
Satellite project, AST 1100

Interlude: The Habitable zone

We will start with some considerations to help you decide which planet to land
on and what you need to bring of solar panels to have electricity for your lander
when you arrive at your destination.

Problems:

Exercise I.1: Find a formula which gives you the total area of the solar panels that your
lander unit needs during day time on your destination planet. The formula
should depend on properties of your star as well as some properties of the
planet and the distance to the planet. Make the formula general so you
can use it for the different planets in your solar system. Assume that
the lander needs 40W during daytime to run its instruments and that the
solar planels have an efficiency of 12%. Use exercise 1D.3 in part 1D as
an assistance to arrive at the answer.

Exercise I.2: Find a general expression for the surface temperature of a planet in your
solar system, as a function only of the surface temperature T∗ of your star,
the radius R∗ of your star as well as the distance rp between the star and
the planet. Use exercise 1D.4 in part 1D as a help.

Exercise I.3: If we assume that the surface temperature of a planet has to be within
260− 390 K in order to sustain life1. Find an expression for the minimum
and maximum distance from the star where a planet could sustain life,
using the (very simplistic) assumptions used in the last problem. If we
define this distance range to be the Habitable zone, what is the habitable
zone of our real solar system? Your star system? Which of your planets
fall within the habitable zone?

Part 3: Simulating the satellite trajectory

In this part you are preparing ourselves for a satellite trip to another planet.
The ultimate objective is to get your simulated satellite sufficiently close to the
target planet to be able to perform an orbital injection maneuver, placing the
satellite in a stable orbit. Remember we are still in the planning phase of the
mission and are only planning for what we THINK will happen. Later on, in
part 5, you will be tasked with launching the actual satellite and adjusting the

1This is the temperature range of liquid water (± ∼ 15K).

1

plan according to any unforeseen events which occur. Even later, in part 6, you
will then be asked to attempt to land the satellite, but for now, let’s see what
happens.

The first task is to choose the target planet. In part 2 you already had a
look at your different planets using SSView. Go back and look at your solar
system again: try to identify your planets using the information you have about
the distance from the star combined with the actual distance you see in SSView.
Then use the solutions of the above problem to find which of your planets are
in the habitable zone (in case you want to try to visit a planet with life, but an
ice planet or something else could of course be equally exciting).

When you have chosen your planet, use the formulas you deduced above to
find (1) the size of the solar panels you need to bring and (2) the average surface
temperature of your target planet. Note that the size of the solar panels may
become unrealistically big for some of the outer planets, but never mind. Now
we will start finding how to launch and then further boost the satellite in order
to arrive safely.

3.1 Simulating the satellite trajectory

First of all we will simulate the satellite trajectory. Your task is to find a set of
instructions to give the satellite which results in it hitting (or getting very close
to) another planet.

There are two different types of instructions you can give the satellite:

(i) Launch: Use large booster rockets to give the satellite an initial velocity
as well as the total amount of fuel you will need to achieve planetary orbit.
This command is only given once, at the start of the mission.

(ii) Boost: Use the satellite’s rocket engines to change the velocity of the
satellite. This command is given mid-flight, and can be issued multiple
times during the mission.

The actual calculations you will do are very similar to those you did in part
2, but now you only need to calculate the trajectory of the satellite, and not
the planets. We make the following set of simplifying assumptions:

• We include the gravitational force on the satellite from all the planets and
the star, but we neglect the gravitational force on the planets and star
from the satellite.

• We neglect the atmosphere of the home-planet when launching the satel-
lite.

• All effects of using the engines on the satellite are instantaneous. That is,
using the engine results in an instantaneous change in velocity. This in
not too unreasonable since a rocket engine can work in seconds or minutes,
while the whole satellite trip takes months or years. Although we treat
the boosts as instantaneous, you will need to count with a finite boost
time for calculating the fuel as explained in part 1. This is the only case
in which the time of the boost is taken into account.

• The satellite moves in the same (x-y) plane as all the planets.

2

• Remember to calculate the amount of fuel you need for each boost (in-
cluding the launch). You will need this total amount of fuel later on in
part 5.

You are solving the following equations:

d2rS
dt2

= −
∑
i

Gmi

r3iS
riS , (1)

where i runs over all the planets and the star, rS is the position of the satellite,
mi is the mass of planet (or star) i and riS = rS − ri is the relative position
vector between planet i and the satellite. Solve these equations using the Euler-
Cromer method, like you did in part 2. Use the positions of the planets that
you found in part 2 (we recommend you use the scipy.interpolate library to
interpolate planet positions).

