
AST1100 Lecture Notes

20: Stellar evolution: The giant stage

1 Energy transport in stars and the life time

on the main sequence

How long does the star remain on the main sequence? It will depend on
the available hydrogen in the core. Note that as hydrogen is converted
to helium the mean molecular weight µ (see lecture 13–14) increases. We
remember that the pressure in an ideal gas can be written as

P =
ρkT

µmH

.

Thus as µ increases, P decreases provided ρ and T remain approximately
constant. The result is that the hydrostatic equilibrium is lost. The
battle between the gravitational forces and the pressure forces is won
by gravitation and the stellar core starts contracting. The result of the
contracting core is that the core density and temperature rise. At higher
core temperatures, the nuclear reactions which are more effective at higher
temperatures start to be more important. We will now make an estimate
of how long time it takes until the hydrogen in the core is exhausted. At
this point, the star leaves the main sequence and starts the transition to
the giant stage.

Before continuing the discussion on energy production in the core we need
to have a quick look at how the energy is transported from the core to
the surface. Clearly the photons produced in the nuclear reactions in
the core do not stream directly from the core and to the surface. The
total luminosity that we observe does not come directly from the nuclear
reactions in the core. The photons produced in the nuclear reactions
scatter on the nuclei and electrons in the core transferring the energy to
the particles in the core. Thus, the high temperature of the stellar core is
a result of the energetic photons produced in the nuclear reactions. The
high temperature plasma in the core emits thermal radiation. The photons
resulting from this thermal radiation constitutes a dense photon gas in the
core of the star. How is the energy, that is, the heat of the plasma or the
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photons in the photon gas, transported to the stellar surface? There are
three possible ways to transport energy in a medium:

• By radiation: Photons from the photon gas traveling outwards. The
photons cannot travel directly from the core, but will be continu-
ously scattered in many different directions by collisions with other
particles. After a large number of scatterings and direction changes
it will eventually reach the surface and escape.

• By convection: Large masses of the hot gas may stream outwards
while the cooler gas falls inwards. In this way, the heat and thereby
the energy is transfered outwards. Convection is a much more effi-
cient way of energy transport than radiation.

• By conduction: Heat is transfered directly outwards by particle col-
lisions.

In stars, mostly the two former mechanisms for energy transport are at
play. In solar mass stars, energy is transported from the core by radiation
until a distance of about r = 0.7R� where convection starts to be the
most important mechanism for energy transport out to the surface.

We will now make a very crude estimate of how long a star remains on the
main sequence. In order to do this properly it is necessary to do stellar
model building, i.e. solve the coupled set of equations of hydrostatic equi-
librium, the equations of energy production and the equations of energy
transport. This gives a model of the star in terms of density and tempera-
ture as a function of distance from the center. From this model, the proper
life time of the star can be calculated. It turns out that the estimates and
relations that we now will deduce using some very rough approximations
give results close to the results obtained using the full machinery of stellar
model building.

The outline of the method is the following: Find an expression for the
luminosity of the star. We know that luminosity is energy radiated away
per unit of time. If we assume how much energy the star has available
to radiate away during its life time, we can divide this energy by the
luminosity to find the life time (assuming constant luminosity which is a
good assumption during the main sequence phase).

We will again consider the photon gas in the stellar core. You will in later
courses in thermodynamics show that the energy density, i.e. energy per
volume, of a photon gas goes as ρE ∝ T 4 (actually ρE = aT 4 where a is the
radiation constant that we encountered in lecture 13–14 for the pressure
of a photon gas P = 1/3aT 4). The question is how long time it will take
for the photos in the photon gas to reach the surface of the star. We will
now assume that the only mechanism for energy transport is by radiation.
A photon which starts out in the core will be scattered on particles and
continuously change directions until it reaches the surface of the star (see
figure 2). We assume that the photon travels a mean free path ` between

each collision. After being scattered N times, the position ~d of the photon
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Figure 1: Info-figure: Stars produce energy by fusion in their deep interior
because only there are the pressures and temperatures high enough to
sustain thermonuclear reactions. However, most of the luminous energy
of stars is radiated from the thin region at the surface that we call the
photosphere. The two most important ways of transporting energy from
the core to the surface in main sequence stars are by radiation and by
convection. A low mass main sequence star (middle) will have convection
in its outer layers and a radiation zone (yellow area) in the center, like the
Sun. If the star is really low mass (right) it will have convection all the way
in. A high mass star (left) will have convection only in its core.(Figure:
B. Boroson)

