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1 The line integral of a vector field
The work done by a force F when a body is following
a trajectory C is equal to the body’s change in kinetic
energy. This is the statement of the work-energy theorem
and it’s the main reason why we’re interested in the work
done by a force. If we have a constant force which is
acting on a body moving on a straight line segment d,
then the work done is defined to be

W = F · d = |F||d| cos θ

where the dot-product conveniently picks out the component of the force
in the direction along d. If we have a varying force over a more complicated
trajectory we divide the trajectory into ever smaller pieces and compute the
work done as an integral

W =

∫
C
F · dr

where dr here represents an infinitesimal displacement along the curve C.
This kind of integral is called a line integral over a vector field F and the
calculation of the work done by a force on a body who’s trajectory is C is only
one of it’s applications. More generally, since the dot product always picks out
the component of F along dr, it can be thought of as a measure of how much F
is going in the direction of C.

2 Computation
In electromagnetic theory we’ll mainly be interested in computing integrals over
closed curves and later we’ll see that such integrals can be evaluated via an im-
portant theorem called Stokes’ Theorem. However this isn’t always the easiest
method so we’ll go trough some of the theory of direct computation here. In
some easy cases we can use geometric considerations to compute such integrals
without doing much calculation, but in the general case we need to parametrize
our curve C by expressing each of our coordinates as a function of some param-
eter t. Supposed that we have expressed each of our coordinates as a function
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Figure 1: The work from a varying force is found by chopping the trajectory C in to
tiny segments and summing up the contributions from each segment.

of t such that r = r(t) for a ≤ t ≤ b, then an infinitesimal segment dr can be
expressed as

dr = r′(t)dt

and the field F along the path C can be expressed as F = F(r(t)) then this
integral will turn out as an integral just over t such that∫

C
F · dr =

∫ b

a

F(r(t)) · r′(t)dt.

It’s generally up to you to chose what parameter to use whether it’s an angle,
time or maybe one of the coordinates. The line integral will be independent of
the parametrization of the curve C.

2.1 Example

Figure 2: A sketch of the field F = −ŷi+x̂j
projected onto the xy-plane.

Find the line integral of F = −ŷi+ x̂j
around a unit circle C centered at
the origin in the xy-plane oriented
counter clockwise. A sketch of the
field is shown in Figure 2. Geomet-
rically we see that the vectors are al-
ways tangent to the curve C so that
F · dr = |F||dr| = Fdr. Now |F| =√
x2 + y2 = 1 such that

∮
C
F · dr = F

∮
C
dr = 2π,

since
∮
C dr is just the circumfer-

ence of the circle.
Let’s also do it by direct compu-

tation. We can parametrize the circle
by r(t) = cos t̂i+sin t̂j+0k̂ such that

dr =
(
− sin t̂i+ cos t̂j

)
dt

and
F = − sin t̂i+ cos t̂j.
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Figure 3

You might want to check that this parametrization indeed satisfies the equation
for a unit circle, x2 + y2 = 1. We get∮

C
F · dr =

∫ 2π

0

(
sin2 t+ cos2 t

)
dt = 2π.

2.2 Example
Let us now find line integral of F = r̂/r2 around a unit circle centered at
the origin C going counter clockwise. This is a very important field for our
purposes since it has the same mathematical form as the field from a point
charge. To accomplish this in Cartesian coordinates we need to convert by
using the relations r2 = x2 + y2 + z2 and

r =
r

r
=

x̂i+ ŷj+ zk̂√
x2 + y2 + z2

such that

F =
x̂i+ ŷj+ zk̂

(x2 + y2 + z2)
3
2

.

Now this field is only dependent of r so we might as well orient our coordinate
axes such that our curve C lies in the xy-plane. We can then use the same
parametrization as in the previous example. This gives

F =
cos t̂i+ sin t̂j

(cos2 t+ sin2 t)
3
2

= cos t̂i+ sin t̂j

such that ∮
C
F · dr =

∫ 2π

0

(− cos t sin t+ sin t cos t) dt = 0.