You need your satellite to get close enough to the target planet for a sta-
ble orbit to be possible. The minimum distance needed to achieve this varies
depending on the characteristics of the planet, but the minimum distance will
typically be of the order of magnitude of 1.5 · 106 km or 0.01 AU.

Exercise 3.1.1: Show that the force on the satellite from the target planet is k times as
large as the force on the satellite from the star if the distance from the
planet is

r = R

√
m

M

1

k
,

where R is the satellite–star distance, m is the mass of the planet, while
M is the mass of the star. If we set i.e. k & 10, this will yield a distance
at which the forces on the satellite are dominated by the force from the
planet, and a stable orbit is possible. A larger k will mean a more stable
orbit.

Exercise 3.1.2: Show that the velocity you need in order to get into a stable circular orbit
around the target planet is

vstable orbit =

√
MplanetG

R
,

where vstable orbit is the velocity relative to that planet, and we neglect the
star and the other planets. Denoting φ and χ as shown in Fig. 1, show
that in order to achieve a stable circular orbit clockwise around the planet
(flip both signs for counter-clockwise orbit), the velocity needs to be

~vstable orbit = ~vso =
(
− vso sin θ, vso cosφ

)
.

Show also that the change in velocity needed to achieve this is given as

∆~v =
(
− vso sinφ− v0 cosχ, vso cosφ− v0 sinχ

)
.

(Hint: Centripetal acceleration.)

NB! The velocity v0 and angle χ are as seen from the reference system of
the planet. What are the expressions for these, given the satellite initial

3

Figure 1: The geometry of the planet–satellite system at a time when the dis-
tance between the two is R, with R hopefully small enough to achieve a stable
orbit after an orbital injection maneuver is performed. The angle φ denotes the
angle between the x-axis and the planet-satellite vector. The angle χ denotes
the angle between the velocity of the satellite relative to the target planet at
this point, v0, and the x-axis. Note that if we regard the closest approach be-
tween the satellite and the planet, the relative velocity will be perpendicular
to the planet–satellite vector, i.e. χ = 90◦ + φ. However, since we are using
finitely many time steps in our simulation, this will in general not be true of
our “closest” approach.

velocity ~vsat = (vsatx, vsaty), and planet velocity ~vpl = (vplx, vply), both
relative to the star. To further complicate the process, recall that you
only have a list of positions for the planets at different times. How would
you proceed to numerically find ~vpl from the list of positions ~rpl?

Hints :

• Use very small time steps for the first part of the journey, when the satellite
is close to the surface of the home planet. At this time, the forces between
the satellite and the home planet are very large, meaning you need a
correspondingly small time step in order to ensure stability of the solution.
After the satellite has left the immediate vicinity of the home planet, you
should increase the time steps to increase the integration speed.

• You do not have to actually simulate the last boost (orbital injection
maneuver), you only have to compute how large it has to be and in what
direction in order to achieve a stable orbit. The satellite orbiting the
target planet and the landing is handled separately, in parts 6 and 7. If
you do want to simulate the last boost and the subsequent orbit of the
satellite around the target planet in this part, you will have to again lower
the time step drastically once you get close.

4

• In order to get the positions of the planets at an arbitrary time using
the list of positions and times from part 2 you can use the interpolation
function in python:

1 import numpy as np
2 import s c ipy . i n t e r p o l a t e as i n t e r
3
4 # Import p o s i t i o n s and times c a l c u l a t e d in part 1 .
5 i n F i l e = open(’ p o s t i o n F i l e . npy ’ , ’ rb ’)
6 # i f you saved both p o s i t i o n s and times , use t h i s :
7 planetPos , t imes = np . load (i n F i l e)
8
9 # You need these two l i n e s in s t ead i f us ing

10 # the f i l e provided by checkP lane tPos i t i ons
11 planetPos = np . load (i n F i l e)
12 t imes = l i n s p a c e (0 , T max , t ime s t ep s)
13
14 #planetPos has shape (2 , N planets , t ime s t ep s)
15
16 # The f o l l o w i n g c a l l makes the i n t e r p o l a t i o n func t i on .
17 # The l a s t index o f planetPos should be time .
18 pos i t i on sFunc t i on = i n t e r . in te rp1d (times , p lanetPos)

Now you have a function that interpolates based on your original list and
returns positions for any time. If you want the positions of the planets at
time t0 you just call the function:

1 p o s i t i o n s a t t 0 = pos i t i on sFunc t i on (t 0)
2 #p o s i t i o n s a t t 0 has shape (2 , N planets)

• It is not entirely trivial to get the satellite close to another planet, but with
a bit of playing around, using different combinations of boosts and some
trial and error, you should be able to get fairly close. To do this playing
around you can for example continuously print the distance between the
satellite and the target star for every 1000th time step.

5