Figure 2: Energy transport by radiation: random walk of the photons
from the core of the star to the surface.
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Figure 3: Random walk from the core. The position after N scatterings
~li is ~d.

(see figure 3) is given by

~d =
N∑

i=1

~li,

where ~li is the displacement vector between each scattering i (see again
figure 3). The total length ∆r of the vector d is the total distance the
photon has moved from the center. It is given by (check!)

∆r2 = ~d · ~d =
∑
i,j

~li ·~lj = N`2 + `2
∑
i6=j

cos θij,

where θij is the angle between two vectors ~li and ~lj. The directions of the
scatterings are random, so cos θij will have values between -1 and 1. After
many scatterings, the mean value of this term will approach zero and we
have

∆r =
√

N`,

or writing this in terms on number of scatterings N to reach the surface
we thus have N = R2/`2 where R is the radius of the star (check!).

The time ∆t for a photon to reach the surface is then (note that the total
distance traveled by the photon is N`)

∆t =
N`

c
=

`

c

R2

`2
=

R2

`c
.

If we assume that within a radius r of the star, the temperature T and
energy density ρE of the photon gas is constant, the total energy content
of the photon gas within radius r is

E =
4

3
πr3ρE ∝ r3T 4,
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where we used that ρE ∝ T 4. We will now use a very rough model of the
star: We assume the density and temperature of the star to be constant
everywhere in the star. Then the energy content of the photon gas in
the whole star is given by E ∝ R3T 4. If we assume that this energy is
released within the time ∆t it takes for the photons in the core to reach
the surface, then the luminosity of the star can be written as

L ∝ E

∆t
∝ R3T 4

R2/`
∝ RT 4`. (1)

The mean free path ` depends on the density of electrons and the different
nuclei in the core. If we assume that photons are only scattered on elec-
trons, it can be shown that the mean free path ` ∝ 1/ρ which does seem
reasonable: The higher the density the lower the mean free path between
each scattering. Since we assume constant density we have ρ ∝ M/R3.
Inserting this in equation 1 we have

L ∝ RT 4` ∝ RT 4

ρ
∝ R4T 4

M
. (2)

Finally we will use the equation of hydrostatic equilibrium

dP

dr
= −ρg.

If we assume that the pressure can be written as P ∝ rn where n is
unknown then

dP

dr
= nrn−1 =

nrn

r
=

nP

r
∝ P

r
.

The equation of hydrostatic equilibrium then yields

P

R
∝ ρg ∝ M

R3

M

R2
∝ M2

R5
,

or P ∝ M2/R4. We remember from lecture 13–14 than for an ideal gas
P ∝ ρT . Inserting this in the previous equation gives

T ∝ M

R
.

Inserting this in equation 2 we get

L ∝ R4

M

(
M

R

)4

∝ M3. (3)

The luminosity is proportional to the mass of the star to the third power.
A more exact calculation would have shown that

L ∝ Mβ,
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where β is usually between 3 and 4 depending on the exact details of the
star. It turns out that most low or medium mass stars have β ≈ 4. This
is also supported by observations. Therefore we will in the following use
L ∝ M4. Having the luminosity of the star, we can easily find the life
time. Assume that a fraction p of the mass of the star is converted to
energy. Then then total energy radiated away during the lifetime of the
star is given by

E = pMc2.

If we assume constant luminosity during the lifetime we have

L =
pMc2

tlife
∝ M4,

giving

tlife ∝
1

M3
.

