
Satellite project, AST 1100

Part 4: Skynet

The goal in this part is to develop software that the satellite can use to orient
itself in the star system. That is, that it can find its own position, velocity as
well as its orientation using the different sensors aboard the satellite itself. You
will have to show that the software you develop here allows the satellite to orient
itself. After this manual test has been successfully completed, the satellite will
perform these operations automatically. This means that you can at any point
ask the satellite for its own position and velocity. The test and how to ask the
satellite for this information will be explained in the next part of the project.

4.1 Orientation

The first step is to figure out the orientation of the satellite itself. A neat way
to do this is to take a picture of the sky in the forward direction and figure out
where on the sky it is pointing. You have all been given a spherical picture of
the whole background sky, you can now take the picture and compare it to this
background. We use spherical coordinates to denote the points on the sphere,
defined as in fig. 1.

Stereographic projection

In order to compare the pictures you take from the satellite to the background
sky you need to make projections from the spherical sky to a flat surface to

Figure 1: Definitions of the angles θ and φ in our spherical coordinate system.
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Figure 2: Sketch showing how the stereographic projection is made. On the left
is shown a slice of the unit sphere and shows the lines of projection from the
sphere to the tangent plane. The intersection of the straight lines with the right
hand side of the circle are the points on the sphere which are projected onto the
flat picture on the right hand side (of the left figure). The field of view (FOV),
α, determines the maximum values of θ− θ0 (along the ypicture-axis) and φ−φ0
along the xpicture-axis shown in the picture, i.e. (θ − θ0)max = αθ/2 for φ = φ0
and (φ− φ0)max = αφ/2 for θ = θ0. Here, αθ and αφ denotes the FOV in the θ
and φ directions, respectively.

compare it to the flat picture take by the satellite. One way to do this is to
use stereographic projection, this maps each position on the sphere, denoted by
θ and φ, onto a point on the tangent plane of the surface about some point
(θ0, φ0). Since we are restricting ourselves to the x-y-plane (equator) we will
only do projections where θ0 = π/2. The points on the tangent surface are
denoted by the coordinates xpicture and ypicture, and (θ0, φ0) corresponds to
xpicture = ypicture = 0. (See fig. 2)

Take care not to think of xpicture and ypicture as the coordinates of space
(which are called x, y and z), remember that now these are just the coordinates
on the tangent plane, defined such that the ypicture-axis is along the negative θ
direction and the xpicture-axis is along the positive φ direction.

The projection is given by the transformation equations:

xpicture = k sin θ sin(φ− φ0), (1)

ypicture = k
(

sin θ0 cos θ − cos θ0 sin θ cos(φ− φ0)
)
. (2)

where

k =
2

1 + cos θ0 cos θ + sin θ0 sin θ cos(φ− φ0)
. (3)
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The inverse transformations, which are the ones we need, are given by:

θ =
π

2
− sin−1

(
cos c cos θ0 +

ypicture sin c sin θ0
ρ

)
, (4)

φ = φ0 + tan−1

(
xpicture sin c

ρ sin θ0 cos c− ypicture cos θ0 sin c

)
, (5)

where

ρ =
√
x2picture + y2picture, (6)

c = 2 tan−1
(ρ

2

)
. (7)

We will be working with projections in the equatorial plane with the z−direction
upwards. For these projections xpicture (the coordinate in the tangent plane)
will be the horizontal coordinate of the projections (picture), while ypicture will
be the vertical coordinate.

Optional exercise: If the camera onboard the satellite has a field of view αφ in the horizontal
direction, show that the the maximal and the minimal value of x in the
picture is given by:

xmax/min = ± 2 sin(αφ/2)

1 + cos(αφ/2)
. (8)

Show likewise that if the field of view in the in the vertical direction is
given by αθ, we get:

ymax/min = ± 2 sin(αθ/2)

1 + cos(αθ/2)
. (9)

(Hint: For xmax/min look at the case when y = 0. Likewise for ymax/min

look at the case when x = 0. These cases greatly simplify the trigonometric
expressions in equations 1 and 2.)

