
soon see that in order to produce atomic nuclei larger than iron, energy
must always be provided.
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3 Penetrating the Coloumb barrier

The strong nuclear force (usually referred to as the strong force) is active
over much smaller distances than the electromagnetic force. The strong
force makes protons attract protons and protons attract neutrons (and
vice versa). For two atomic nuclei to combine to form a larger nucleus,
the two nuclei need to be close enough to feel the attractive nuclear forces
from each other. Atomic nuclei have positive charge and therefore repulse
each other at larger distances due to the electromagnetic force. Thus for a
fusion reaction to take place, the two nuclei need to penetrate the Coloumb
barrier, the repulsive electromagnetic force between two equally charged
particles. They need to get so close that the attractive strong force is
stronger than the repulsive electromagnetic force. In figure 2 we show the
combined potential from electromagnetic and nuclear forces of a nucleus.
We clearly see the potential barrier at r = R. For a particle to get close
enough to feel the attractive strong force it needs to have an energy of at
least E > E(R). We can make an estimate of the minimal temperature
a gas needs in order to make a fusion reaction happen: The mean kinetic
energy of a particle in a gas of temperature T is EK = (3/2)kT (see
the exercises). The potential energy between two nuclei A and B can be
written as

U = − 1

4πε0

ZAZBe2

r
,

where ε0 is the vacuum permittivity, Z1 and Z2 is the number of protons
in each nucleus, e is the electric charge of a proton and r is the distance
between the two nuclei. For nucleus A to reach the distance R (see figure
2) from nucleus B where the strong force starts to dominate, the kinetic
energy must at least equal the potential energy at this point

3

2
kT =

1

4πε0

ZAZBe2

R
.

The distance R is typically R ∼ 10−15 m. Considering the case of two
hydrogen nuclei Z = 1 fusing to make helium Z = 2, we can solve this
equation for the temperature and obtain T ∼ 1010 K. This temperature is
much higher than the core temperature of the Sun TC ∼ 15× 106 K. Still
this reaction is the main source of energy of the Sun. How can this be?

The secret is hidden in the world of quantum physics. Due to the Heisen-
berg uncertainty relation (equation 1), nucleus A can borrow energy ∆E
from vacuum for a short period ∆t. If nucleus A is close enough to nu-
cleus B, the time ∆t might just be enough to use the borrowed energy to
penetrate the Coloumb barrier and be captured by the potential well of
the strong force. This phenomenon is called tunneling. Thus, there is a
certain probability that nucleus A spontaneously borrows energy to get
close enough to nucleus B in order for the fusion reaction to take place.
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Figure 2: The repulsive Coloumb potential V (r) as a function of distance
between nuclei r. At small distances r we see the potential well from the
attractive strong forces.

4 Nuclear reaction probabilities and cross

sections

Quantum physics is based on probability and statistics. Nothing can be
predicted with 100% certainty, only statistical probabilities for events to
happen can be calculated. When nucleus A is at a certain distance from
nucleus B we cannot tell whether it will borrow energy to penetrate the
Coloumb barrier or not, we can only calculate the probability for the
tunneling to take place. These probabilities are fundamental for under-
standing nuclear reactions in stellar cores. These probabilities are usually
represented as cross sections σ.

The definition of the cross section is based on an imaginary situation which
is a bit different from the real situation but gives an intuitive picture of
the reaction probabilities and, most importantly, makes the calculations
easier. It can be proven that the calculations made for this imaginary pic-
ture gives exact results for the real situation. Instead of the real situation
where we have one nucleus A and one nucleus B passing each other at a
certain distance (and we want to know the probability that they react),
one imagines the nucleus B to be at rest and a number of nuclei of type A
approaching it. One imagines nucleus B to have a finite two dimensional
extension, like a disk, with area σ. Towards this disk there is a one dimen-
sional flow of A particles (see figure 3). If a nucleus A comes within this
disk, it is captured and fusion takes place, if not the nuclei do not fuse.
It is important to understand that this is not really what happens: fusion
can take place with any distance r between the nuclei. It might also well
be that A is within the disk and the fusion reaction is not taking place.
But in order to make calculations easier one makes this imaginary disk
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Figure 3: A particles streaming towards the disk with cross section
σ(E) around the B nucleus. A particles of energy E within the volume
v(E)∆tσ(E) will react with the nucleus B within time ∆t.

with an effective cross section σ saying that any nucleus A coming within
this disk will fuse. It can be shown that calculations made with this repre-
sentation gives correct reaction rates even though the model does not give
a 100% correct representation of the physical situation. Because of the
simplified mathematics, the cross section σ is the most common way of
representing a probability for a reaction or collision process to take place.
You will now see how this imaginary picture is used to calculate reaction
rates.