This can be the total life time of the star, or just the life time on the main
sequence (in fact, for most stars the time on the main sequence is so much
longer than other stages in a star’s life so the time on the main sequence
is roughly the same as the life time of the star). If we take p to be the
fraction of mass converted to energy during the main sequence, then this
is the expression for the time the star spends on the main sequence. We
see that the life time of a star is strongly dependent on the mass of the
star. The Sun is expected to live for about 10 × 109 years. A star with
half the mass of the Sun will live 8 times longer (which is much longer
than the age of the universe). A star with two times the mass of the Sun
will live only 1/8 or roughly 109 years. The most massive stars only live
for a few million years. We see from equation 3 that this can be explained
by the fact that massive stars are much more luminous than less massive
stars and therefore burn their fuel much faster. A star with two times the
mass of the Sun will burn 16 times (equation 3) as much ’fuel’ per time
as the Sun, but it only has twice as much ’fuel’. It will therefore die much
younger.

As the last expression is just a proportionality, we need to find the constant
of proportionality, that is, we need to know the life time and mass of one
star in order to use it for other stars. We know these numbers for the
Sun and we will now use approximations to calculate this number. One
can show that a star will leave the main sequence when about 10% of
its hydrogen has been converted to helium. We discussed in the previous
lecture that the efficiency of the pp-chain is 0.7%. So the total energy that
will be produced of the Sun during its lifetime is therefore 0.1×Mc2×0.007.
Assuming that the solar luminosity 3.7 × 1026 W is constant during the
time on the main sequence we have

tmainsequence
� =

0.1× 2× 1030 kg × (3× 108 m/s)2 × 0.007

3.7× 1026 W
≈ 1010 years.
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We will now try to find a way to estimate the mass of a star. Remember
that in the lectures on extrasolar planets, we needed to know the mass of
the star by independent measurements in order to be able to estimate the
mass of a planet orbiting it. In the above approximation we considered
a star with constant density and temperature. The conditions we used
are normally valid only for the core of the star. Thus, the approximations
we made are more correct in the core of the star. We found that the
temperature T ∝ M/R. For main sequence stars, the core temperature is
reasonably constant, there is not a large difference in core temperatures
for different main sequence stars. Using this assumption we can write

Tc ∝
M

R
= constant.

We can write this as R ∝ M . Now, we know that the luminosity of a star
can be written in terms of the effective temperature as

L = 4πR2σT 4
eff ,

where 4πR2 is the area of the surface and F = σT 4
eff is the flux at the

surface. Using R ∝ M and L ∝ M4 this gives

L ∝ M4 ∝ R2T 4
eff ∝ T 4

effM2,

so M4 ∝ T 4
effM2 giving

M ∝ T 2
eff (4)

and we have obtained a way to find the mass of a star from its temperature.
In the exercises you will use this expression to find the temperature of stars
with different masses.

2 From the main sequence to the giant stage

We will now follow a star during the transition from the main sequence
to the giant stage. The exact sequence of events will be slightly different
depending on the mass of the star. Here we will only discuss the general
features and discuss a few main differences between low and high mass
stars. In figure 4 we can follow the evolutionary path of the star in the
HR diagram. The theories for stellar evolution are developed using com-
puter models of stars obtained by solving the equations for stellar model
building numerically. The chain of arguments that we will use below to de-
scribe stellar evolution are obtained by studying the outcome of computer
simulations.

When the hydrogen in the core has been exhausted, the forces of pressure
are not any longer strong enough to sustain the forces of gravity. The
hydrostatic equilibrium is lost and the core starts contracting. During
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Figure 4: HR-diagram of the evolution of a star from the main sequence
to the giant stage.