In this case it is however easier and more natural to use a spherical polar
coordinate system. In this system the field along the circle C where r = 1 is just
F = r̂ and by letting circle reside in the xy-plane, such that we don’t have to
worry about φ, a parametrization is obtained by letting t = θ for 0 ≤ θ ≤ 2π.
Furthermore since r is constant, dr is zero
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dr = drr̂+ rdθθ̂ = 0r̂+ dθθ̂

such that ∮
F · dr =

∫ 2π

0

0dθ = 0

In fact it turns out that the line integral over this field is zero for any closed
curve since

∫
C
F·dr =

∫ rb

ra

1

r2
r̂·
(
drr̂+ rdθθ̂ + r sin θdφφ̂

)
=

∫ rb

ra

1

r2
dr = −1

r

∣∣rb
ra

=

(
1

rb
− 1

ra

)
= 0

when ra = rb. Note the importance of this result. It says that the work
around any closed loop in an electric field from a point charge is zero. We’ll get
back to it later.

3 Curl of a vector field
We earlier found that the we can think of the line integral along a curve C of a
vector field F as measuring how much F is going in the same direction of C. If
we have a closed loop like the circle in the above examples this means that we
can then think of the line integral of measuring how much the field F goes in a
circle C, or rather how much F is circulating around C1.

Suppose now that we wanted a measure how much the field F is ’circulating’
at a point r (figure 4). One way to do this is to take a closed curve C with r as
it’s center and evaluate the integral

∮
C F · dr with the curve C getting smaller

and smaller. However since
∮
C F · dr → 0 when the curve shrinks to zero we

divide by the area A enclosed by the curve and define the curl at a point r and
in the direction of n̂ to have the value

curl F · n̂ = lim
A→0

∮
C F · dr
|A|

(1)

where n̂ is the unit normal to the planar area enclosed by C. We get the
curl in any direction by varying the direction of n̂ (figure 4. This is then our
measure of circulation or rotation of a vector field F around a point r. If we
think of F as the velocity field of a fluid and place a paddle wheel at a point
with curl, it will rotate. Because of the directionality and magnitude the curl
of F is itself a vector field.

4 Computation of Curl
If you found the definition of curl in equation 1 complicated, do not worry. The
point was that the curl had something to do with ’circulation’ or ’rotation’ of
a vector field and is related to closed loop integrals. If you have this intuition

1In fluid dynamics where F often represents the velocity in a fluid, the integral around
such a closed loop is actually called the circulation around C.
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Figure 4: The definition of curl is related to a line integral over a closed loop.

Figure 5: The curl in the field at neighbouring points cancel each other.

you’ll be fine. This definition (equation 1) is not very handy for computing
either. Luckily it can be shown that in Cartesian coordinates

curl F =

(
∂Fz
∂y
− ∂Fy

∂z

)
î+

(
∂Fx
∂z
− ∂Fz

∂x

)
ĵ+

(
∂Fy
∂x
− ∂Fx

∂y

)
k̂ (2)

And many just take this as the definition of curl. As complicated as this
formula might seem, this is an improvement since this is actually a cross product
with the del-operator ∇ = ∂

∂x î+
∂
∂y ĵ+

∂
∂z k̂ which can conveniently be expressed

as

curl F = ∇× F =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣ .

5 Stokes’s Theorem
Looking back at the definition of curl in equation 1 it shouldn’t be too surprising
that there is a connection between the line integral of a closed loop and the curl
of a vector field. This connection is encapsulated in Stokes Theorem which
states that

∮
C
F · dr =

∫
S
∇× F · dA, (3)
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Figure 6: Stokes’ Theorem can be used for any surface S who’s boundary is the curve
C.

where S is any surface bounded by the closed curve C and dA = n̂dA is
the infinitesimal area vector perpendicular at any point to S (figure 6). The
orientation of n̂ and C is governed by the right had rule2. In words this theorem
states that the line integral of a vector field F around a closed loop is equal to
the surface integral of the curl of F on any surface bounded by the curve C.