The disk cross section (tunneling probability) σ(E) depends on the energy
E of the incoming nucleus A. Thus the size of the immaginary disk (for
the nucleus B at rest) depends on the energy E of the incoming particle A.
We will now make calculations in the center of mass system. In problem
5 in the lectures on celestial mechanics, you showed that the total kinetic
energy of a two-body system can be written as (ignoring gravitational
forces)

E =
1

2
µ̂v2,

where µ̂ is the reduced mass µ̂ = (m1m2)/(m1 +m2). We showed that the
two-body problem is equivalent to a system where a particle with mass
M = m1 + m2 is at rest and a particle with the reduced mass µ̂ is moving
with velocity v. In this case we imagine the nucleus B to be at rest and
the particle A is approaching with velocity v.

We have deferred the full calculation of the reaction rate between A and
B nuclei in a plasma using the cross-section to problem 4. In order to be
able to do that calculation, we need to recall an expression which we have
seen before. In the lectures on electromagnetic radiation we learned that
the number density of particles with velocity between v and v + dv in an
ideal gas of temperature T with molecules of mass m can be written as

n(v)dv = n
( m

2πkT

)3/2

e−
1
2

mv2

kT 4πv2dv. (3)
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You will use this in problem 4 when you need to multiply with the number
of A and B nuclei in the gas.

The result you will find in problem 4 is the energy produced per kilogram
of gas per second from nuclear reactions between A and B nuclei, εAB.
You will show that it is given by

εAB =
ε0

ρ

(
2

kT

)3/2
nAnB√

µ̂π

∫ ∞

0

dEEe−E/kT σ(E), (4)

where ε0 is the energy released in each nuclear reaction between an A and
a B nucleus, ρ is the total density of the gas and nA and nB are number
densities of A and B nuclei. We will not do the integral here but note that
the solution can be Taylor expanded around given temperatures T as

εAB = ε0,reacXAXBραT β,

where ρ is the density, XA and XB are the mass fractions of the two nuclei

XA =
nAmA

nm
=

total mass in type A nuclei

total mass
,

and α and β depend on the temperature T around which the expansion
is made.

Here, ε0,reac, α and β will depend on the nuclear reaction (calculated from
the integral 4). The constant ε0,reac includes the energy per reaction ε0

for the given reaction as well as several other constants. If we have ε0,reac,
α and β for different nuclear reactions, we can use this expression to find
the nuclear reactions which are important for a given temperature T in a
stellar core.

The energy release per mass per time, ε, can be written as luminosity per
mass

dL

dm
= ε

The luminosity at a shell at a distance r from the center of a star can
therefore be written as

dL(r)

dr
= 4πr2ρ(r)ε(r), (5)

which is another of the equations used together with the equation of hydro-
static equilibrium in the stellar model building described in the exercises
of lecture 13–14.

5 Stellar nuclear reactions

For main sequence stars the most important fusion reaction fuses four 1
1H

atoms to 4
2He. When writing nuclei, A

ZX, A is the total number of nucleons
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(protons and neutrons), Z is the total number of protons and X is the
chemical symbol. There are mainly two chains of reaction responsible for
this process. One is the pp-chain,

1
1H +1

1 H → 2
1H +0

0 ē +0
0 ν

2
1H +1

1 H → 3
2He +0

0 γ
3
2He +3

2 He → 4
2He + 2×1

1 H

Here 0
0ν is the electron associated neutrino, 0

0γ is a photon and the bar
represents antiparticles: 0

0ē is the antiparticle of the electron called the
positron. This is the pp-I chain, the most important chain reactions in
the solar core. There are also other branches of the pp-chain (with the
first two reactions equal) but these are less frequent. The pp-chain is
most effective for temperatures around 15 millions Kelvin for which we
can write the reaction rate for the full pp-chain as

εpp ≈ ε0,ppX
2
HρT 4

6 ,

where T = 106T6 with T6 being the temperature in millions of Kelvin. This
expression is valid for temperatures close to T6 = 15. For this reaction
ε0,pp = 1.08 × 10−12 Wm3/kg2. The efficiency of the pp-chain is 0.007,
that is only 0.7% of the mass in each reaction is converted to energy.