Figure 5: The structure of a subgiant and red giant. The core consists
mainly of helium, but the core temperature is not high enough for helium
burning. Hydrogen is burning to helium in a shell around the core. For
red giants, convection transports material all the way from the core to
the surface and the material is mixed (in the figure there is only hydrogen
in the outer parts, for red giants the mixing due to convection will also
transfer other elements all the way to the surface). The relative sizes of
the shells are not to scale, this will depend on the exact evolutionary stage.
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the core contraction, the temperature in and around the core increases.
The temperature in the core is still not high enough to ’burn’ helium (all
energy production is by nuclear fusion, not by ’burning’ in the classical
sense but it is common practice to use the term ’burning’ anyway), but
the temperature in a shell around the core now reaches temperatures high
enough to start hydrogen burning outside the core. The structure of the
star is illustrated in figure 5. Because of the increased outward pressure
due to hydrogen burning in the shell, the radius of the star starts increasing
significantly. The star has become a sub giant of luminosity class IV (see
the lecture on the HR diagram and luminosity classes). In figure 4 the star
has left the main sequence and is now on the sub giant branch between
point 1 and 2. The luminosity has been increasing slightly because the
energy produced in the shell is higher than the energy previously produced
in the core. But because of the increasing radius of the star, the surface
temperature is dropping. Thus the star moves to the right and slightly
upwards in the HR diagram.

When reaching point 2 in the HR-diagram, the radius of the star has
been increasing so much that the surface temperature is close to 2500 K
which is a lower possible limit. When reaching this limit, the dominant
mechanism of energy transport in the star changes from being radiation
to convection. Convection is much more efficient, the energy is released
at a much larger rate and the luminosity increases rapidly. The star has
now become a red giant. At the red giant stage, convection takes place all
the way from the core to the surface. Material from the core is moved all
the way to the surface. This allows another test of the theories of stellar
evolution. By observing the elements on the surface of a red giant we also
know the composition of elements in the core. The star is now on the red
giant branch in the HR-diagram (figure 4). The structure of the star still
resembles that of figure 5. The radius is between 10 and 100 times the
original radius at the main sequence and the star has reached luminosity
class III.

The next step in the evolution depends on the mass of the star. For
stars more massive than ∼ 2M�, the temperature in the core (which is
still contracting) will eventually reach temperatures high enough to start
the triple-alpha process burning helium to carbon as well as other chains
burning helium to oxygen. In low mass stars, something weird happens
before the onset of helium burning. As the core is contracting the density
becomes so high that a quantum mechanical effect sets in: there is no
more space in the core for more electrons. Quantum physics sets an upper
limit on the number of electrons within a certain volume with a certain
momentum. This is called electron degeneracy. The core has become elec-
tron degenerate. In the next lecture we will discuss this effect in detail.
At the moment all we need to know is that an electron degenerate core
will have a new type of pressure: degeneration pressure. The degeneration
pressure is now the outward force which battles the inward gravitational
force in the equation of hydrostatic equilibrium. The degeneration pres-
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Figure 6: Info-figure: The size of the current Sun compared to its esti-
mated size during its red giant phase in the future. The outer atmosphere
of a red giant is inflated and tenuous, making the radius immense and
the surface temperature low. Prominent bright red giants in the night sky
include Aldebaran, Arcturus, and Mira, while the even larger Antares and
Betelgeuse are red supergiants. (Figure: Wikipedia)
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sure does not depend on temperature. Thus, even when the temperature
of the core increases significantly, the core does not expand. The degener-
ate core is close to isothermal and when the temperature is high enough
to start helium burning, this happens everywhere in the core at the same
time. An enormous amount of energy is released in a very short time
causing an explosive onset of the helium burning phase. This is called the
helium flash. After a few seconds, a large part of the helium in the core
has already been burned. The huge amounts of energy released breaks the
electron degeneracy in the core and the gas starts to behave normally, i.e.
the pressure is again dependent on the temperature allowing the core to
expand. The onset of helium burning (which includes the helium flash for
low mass stars and a less violent transition for high mass stars) is marked
by 3 in figure 4.

The final result of the onset of helium burning is therefore the same for
both low and high mass stars: The core will finally expand, pushing the
hydrogen burning shells outward to larger radii where the gas will cool
and the hydrogen burning will therefore cease in large parts of the shell.
The energy produced in the helium burning is not enough to substitute
the energy production in the shell and the total luminosity of the star will
decrease. This is the case also for stars which undergo a helium flash.
This is seen in the transition from 3 to 4 in figure 4. The star has now
entered the horizontal branch. This stage is in a way similar to the main
sequence: This is where the star burns its helium to carbon and oxygen in
the core. Hydrogen burning is still taking place in parts of the shell. The
structure of the star is shown in figure 7. Horizontal branch giants are
called so because, as we will discuss now, they will move back and forth
along a horizontal branch.

