
Part1, Particles in a box

1 Particles in a box

To be able to send a satellite out into the vastness of space we will need
some sort of fuel for takeoff and also for correctional boosts whilst in space
to make sure we reach our destination. In this part we will create a program
which calculates the amount of fuel (in kg) we will need for each required boost.
But first a small introduction to rocket science and how to applicate it to our
project!

In short: This part of the project is very similar to exercises 1A.6 and 1A.7
in lecture notes part 1A. It is recommended to do these two exercises first, then
write the slightly more general routine that you need for the project. The goal
of this part of the project is simple: you need to write a code which calculates
the amount of fuel you need for a given boost ∆v. This is exactly what you
do in exercise 1A.7, but here you need to make the code valid for any boost
∆v, not just to reach escape velocity. During your trip to another planet, your
satellite will need to do several correctional maneuevers, and each of these will
need fuel. You need the code that you write here later in the project when you
have made a planned trajectory with a planned set of boosts so that you can
calculate the total amount of fuel you need to bring before launching your rocket.

As you might have read (if not, go back and read it) in Lecture Notes
Part 1A a rocket engine consists of a fuel tank and an ignition chamber where
there are millions and millions of gas particles stacked together. The purpose
of the fuel tank is mainly to supply the ignition chamber with fuel (gas par-
ticles). Inside the ignition chamber the combustion of the gas creates massive
temperatures which in turn creates a massive pressure inside the compartment.
The exhaust particles takes part in elastic collisions with the walls of the cham-
ber (remember from FYS-MEK1100, elastic collisions preserve both momentum
and mechanical energy). Since the collisions are elastic the particles do not
loose energy or momentum inside the compartment. If we now open a hole at
the bottom of the chamber (the one facing the ground) particles will leave the
compartment through this hole, creating a net momentum loss ∆p towards the
ground. In order for total momentum to be conserved, the fuel tank (and in-
deed the rocket/satellite) must gain momentum −∆p in the opposite direction.
A rocket therefore gets its thrust from the momentum of the exhaust particles
leaving the bottom of the rocket. These particles have momentum in the di-
rection pointing towards the ground which gives the rockets momentum up and
away from the ground.

This is the general simplified idea of a rocket engine. In this project we
will make some shortcuts and assumptions to make sure the project isn’t over-
whelming but at the same time preserving as much physics as possible.
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We will make the following assumptions and short cuts:
1. The density and temperature and thereby the pressure inside the ignition

chamber is constant throughout the boost (this means that even though
the amount of particles inside the ignition chamber would normally decline
towards the end of the boost, we keep it constant).

2. Although the particles escaping would normally be some sort of exhaust
particles we will use H2 gas.

3. The gas does not ignite (we will simply heat up the gas towards the re-
quired temperatures, but the particles inside the fuel compartment are the
same that leave the nozzle [exit hole]).

4. In order to simulate the rocket engine and calculate the fuel consumption
for a given boost, you will, as specified in exercise 1A.7, simulate the
boost during a finite time interval (often of a few minutes). However for
the actual boost you give the rocket through AST100SolarSystem later
on will, for simplicity, be treated as instant. More information about the
boost will follow later in the assignment.

5. The particles do not interact/collide with each other inside the compart-
ment. Had they done so this would still not effect the total energy of the
tank since these collisions would be elastic.

Part 1.1, simulating particles in a box

To make sure you have a good understanding of how these particles behave, your
first assignment will be to create and simulate the particles inside a box. These
particles will need velocity distributions as explained in the lecture notes. Make
sure that the particles behave as predicted in your simulation before continuing
calculating the amount of fuel you need. Below is a short code which you can
use to animate the particles in your box in order to check that they behave as
expected. To prevent the animation from being too slow, use very few particles
(maybe about 100). When you see that the movement of the particles seems
correct, you can continue coding, increasing the number of particles to at least
100000 as explained in exercise 1A.6.

1 import matp lo t l i b . pyplot as p l t
2 import m p l t o o l k i t s . mplot3d . axes3d as p3
3 import matp lo t l i b . animation as animation
4
5 def p lo t ( ) :
6 def u p d a t e l i n e s (num, dataLines , l i n e s ) :
7 for l i n e , data in zip ( l i n e s , dataLines ) :
8 l i n e . s e t d a t a ( data [ 0 : 2 , num−1:num ] )
9 l i n e . s e t 3 d p r o p e r t i e s ( data [ 2 ,num−1:num ] )

10 return l i n e s
11
12 # Attach 3D a x i s to the f i g u r e
13 f i g = p l t . f i g u r e ( )
14 ax = p3 . Axes3D( f i g )
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15
16 m = 100
17 n = ? # number o f p a r t i c l e s you want to animate
18 # the code demands a vec to r in shape (n , 3 N) ,
19 # where n i s number o f p a r t i c l e s and N are number
20 # of i t e r a t i o n s .
21 # i f your ar rays are not in t h i s shape , use
22 # pos = np . reshape ( pos (n , 3 , N) )
23 system = ? # t h i s i s the p o s i t i o n s o f the p a r t i c l e s