Some intuition on why Stokes’ theorem is true can be gained by considering
the diagram in Figure 5. From the definition of curl we saw that it is really
nothing but line integrals of small loops. If we cover an entire surface with the
curve C as it’s boundary with many such small loops we see that neighboring
contributions will have a tendency to cancel each other so that if we sum their
contributions we get nothing but the entire integral around C. This is the essence
of the theorem and the idea behind a formal proof.

5.1 Example
Consider the field of Example 2.1 F = −ŷi + x̂j . Let’s compute the same
line integral around the unit circle C in the xy-plane, but now by using Stokes’
Theorem. Even tough any surface enclosed by C would do, we chose the easiest
one, namely the portion of the xy-plane enclosed by C. First we find the curl of
F (equation 2).

∇× F =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

−y x 0

∣∣∣∣∣∣ = 2k̂.

The unit vector normal to the xy-plane is k̂ so that dA = k̂dA. Now applying
Stokes Theorem∮

C
F · dr =

∫
S
∇× F · dA =

∫
S
2k̂ · k̂dA = 2

∫
S
dA = 2π

where
∫
S dA is the area of the unit disk S.

2If your index finger points in the direction of C and your ring finger points towards the
surface S then your thumb will indicate the direction of n̂. See Figure 6.
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5.2 Example
The radial field of Example 2.2 F = r̂/r2 has no obvious rotation so we should
expect that the curl is zero. You could check this by computing ∇×F directly
but it actually follows from Stokes Theorem. We did show in Example 2.2 that∮
C F · dr = 0 for any closed curve C. By Stokes’ it then follows that∮

C
F · dr =

∫
S

∇× F · dA = 0

for any surface S, but this can only be true if

∇× F = 0

.

6 Fields with ∇× F = 0

When there is no curl in the field it follows from Stokes Theorem that for any
closed curve C ∮

C
F · dr = 0.

This result is in itself important. For a force field it means that the work
done, and thus the change in kinetic energy, is the same for any closed loop.
Exploring this a little further, let’s now imagine that the curve C consists of two
curves C1 and C2 connecting two points P1 and P2 as in Figure 7. This means
that ∮

C
F · dr =

∫
C2

F · dr−
∫
C2

F · dr,

such that when a vector field has zero curl∫
C1

F · dr =

∫
C2

F · dr

for any two curves C1 and C2. This is called path independence. Considering
a force field again, this means that the work done in taking any path between
two points will necessarily be the same. You might have encountered such fields
before in mechanics. They are called conservative because they conserve energy.
As it turns out such field can always be written as the gradient of some scalar
function φ called the potential such that F = ∇φ. I’ll leave it up to you to show
that ∇×∇φ = 0.

7 Electromagnetism and Curl
Like for divergence the concept of curl is also important in electromagnetic
theory. We showed in an example that ∇×F = 0 for a r̂

r2 field and since every
electrostatic field is a superposition of fields on this form this result carries over
to electric field E.
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Figure 7: Irrotational fields are path independent, meaning that any line integral of
the field connecting two points give exactly the same value.

∇×E = 0

so that by Stokes Theorem ∮
C
E · dr = 0

for any closed curve C. So electrostatic fields have are irrotational and there-
fore conservative. However, we’ll see that when we have changing magnetic
fields in space, this induces curl in the electric field. This law is called Faraday’s
law

∇×E = −∂B
∂t
,

and is the basis for how dynamo’s work and therefore for our entire electricity
based society. We’ll also meet Ampere’s law which states that

∇×B = µ0J+ µ0ε0
∂E

∂t

where J is the current density at the point in question. This law is telling
us that curl, or rotation, in the magnetic field are created by moving charges
(currents) or changing electric fields. Notice the the fact that changing electric
field induces curl in the electric field and vice versa, so that if there are no
magnetic fields to begin with we can actually induce one by a varying electric
field. Now the magnetic field will itself be changing and in turn induce an electric
field. Repeat the argument and you’ll find that this process is self sustaining and
as we’ll discover this is the secret behind the nature of electromagnetic waves.
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