After the rapid expansion of the star after the onset of helium burning,
the star starts contracting again in order to reach hydrostatic equilibrium.
The result is an increasing effective temperature and the star moves to the
left along the horizontal branch. After a while on the horizontal branch,
the mean molecular weight in the core has increased so much that the
forces of pressure in the core are lower than the gravitational forces and
the core starts contracting. The temperature of the core increases and
the energy released in this process makes the star expand: The effective
temperature of the surface is decreasing and the star is moving to the
right along the horizontal branch. At this point the helium in the core is
exhausted and nuclear energy production ceases. The following scenario
resemble the scenario taking place when the hydrogen was exhausted: The
core which now mainly consists of carbon and oxygen starts to contract
(due to the lack of pressure to sustain the gravitational forces after the
energy production ceased). The core contraction heats a shell around the
core sufficiently for the ignition of helium burning. Energy is now produced
in a helium burning as well as hydrogen burning shell around the core.
The radius of the star increases because of the increased pressure. Again
we reach a stage of strong convective energy transport which (exactly as
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Figure 7: A horizontal branch giant. Helium is burning to carbon and
oxygen in the core. Hydrogen is burning to helium in a shell around the
core. The relative sizes of the shells are not to scale, this will depend on
the exact evolutionary stage.

on the red giant branch) rises the luminosity. The star now moves to the
asymptotic giant branch becoming a bright giant of luminosity class II or
even a super giant of luminosity class I. The star now has a radius of up
to 1000 times the original radius. The structure of the star is shown in
figure 8.

Most stars follow an evolution similar to this. The stars with very high
mass (more than ∼ 20M�) do not have a significant convective phase
and do therefore not change their luminosity much during their evolution.
They will mainly move left and right in the HR-diagram.

Open stellar clusters can be used to test the theories of stellar evolution.
An open cluster is a collection of stars which were born roughly at the
same time from the same cloud of gas. Observing different open clusters
with different ages, we can obtain HR diagrams from different epochs of
stellar evolution. We can use observed diagrams to compare with the
predicted diagrams obtained using the above arguments. In figure 9 we
see a schematic example of HR diagrams taken at different epochs (from
clusters with different ages). We see that the most massive stars start to
leave the main sequence earlier: This is because the life time of stars is
proportional to t ∝ 1/M3. The most massive stars exhaust their hydrogen
much earlier than less massive stars. As discussed above, the most massive
stars do not have a phase with strong convection and do therefore not move
vertically up and down but mostly left and right in the diagram. For this
reason we do not see the red giant branch and the asymptotic branch
for these stars. Only in the HR diagram of the oldest cluster has the
intermediate mass stars started to leave the main sequence. For these stars
we now clearly see all the different branches. Comparing such theoretical
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Figure 8: A bright/super giant. The core consists mainly of carbon and
oxygen but the temperature is not high enough for these elements to burn.
Around the core there is a shell where helium is fused to carbon and oxygen
and another shell where hydrogen is fused to helium. In the outer parts
the temperature is not high enough for fusion reactions to take place.

diagrams with diagrams for observed clusters has been one of the most
important way to test and understand theories of stellar evolution.

Having reached the asymptotic giant branch, the star has almost ended
its life cycle. The final stages will be discussed in more detail in the next
lectures. First we will look at a typical feature of giant stars: pulsations.