The other reaction converting four 1
1H to 4

2He is the CNO-cycle,

12
6 C +1

1 H → 13
7 N +0

0 γ
13
7 N → 13

6 C +0
0 ē +0

0 ν
13
6 C +1

1 H → 14
7 N +0

0 γ
14
7 N +1

1 H → 15
8 O +0

0 γ
15
8 O → 15

7 N +0
0 ē +0

0 ν
15
7 N +1

1 H → 12
6 C +4

2 He

with a total reaction rate

εCNO = ε0,CNOXHXCNOρT 20
6 ,

where ε0,CNO = 8.24× 10−31 Wm3/kg2 and

XCNO =
MCNO

M

is the total mass fraction in C, N and O. These three elements are only
catalysts in the reaction, the number of C, N and O molecules do not
change in the reaction. This expression is valid for T6 ≈ 15. We see that
when the temperature increases a little, the CNO cycle becomes much
more effective because of the power 20 in temperature. In the exercises
you will find how much. Thus, the CNO cycle is very sensitive to the
temperature. Small changes in the temperature may have large influences
on the energy production rate by the CNO cycle.
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For stars with an even hotter core, also 4
2He may fuse to heavier elements.

In the triple-alpha process three 4
2He nuclei are fused to form 12

6 C.

4
2He + 4

2He → 8
4Be +0

0 γ

8
4Be + 4

2He → 12
6 C∗ +0

0 γ

Here the reaction rate can be written as

ε3α = ε0,3αρ2X3
HeT

41
8 .

Here T = 108T8, T8 is the temperature in hundred millions of Kelvin and
ε0,3α = 3.86 × 10−18 Wm6/kg3. This expression is valid near T8 = 1. We
see an extreme temperature dependence. When the temperature is high
enough, this process will produce much more than the other processes.

For higher temperatures, even heavier elements will be produced for in-
stance with the reactions

4
2He + 12

6 C → 16
8 O +0

0 γ (6)

12
6 C + 12

6 C → 24
12Mg +0

0 γ (7)

There is a limit to which nuclear reactions can actually take place: The
mass of the resulting nucleus must be lower than the total mass of the
nuclei being fused. Only in this way energy is produced. This is not
always the case. For instance the reactions

12
6 C + 12

6 C → 16
8 O + 24

2He (8)

and
16
8 O + 16

8 O → 24
12Mg + 24

2He (9)

require energy input, that is the total mass of the resulting nucleus is
larger than the total mass of the input nuclei. It is extremely difficult
to make such reactions happen: Only in extreme environments with very
high temperatures is the probability for such reactions large enough to
make the processes take place.

In figure 4 we show the mass per nucleon for the different elements. We
see that we have a minimum for 56

26Fe. This means that for lighter elements
(with less than 56 nucleons), the mass per nucleon decreases when com-
bining nuclei to form more heavier elements. Thus, for lighter elements,
energy is usually released in a fusion reaction (with some exceptions, see
equation 8 and 9). For elements heavier than iron however, the mass per
nucleus increases with increasing number of nucleons. Thus, energy input
is required in order to make nuclei combine to heavier nuclei. The latter
processes are very improbable and require very high temperatures.

We see that we can easily produce elements up to iron in stellar cores.
But the Earth and human beings consist of many elements much heavier
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Figure 4: Schematic diagram of mass per nucleon as a function of the
number of nucleons in the nucleus. Note that we are only illustrating
the general trends. There are for instance a few light elements for which
the mass per nucleon increases with increasing number of nucleons in the
nucleus.

than iron. How were these produced? In the Big Bang only hydrogen and
helium were produced so the heavier elements must have been created in
nuclear reactions at a later stage in the history of the universe. We need
situations were huge amounts of energy are available to produce these
elements. The only place we know about where such high temperatures
can be reached are supernova explosions. We will come back to this later.