Look at a sample picture (for instance sample0000.png) taken by the satel-
lite. How many pixels does it have in the horizontal and the vertical direction?
You can see this by loading the picture into a python array as explained in the
next section.

Goal 1: Make 360 projections with the same numbers of pixels as the sample image,
and with field of view αφ = αθ = 70◦; One centered on each degree of φ0
in the equatorial plane.

Make a grid of x and y values corresponding to each of the pixels in the pro-
jection. Use the inverse formulas for stereographic projection to find the values
of θ and φ corresponding to each x and y coordinate. You then have to use the
ang2pix function in the AST1100SolarSystem module to go from these θ and
φ values to a pixel on the spherical background. Save these 360 projections as
png files on your computer, or even better, as one big numpy array with shape
[360, ypix, xpix, 3] which can be opened with np.load(). A technical detail
here is that since all rgb values are integers between 0 and 255, you can save
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a big amount of space by using the keyword argument dtype=np.uint8 when
initializing these arrays. Now each element of the array takes up 8 bits space
on memory and disc instead of 64 bits.

The numpy array file himmelkule.npy contains the RGB values of the whole
celestial sphere. The ang2pix function takes two arguments theta and phi and
returns an integer corresponding to the pixel on the spherical background. It is
a static function, meaning that it can be called without making an instance of
the class AST1100SolarSystem. This is an example of how to use the celestial
sphere array together with ang2pix:

i n F i l e = open( ’ himmelkule . npy ’ , ’ rb ’ )
himmelkulen = np . load ( i n F i l e )
i n F i l e . c l o s e ( )
theta , phi = pi /2 , 0
pixnum = AST1100SolarSystem . ang2pix ( theta , phi )
temp = himmelkulen [ pixnum ]
rgb = [ temp [ 2 ] , temp [ 3 ] , temp [ 4 ] ]

The variable rgb now contains three numbers, corresponding to the red, green
and blue value of the celestial sky in φ = 0, θ = π/2. temp[0:1] is not used
(supposed to contain theta and phi).

PNG files

In a png-file, colors are represented by three integers from 0 to 255, these are
the RGB values for each pixel.

Here is an example code that shows how you can open and manipulate png
files in python:

from PIL import Image
import numpy as np

img = Image . open( ’ example . png ’ ) #Open e x i s t i n g png
p i x e l s = np . array ( img ) #Make png in to numpy array
width = len ( p i x e l s [ 0 , : ] )
r e d p i x e l s = [ ( 2 5 5 , 0 , 0) for i in range ( width ) ]#Make array o f red p i x e l s
p i x e l s [ 5 0 0 , : ] = r e d p i x e l s #I n s e r t i n to l i n e 500
img2 = Image . fromarray ( p i x e l s )
img2 . save ( ’ exampleWithRedLine . png ’ ) #Make new png

As you may well see, this code opens a png file and makes a new png with
a horizontal red line at row 500. Notice that images have the y-coordinate as
their first index, and the x-coordinate as their second index.

Goal 2: Write code to find the orientation of the satellite given an input png. Your
code should take a filename as imput and print the orientation angle φ0
(in degrees) that fits best.

Each time you want to find the orientation of the satellite, you can look at a
picture from the satellite (in the equatorial plane) and compare this picture to
the 360 projections you made. You can do this systematically by doing a least
square fit on the difference between the pictures. When doing the comparison
of the pixels, do the least square fit over all the colors.
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Hint: You can substract whole numpy arrays from each other as long as they
have the same shape, even images consisting of [ypix, xpix, 3] values.

4.2 Velocity

The next step is to find the velocity of the satellite with respect to the star
in your star system. In order to do this we can use the Doppler effect. By
measuring the position of the Hα spectral line in two stars positioned at different
angles, you can measure the Doppler shift and thereby the two components of
your velocity vector. You will be given access to the function getRefStars()

which gives you the shift in wavelength ∆λ for the Hα line at 656.3nm for these
two stars with respect to your star. A positive shift means that the reference
star is moving away from your home star.