1 # to be animated . In t h i s code i t comes in and array
2 # with c o n f i g u r a t i o n (n , 3 , N) where N i s the number
3 # of i t e r a t i o n s .
4
5 # c r e a t e s animation data f o r a l l your d i f f e r e n t
6 # p a r t i c l e s
7 data = [ i for i in range (n ) ]
8 l i n e s = [ i for i in range (n ) ]
9 for i in range (n ) :

10 data [ i ] = [ system [ 0 ] [ i ] ]
11 l i n e s [ i ] = [ ax . p l o t ( data [ i ] [ 0 ] [ 0 , 0 : 1 ] ,
12 data [ i ] [ 0 ] [ 1 , 0 : 1 ] , data [ i ] [ 0 ] [ 2 , 0 : 1 ] , ’ o ’ ) [ 0 ] ]
13
14 # Set the axes p r o p e r t i e s
15 ax . s e t x l im3d ( [ 0 . 0 , 1 . 0 ] )
16 ax . s e t x l a b e l ( ’X ’ )
17
18 ax . s e t y l im3d ( [ 0 . 0 , 1 . 0 ] )
19 ax . s e t y l a b e l ( ’Y ’ )
20
21 ax . s e t z l im 3d ( [ 0 . 0 , 1 . 0 ] )
22 ax . s e t z l a b e l ( ’Z ’ )
23
24 ax . s e t t i t l e ( ’ 3D Test ’ )
25
26 # Creat ing the Animation ob j e c t
27 ani = [ i for i in range (n ) ]
28 for i in range (n ) :
29 ani [ i ] = animation . FuncAnimation ( f i g ,
30 updat e l i n e s , m, f a r g s =(data [ i ] , l i n e s [ i ] ) ,
31 i n t e r v a l =50, b l i t=Fal se )
32 p l t . show ( )
33 p l o t ( )

Part 1.2, calculating the needed fuel amount

We are now ready to calculate how much fuel we will need for a given boost.
First of all you will have to create a hole in your box through which the par-
ticles can escape and therefore accelerating the rocket/satellite. You will have
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to count the particles escaping through this hole and their momentum in the
direction normal to the surface area of the hole.

Figure 1: A NASA figure of the fundamentals of rocket engines

Remember one of our assumptions earlier in part1: the density and pressure
inside the compartment is constant. The amount of particles that escape the
hole as well as their momentum is therefore also constand causing the change in
momentum of our rocket engine to be constant. The force in the boost-direction
is given by F = dp

dt . A crucial point here is that the particles behave the same
way inside a small compartment as they do inside a big compartment. This
means you can (to make the simulations faster) create a small fuel compart-
ment and find out how much acceleration it gives you in the boost direction.
You can then just add enough equal compartments (the equivalent of having 1
big one) until you get the required acceleration.

You have now (hopefully) grasped how to accelerate your rocket. What
remains now is how much fuel you will need.

The goal of this part is to write a code to calclate the amount of fuel needed
to give the rocket a given boost ∆v. To do this you will have to split up your
boost into small time intervals. In exercise 1A.7 you calculate the amount of
fuel that you need in order to reach escape velocity in 20 minutes. Here you
need to experiment to find a way to calculate the time and the total fuel needed
for a general velocity change ∆v. You may adjust gas density, temperature,
total boost time and the size of the hole in order to obtain your goal. The less
fuel and the less acceleration time you manage to get, the better. But it is
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difficult to get both these measures low at the same time. You will need to find
a compromise.

In the end you should be able to calculate how many kilograms of fuel you
need to boost a rocket with mass 1100 kg. To make sure your calculations are
correct there’s a module inside the
AST1100SolarSystem class which checks this for you (you will be given more
information on how to use this class in the next part). All you have to do is
to enter the following lines at the end of your code and send in the required
variables:

1 from AST1100SolarSystem import AST1100SolarSystem
2 system = AST1100SolarSystem (∗∗ seed ∗∗)
3 system . massNeededCheck ( num boxes , boost [AU/ yr ] ,
4 dp/dt [ kg∗m/ s ˆ2 ] ( per box ) ,
5 num par t i c l e s p r s e c f r om one box , your answer [ kg ] )

this method tells you if your calculations are correct (within some tolerances)
or not, it does not give you the right answer. For the proper launch to reach
escape velocity, you will need to include the mass of all your fuel in addition to
the mass of the rocket. Remember to reduce the total mass of the rocket for
each small boost in time step dt.

For the first launch from your home planet, you can use

escapeVelMovie(self, deltaV, dt)

to see a video of you launch. This method takes the arguments deltaV (the
list of velocities for each time step dt in your calculation). It returns an xml
file to be loaded in MCAst showing you the trajectory of your satellite as you
send it out into space. This function is made for exercise 1A.7 where the task is
to reach escape velocity. As explained in that exercise, the output of the video
depends on whether your velocity is smaller than, equal to, or larger than the
escape velocity. In this project, you may choose to start with a different initial
boost. It is therefore not important for you to check whether you reach escape
velocity or not.
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