6 The solar neutrino problem

If you look back at the chain reactions above you will see that neutrinos
are produced in the pp-chain and the CNO cycle. We have learned in
earlier lectures that neutrinos are particles which hardly react with matter.
Unlike the photons which are continuously scattered on charged particles
on they way from the core to the stellar surface, the neutrinos can travel
directly from the core of the Sun to the Earth without being scattered
even once. Thus, the neutrinos carry important information about the
solar core, information which would have otherwise been impossible to
obtain without being at the solar core. Using the chain reactions above
combined with the theoretical reaction rates, we can calculate the number
of neutrinos with a given energy we should observe here at Earth. This
would be an excellent test of the theories for the composition of the stellar
interiors as well as of our understanding of the nuclear reactions in the
stellar cores. The procedure is as follows
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Figure 5: Info-figure: The protonproton (pp) chain reaction, The carbon-
nitrogen-oxygen (CNO) cycle (the helium nucleus is released at the top-left
step) and the triple-alpha process.(Figure:Wikipedia)
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1. Stellar model building: Solve the coupled set of equations consisting
of the equation of hydrostatic equilibrium, equation 5 as well as
several equations from thermodynamics describing the transport of
energy within the Sun. The solutions to these equations will give
you the density ρ(r) and temperature T (r) of the Sun as a function
of distance r from the center.

2. The temperature T (r) at a given distance r combined with the above
expressions for stellar reaction rates gives the number of neutrinos
produced in the different kinds of chain reactions and what energies
E these neutrinos should have.

3. Measure the flux of neutrinos for different energy ranges E that we
receive on Earth and compare to theoretical predictions.

4. If there is agreement, it means we have obtained the correct model
for the Sun. If the agreement is not satisfactory, we need to go back
to the first step and make the stellar model building with different
assumptions and different parameters.

For many years, there was a strong disagreement between the neutrino flux
observed at Earth and the solar models. The observed number of neutrinos
was much lower than predicted. Now the discrepancy is resolved and the
solution led to an important discovery in elementary particle physics: It
was discovered that the neutrinos have mass. It was previously thought
that neutrions were massless like the photons. Elementary particle physics
predicted that if the neutrinos have mass, they may oscillate between the
three different types of neutrino. If neutrinos have mass, then an electron
neutrino could spontaneously convert itself into a muon or tau neutrino.
The first neutrino experiments were only able to detect electron neutrinos.
The reason they didn’t detect enough solar neutrinos was that they had
converted themselves to different types of neutrinos on the way from the
solar core to the Earth. Today neutrino detectors may also detect other
kinds of neutrino and the observed flux is in much better agreement with
the models. But it does not mean that the solar interior and solar nuclear
reactions are completely understood. Modern neutrino detectors are now
used to measure the flux of different kinds of neutrinos in different energy
ranges in order to understand better the processes being the source of
energy in the Sun as well as other stars.

But the neutrinos hardly react with matter, how are they detected? This
is not an easy task and a very small fractions of all the neutrinos passing
through the Earth are detected. One kind of neutrino detector consists of
a tank of cleaning fluid C2Cl4, by the reaction

37
17Cl + 0

0ν → 37
18Ar + 0

−1e.

The argon produced is chemically separated from the system. Left to itself
the argon can react with an electron (in this case with its own inner shell
electron) by the converse process

37
18Ar + 0

−1e → 37
17Cl + 0

0ν.
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The chlorine atom is in an excited electronic state which will sponta-
neously decay with the emission of a photon. The detection of such pho-
tons by a photomultiplier then is an indirect measurement of the solar
neutrino flux.

7 Problems

Problem 1 (2–3 hours)

We will show that the mean kinetic energy of a particle in the gas is

K =
3

2
kT.

In statistics, if x is a stochastic random variable and we want to find the
mean value of a function f(x) of this random variable, we use the formula
for the mean

< f(x) >=

∫
dxf(x)P (x),

where P (x) is the probability distribution function describing the proba-
bility of finding a certain value for the random variable x. The probability
distribution needs to be normalized such that∫

dxP (x) = 1.

All integrals over x are over all possible values of x.