Goal 3: Use information from getRefStars() to calculate the radial velocities of
the reference stars vrefstar in the rest frame of your star.

The two reference stars are are found at some angles φ1 and φ2. By ana-
lyzing the spectra from these reference stars taken from the spectrograph on
the satellite, and using the doppler effect, you will be able to obtain the radial
velocity component of your satellite with respect to the reference star. When
the orientation starts, the satellite will return ∆λ for each of the reference stars,
as seen from the satellite. The radial velocity of the reference star relative to
the satellite is vrel = vrefstar − vsat. Where vsat is the velocity of the satellite
in the direction of the reference star. vsat in the direction φ1 of reference star
1 will be called v1, and in the direction φ2 of reference star 2 will be called v2.
From this information, you should be able to find the velocity component of the
satellite in the directions φ1 and φ2 in your regular coordinate system (the one
relative to your home star).

Lets define

û1 ≡
(

cosφ1
sinφ1

)
, (10)

and

û2 ≡
(

cosφ2
sinφ2

)
. (11)

These are the unit vectors in the directions φ1 and φ2.
The velocity components that you can measure using the spectrograph +

doppler effect are the following

v1 = v · û1 = vx cosφ1 + vy sinφ1, (12)

v2 = v · û2 = vx cosφ2 + vy sinφ2, (13)

these are the radial velocity components in the directions of the two reference
stars. These equations can be written on matrix form(

v1
v2

)
=

(
cosφ1 sinφ1
cosφ2 sinφ2

)(
vx
vy

)
. (14)

This is fine, but we have v1 and v2 and want to find vx and vy, so we need
the inverse relationship(

vx
vy

)
=

1

sin(φ2 − φ1)

(
sinφ2 − sinφ1

− cosφ2 cosφ1

)(
v1
v2

)
. (15)
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Goal 4: Make a program that can take values of ∆λ of the Hα line from each of
the two reference stars, and calculate the velocity (vx, vy) of the satellite
in the coordinate system with your home star at the origin. Check that
your program gives you what you expect if both ∆λ are the same as in
the rest frame of the star (then the satellite has zero velocity), and if e.g.
both ∆λ are zero (your satellite has the same velocity as each of the stars
along their given direction).

Optional exercise: (For those who like linear algebra.) Show that the inverse of the matrix(
cosφ1 sinφ1
cosφ2 sinφ2

)
is given by

1

sin(φ2 − φ1)

(
sinφ2 − sinφ1

− cosφ2 cosφ1

)
.

Optional exercise: For what values of φ1 and φ2 does this inverse not exist? What does
these special values mean for about û1 and û2? Are û1 and û2 linearly
independent?

4.3 Position

We will assume that the satellite can use radar to find the distance from itself
to either of the planets. This is not an entirely trivial exercise and you will not
do it, we will simply assume that the satellite itself can figure out the distance
to all of the different planets (and the star) at any time you want. The satellite
will return a list containing all these distances in AU [ dist p0, dist p1,

dist p2, ..., dist star ].
What you have to do is use the list of distances to all of the planets to obtain

the position of your satellite (remember that you have already calculated the
positions of all the planets at a list of times and can use interpolation to get the
positions at any given time). How to do this is up to you. We will discuss some
approaches in class.

Goal 5: Write a program that takes as input a list containing the distances to all
planets and the star, as well as the current time of the measurement.

Hint: To test your implementation of Goal 5, you should be able to generate
a random x and y position within your solar system at some time 0 < t < 20,
and generate the list of distances from this position to each of the planets
and the sun, [ dist p0, dist p1, dist p2, ..., dist star ]. Run this
list through your analysis to check if you retrieve the correct random coordinate
you started with. Try this a couple of times.
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