3 Stellar pulsations

Some giant stars have been observed to be pulsating. We have already
encountered one kind of pulsating stars: the Cepheids. The pulsating
stars have been found to be located in narrow vertical bands, so-called
instability strips, in the HR-diagram. The Cepehids for instance, are
located in a vertical band about 600 K wide around Teff ∼ 6500 K. The
pulsations start during the core contraction and expansions starting when
the star leaves the main sequence. They last only for a limited period
when the star passes through an instability strip in the HR diagram.
We remember that for Cepheids there is a relation between the pulsation
period and the luminosity of the star allowing us to determine the distance
to the star (see the lecture on the cosmic distance ladder). The period-
luminosity relation for Cepheids can be written in terms of luminosity
(instead of absolute magnitude) as

〈L〉 ∝ P 1.15, (5)
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Figure 9: Schematic HR diagrams of open clusters of different ages:

Upper left: A cluster still in the process of forming. The less massive
stars are still in the contracting phase and have not yet reached the main
sequence.
Upper right: A cluster with an age of about 107 years. The most massive
stars have started to leave the main sequence.
Lower left: A cluster of about 109 years. The low mass stars have now
reached the main sequence.
Lower right: A cluster of about 1010 years. The medium mass stars
have now started to leave the main sequence and we can clearly see the
different branches discussed in the text.
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where 〈L〉 is the mean luminosity and P is the pulsation period. We will
now see if we can deduce this relation using physics in the stellar interior.

The pulsations are due to huge density waves, sound waves, traveling
through the interior of the star. We can find an approximate expression
for the pulsation period of a star by considering the time it takes for a
sound wave to go from one end of the star to the other. We will for
simplicity consider a star with radius R and constant density ρ. The
pulsation period P is thus the time it takes for a sound wave to travel a
distance 2R. In thermodynamics you will learn that the sound speed (the
so-called adiabatic sound speed) at a given distance r from the center of
a star is given by

vs(r) =

√
γP (r)

ρ
,

where γ is a constant depending on the specific heat capacities for the
gas. We have assumed constant density and therefore only need to find
the pressure as a function of r. The equation of hydrostatic equilibrium
can give us the pressure. We have

dP

dr
= −gρ = −GM(r)

r2
ρ = −4

3
Gπrρ2.

Integrating this expression from the surface where P = 0 and r = R down
to a distance r we get

P (r) =
2

3
πGρ2(R2 − r2).

We now have the necessary expressions in order to find the pulsation
period of a Cepheid. At position r, the sound wave travels with velocity
vs(r). It takes time dt to travel a distance dr, so

dt =
dr

vs(r)
.

To find the pulsation period, we need to find the total time P it takes for
the sound wave to travel a distance 2R

P ≈ 2

∫ R

0

dr

vs(r)
≈ 2

∫ R

0

dr√
2
3
γπGρ(R2 − r2)

=
1√

2
3
γπGρ

[
− tan−1 r

√
R2 − r2

r2 −R2

]R

0

Taking the limits in this expression, we find

P ≈
√

3π

2γGρ
∝ 1
√

ρ
∝

(
R3/2

M1/2

)
.
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From equation 4 we see that M1/2 ∝ Teff but since Cepheids are located
along the instability strip in the HR-diagram their effective temperatures
are roughly constant. So we have

P ∝ R3/2.

The luminosity of a star can be written as as L = 4πR2σT 4
eff . Again we

consider Teff ≈ constant so L ∝ R2 or R ∝ L1/2. Inserting this into the
previous expression for the pulsation period we have

P ∝ L3/4,

or
L ∝ P 4/3 ∝ P 1.3.

Comparing to the observed period-luminosity relation (equation 5), this
agreement is excellent taking into account the huge simplifications we have
made. We have shown that by assuming the pulsations to be caused by
sounds waves in the stellar interiors, we obtain a period luminosity relation
for Cepheids similar to what we observe.
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4 Problems

Problem 1 (10–20 min.)

In the text there is a formula for estimating the effective temperature of
a star with a given mass (or estimating the mass of a star with a given
effective temperature).

1. Given the effective temperature (5780 K) and mass (M�) of the Sun,
find the effective temperature of a small star with M = 0.5M�, an
intermediate mass star M = 5M� and a high mass star M = 40M�.

2. The star Regulus in the constellation Leo is a blue main sequence
star. It is found to have a peak in the flux at a wavelength of about
λ = 240 nm. Give an estimate of its mass expressed in solar masses.

Problem 2 (30–60 min.)