Let’s translate the last sentences into a more understandable language:
physics. Our random variable x is simply the velocity v of particles in a
gas. Why random? Because if you take a gas and choose randomly one
particle in the gas, you do not know which value you will find for v, it
is random. Thermodynamics gives us the probability distribution P (x) of
velocities. This probability distribution tells us the probability that our
choosen gas particle has a given velocity v. In an ideal gas, the probability
distribution is given by the Maxwell-Boltzmann distribution function in
equation 3. Finally, the function f(x) is any function of the velocity, of
which we want the mean value. This could for instance be the kinetic
energy K(v) = (1/2)mv2. This is a function of the random variable v
and we would indeed like to find the mean value of this function, that
is, the mean kinetic energy of a particle in the gas. This mean kinetic
energy would be the energy we would find if we measured the kinetic
energy of a large number of particles in the gas and took the mean. It
is that simple. So now we substitute x with v, f(x) with K(v) and the
probability distribution P (x) with n(v). There is however one caveat:
Above we mentioned that P (x) needs to be normalized. The form of the
Maxwell-Boltzmann distribution in equation 3 is not normalized. We call
the normalized distribution nnorm(v). Then we have

< K >=

∫
dvK(v)nnorm(v).
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In the following you will need the following two integrals∫ ∞

0

dxe−xx1/2 =

√
π

2

and ∫ ∞

0

dxe−xx3/2 =
3
√

π

4
.

1. First we need to find nnorm(v). We write

nnorm(v) =
1

N
n(v).

Use the normalization integral for P (x) above to find N .

2. Now use the normalized distribution function to find the mean ki-
netic energy of a particle in an ideal gas.

3. Now we will check our result numerically: Note that the Maxwell-
Boltzmann distribution function in equation 3 is the probability of
finding a particle with absolute value v of the velocity. We now
want to simulate gas particles using this distribution, but in order
to create a realistic simulation we also need to take account the
direction of the particles. The corresponding Maxwell-Boltzmann
distribution function for the probability of finding a gas particle
with velocity vector ~v can be written like this:

n(~v) =
( m

2πkT

)3/2

e−
1
2

mv2

kT ,

which is the expression we need to use to simulate particles (in a
later lecture you will learn how to go from this exression for n(~v) to
the expression for n(v) in equation 3). Note that this distribution is
already normalized. Looking at this expression, you see that this is
a Gaussian distribution function which can be written on the form

P (~v) =
1

(2πσ2)3/2
e−(v2

x+v2
y+v2

z)/(2σ2)

(a) Comparing with the Maxwell-Boltzmann distribution for ~v,
what is σ here?

(b) In Python there is a function random.gauss(mean,sigma) to
produce random numbers with a Gaussian probability distri-
bution. The vx, vy and vz components of the velocity of gas
particles are thus all distributed randomly with mean value 0
and standard deviation given by the σ which you just found.
Now you will simulate 10000 gas particles with a temperature
T = 6000 K (like on the solar surface), assuming that the
atoms in the gas are hydrogen atoms. Now produce the ran-
dom velocity components vx, vy and vz of these particles using
the random.gauss function in Python. Now you have an array
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which has the velocity in each direction for all your 10000 par-
ticles representing what you would really find if you had a look
at the velocities of 10000 particles in a gas with this tempera-
ture. Now compute the kinetic energy for each of the particles
and take the mean value over all your particles. Compare the
number you get to what you obtain with the analytic expres-
sion you found above. Does it fit? If it does not fit precisely,
and if you have the computer power to do it, repeat the code
but now with 100000 particles. Does it fit better now? In most
real situatuions, an analytic expression cannot be found and
simulations like these have to be made.

Problem 2 (60–90 min.)

One of the solar standard models predict the following numbers for the
solar core: ρ = 1.5 × 105 kgm−3, T = 1.57 × 107 K, XH = 0.33, XHe =
0.65 and XCNO = 0.01. We will assume that the expressions for energy
production per kilogram given in the text are valid at the core temperature
of the Sun. We will make this approximation even for the expression for
the triple-alpha reaction which is supposed to be correct only for higher
temperatures.

1. Calculate the total energy produced per kilogram in the Sun by the
pp-chain, CNO-cycle and the triple-alpha process.

2. Find the ratio between the energy production of the pp-chain and the
CNO-cycle and between the pp-chain and the triple-alpha process.
The energy produced by the CNO cycle is only about 1% of the total
energy production of the Sun. If you got a very different number in
your ratio between the pp-chain and the CNO-cycle, can you find
an explanation for this difference? What would you need to change
in order to obtain a more correct answer?