In the text we derived that the luminosity of a low/intermediate mass star
is proportional to mass to the third power L ∝ M3. In this derivation you
used the ideal gas law. For high mass stars, the radiation pressure is more
important than the ideal gas pressure and the expression for radiation
pressure (you need to find it in the text) needs to be used instead of the
expression for the ideal gas pressure. Repeat the derivation for the mass-
luminosity relation using radiation pressure instead of ideal gas pressure
and show that for high mass stars L ∝ M . How is the relation between
the life time and the mass of a star for a high mass star compared to a
low mass star?

Problem 3 (30–60 min.)

Read carefully the description for the evolution of a star from the main
sequence to the giant stage. Take an A4-sheet. You are allowed to make
some simple drawings and write a maximum of 10 words on the sheet.
Make the drawings and words such that you can use it to be able to
tell someone how a star goes from the main sequence to the giant stage,
describing the logic of how the core contracts/expands and how the star
moves in the HR-diagram depending on temperature, means of energy
transport and nuclear reactions. Bring the sheet to the group and use it
(and nothing else) to tell the story of stellar evolution to another student,
then exchange your roles.

Problem 4 (10–20 min.)

Look at the HR-diagram for the oldest cluster in figure 9. Can you identify
the different branches of stellar evolution?
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Problem 5 (1–2 hours)

We will now study the phase when the hydrogen in the stellar core has
been depleted. The energy production in the core stops and the core starts
shrinking. The star reaches the sub giant branch and then the red giant
branch while the core keeps shrinking. The core will keep shrinking until
the temperature in the core is high enough for helium burning to start.
We will try to find out how much the core shrinks before this takes place.
For simplicity we will study a star with so high mass that the core does
not become degenerate before helium burning sets in. We will assume the
core density at the main sequence to be ρ = 1.7× 105 kg/m3.

We imagine the stellar core as an ’independent’ sphere of mass MC , ra-
dius RC , pressure PC and temperature TC . We assume the density and
temperature to be the same everywhere in the core.

1. Use the equation of hydrostatic equilibrium to show that

PC ∝ M2
C

R4
C

.

This is done in the text, but try to find your own arguments before
looking it up.

2. Then combine this with the ideal gas law to show that

TC ∝ MC

RC

.

3. We assume that the core temperature of the star on the main se-
quence was TC = 18 × 106 K. Use the expressions for the nuclear
energy production rates from the previous lecture to find out whether
it was the pp-chain or the CNO cycle which dominated the energy
production in the star while it was on the main sequence. Assume
XH = 0.5 and XCNO = 0.01.

4. Now use the expressions for nuclear energy production to find at
which temperature T the energy production rate of the triple-alpha
process equals the energy production the star had on the main se-
quence (using the numbers in the previous question). To calculate
the energy production rate from the triple-alpha process you need
to find a reasonable number for XHe in the core at the onset of he-
lium burning. Give some arguments for how you find this number.
You also need a density ρ, but since the energy production rate is
so much more sensitive to the temperature than to the density you
can make the crude approximation that the core density is the same
as it was on the main sequence. Use the temperature you find here
as the criterion for the onset of helium burning (and therefore the
criterion for when the star moves to the horizontal branch in the
HR-diagram).
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5. Use the equations and numbers we have derived in this exercise to
find the radius RC of the core at the moment when the energy pro-
duction from helium fusion starts (has become significant). Express
the result in terms of solar radii R�. At the main sequence, the core
radius was RC = 0.2R�. You have now found how much the core
needs to contract in order to start helium fusion and therefore to
move down to the horizontal branch.

6. When you calculated the temperature for the onset of helium burn-
ing you made a very rough approximation: You used the core density
which the star had on the main sequence, whereas you should really
use the much higher density in the core when the core temperature
is high enough for helium burning. Now you have estimated the size
of the core radius when helium burning starts. Use this to obtain
the correct density when helium burning starts and go back to find a
more correct temperature for the onset of helium burning. Was the
error in your first crude estimate of the helium burning temperature
large relative to the temperature?
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