3. Now repeat the previous question using a mean core temperature
of about T = 13 × 106 K. Use this temperature in the rest of this
exercise.

4. At which temperature T does the CNO cycle start to dominate?

5. Assume for a moment that only the pp-chain is responsible for the
total energy production in the Sun. Assume that all the energy
production in the Sun takes place wihin a radius R < RE inside
the solar core.Assume also that the density, temperature and mass
fractions of the elements are constant within the radius RE. So all
the energy produced by the Sun is produced in a sphere of radius
RE in the center of the solar core. Use the above numbers and the
solar luminosity L� = 3.8 × 1026 W to find the size of this radius
RE within which all the energy production takes place. Express the
result in solar radii R� ≈ 7×108 m. The solar core extends to about
0.2R�. How well did your estimate of RE agree with the radius of
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the solar core?

6. If the CNO-cycle alone had been responsible for the total energy
production of the Sun, what would the radius RE had been? (again
express the result in solar radii)

Problem 3 (30 min.–1 hour)

1. Go through all the nuclear reactions in the pp-chain and CNO cycle.
For each line in the chain, check that total charge and total lepton
number is conserved. (there might be some printing errors here, if
you spot one where is it?)

2. After having checked all these reactions you should have gained some
intuition about these reactions and the principles behind them. So
much that you should be able to guess the missing numbers and
particles in the following reactions

27
14Si → 27

? Al + e+ + ?
27
? Al + 1

1H → 24
12Mg + ?

2?
35
17Cl + 1

1H → 36
18Ar + ?

Problem 4 (30–60 min.)

Before you can do this exercise, you need to read through section 4 again.
In that section, we were considering a gas with a total number density of
particles n per volume, a number density nA per volume of A nuclei and
a number density nB per volume of B nuclei. We will now calculate the
rate of reaction between A and B nuclei in the gas.

1. First we will try to find how many A nuclei with a given energy E will
react with one B nucleus per time interval ∆t. The answer is simple:
All the A particles with energy E which are in such a distance from
B that they will hit the disk with cross section σ(E) around nucleus
B within the time interval ∆t (again, this is an imaginary situation:
only one nucleus A can really react with B, the numbers we obtain
are in reality probabilities). In figure 3 we illustrate the situation.
Let nA(E) be the number density of A nuclei with energy E such that
nA(E)dE is the number density of A nuclei with energies between E
and E + dE. Then, show that the total number of nuclear reactions
per nucleus B from A nuclei with energies in the interval E to E+dE
is given by

dNA(E) = v(E) dt σ(E)nA(E) dE. (10)

2. Show that the velocity of an A-nuclei can be written as

v(E) =

√
2E

µ̂
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(What is µ here?)

3. Use equation 3 to show that the number of A nuclei with energies
between E and E + dE is given by

nA(E)dE =
2nA√

π(kT )3/2
E1/2e−

E
kT dE.

4. Show now that the total reaction rate per B nucleus, i.e. the number
of A nuclei reacting with each B nucleus (independent of the energy
of the B nucleus, remember that the B nucleus is at rest) is given by

dNA(E)

dt
=

1√
πµ̂

(
2

kT
)3/2σ(E)nAEe−

E
kT dE,

5. To obtain the total reaction rate rAB between A and B nuclei having
the number of reactions per B nucleus, we thus need to multiply with
the total density of B nuclei nB and integrate over all energies E.
Show that the reaction rate, the total number of nuclear reactions
per unit of volume per unit of time, is given by

rAB =
dN

dt
=

(
2

kT

)3/2
nAnB√

µ̂π

∫ ∞

0

dEEe−E/ktσ(E)

6. Use this expression to find the units of the reaction rate rAB to check
if you find the units that you would expect for rAB being the total
number of nuclear reactions per unit of volume per unit of time.

7. It is common to express the reaction rate using εAB which is the
energy released per kilogram of gas per second. Assume that the
energy released in each reaction between an A nucleus and a B nu-
cleus is given by ε0 (which is not the vacuum permittivity ε0) and
show that εAB can be written in terms of rAB as

εAB =
ε0

ρ
rAB.

(Why does the density enter here?)
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