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1 Thermodynamic identities and Legendre transforms

2 Fermi-Dirac and Bose-Einstein distribution

When we discussed the ideal gas we assumed that quantum effects were not important. This was implied
when we introduced the term 1/N ! for the partition function for the ideal gas, because this term only
was valid in the limit when the number of states are many compared to the number of particles.

Now, we will address the general case.

We start from an individual particle.

For a single particle, we address its orbitals: Its possible quantum states, each of which corresponds to
a solution of the Schrodinger equation for a single particle.

For many particles we will address how the “fill up” the various orbitals – where the underlying assump-
tion is that we can treat a many-particle system as a system with the same energy levels as for a single
particular system, that is as a system with no interactions between the states of the various particles.
However, the number of particles that can occupy the same state depends on the type of particle:

For Fermions (1/2 spin) Only 0 or 1 fermion can be in a particular state.

For Bosons (integer spin) Any number of bosons can be in a particular state.

We will now apply a Gibbs ensemble approach to study this system. This means that we will consider
a system where µ, V, T is constant. We can use the Gibbs sum formalism to address the behavior of
this system. We will consider a system that consists of a single orbital in equilibrium with a reservoir of
constant chemical potential and constant temperature (and volume). From this we can find the average
number of particles in a particular state, 〈N〉s, and we will then sum the particles in all possible states
to find the total number of particles.

This gives the number of particles as a function of the chemical potential. If, instead, we consider the
number of particles as the given quantity, we can instead solve the equation for the number of particles
to find the chemical potential. This is the general strategy of the approach we will take here.

We address a system consisting of a single orbital – a single state – with energy ε.

The Gibbs sum for this system is

ZG =
∑
N

∑
s

e−(ε−Nµ)/kT .

The probability to have N particles in a state of energy ε is then

P (ε,N) =
1

ZG
e−(ε−Nµ)/kT ,

and the average number of particles in this state is

〈N〉(ε, µ, T ) =
∑
N

P (ε,N)N ,

(The general strategy is then to solve this equation for µ(T, V,N)).

Let us first address Fermions. In this case we can have N = 0 or N = 1 for a given state. The partition
function is then

ZG = e−(0−0µ̇)/kT + e−(ε−1µ̇)/kT = 1 + e−(ε−µ)/kT ,

and the average number of particles in this state is

〈N〉 = 0 · 1 + 1 · 1

ZG
e−(ε−µ̇)/kT =

e−(ε−µ)/kT

e−(ε−µ)/kT + 1
=

1

e(ε−µ)/kT + 1
,
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we call this the Fermi-Dirac distribution and we often use the symbol f(ε, µ, T ) for the distribution
function – corresponding to the average number of particles at the state with energy ε:

f(ε, µ, T ) = 〈N〉(ε, µ, T ) .

How does this function look? We can plot the function

f(x) =
1

ex + 1
,

as a function of x from −∞ to +∞ using the following script:

% Plot FD

x = linspace (-10,10);

f = 1.0./( exp(x)+1);

plot(x,f)

xlabel(’(\epsilon -\mu)/kT’);

ylabel(’f’)

and the results as shown in the figure:
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We see that the function goes from 1 for low x to 0 for high x, and that the transition is over a region
which size depends on kT . We see the effect of kT by plotting f as a function of ε−µ for different values
of kT with kT = 0.1, 1.0, and 10.0 · ε− µ.

% Plot FD

ktvalues = [4.0 1.0 0.25];

legarray = [];

for i = 1: length(ktvalues)

kt = ktvalues(i);

x = linspace (-20,20);

f = 1.0./( exp(x/kt)+1);

plot(x,f)

hold all

legarray = [legarray; sprintf(’kT/(\\ epsilon -\\mu)=%3.1f’,kt)];

end

xlabel(’(\epsilon -\mu)’);

ylabel(’f_{FD}(\ epsilon , \mu,T)’)

legend(legarray);
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kT /(ε − µ) = 4.0
kT /(ε − µ) = 1.0
kT /(ε − µ) = 0.2

What happens when T = 0. We see from the plots that the function approaches a step function the goes
from 1 to 0 at the chemical potential. We call the chemical potential at T = 0 the Fermi energy

εF = µ(T = 0) .

At T = 0 all the orbitals up to the level εF are occupied – and none of the levels above εF are occupied.

Later on we will see how we can relate εF to the number of particles N in the gas.

2.1 Bose-Einstein distribution

For Bosons more than one particle can be in the same orbital. The Gibbs sum and the average number
of particles per orbital is then different than for Fermions.

Examples of bosons are photons, phonos, and particles such as Helium-4.

We find the number of particles in an orbital with energy ε using the Gibbs sum formalism.

The Gibbs sum is

ZG =

∞∑
N=0

∑
ε(N)

e−(ε(N)−Nµ)/kT =

∞∑
N=0

e−(ε−µ)N/kT =
1

1− e−(ε−µ)/kT
,

and the average number of particles in this orbital is

〈N〉 =
∑
N

∑
s(N)

N

ZG
e−(ε(N)−Nµ)/kT

=
1

ZG

∑
N

Ne−(ε−µ)N/kT

=
1

ZG

∑
N

kT
∂

∂µ
e−(ε−µ)N/kT

=
∂

∂µ
kT lnZG ,

where we have used a usual “trick” by introducing the derivative and taking it outside the sum.

The result is

〈N〉 = fBE(ε, µ, T ) =
1

e(ε−µ)/kT − 1
.
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We have plotted the Bose-Einstein distribution along with the Fermi-Dirac distribution in the following
figure:

% Plot FD

kt = 1.0;

legarray = [];

x = linspace (-10,10);

f = 1.0./( exp(x/kt)+1);

plot(x,f)

hold all

legarray = [legarray; ’FD’];

x = linspace (0.4 ,10);

f = 1.0./( exp(x/kt) -1);

plot(x,f)

legarray = [legarray; ’BE’];

x = linspace (-1.0,10);

f = exp(-x/kt);

plot(x,f)

legarray = [legarray; ’C ’];

xlabel(’(\epsilon -\mu)/kT’);

ylabel(’f(\epsilon , \mu,T)’)

legend(legarray);

ax = axis();

ax(4) = 2.0;

axis(ax);
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We see that the distribution diverges as ε approaches µ, that is, as ε− µ approaches 0.

This means that as the temperature goes towards zero, all the particles will be in the ground state.

2.2 Classical limit

What happens in the high temperature (or low density) limit?

In the classical limit, we would demand that the number of atoms in an orbital is very small – hence
there would not be any problems with particles being in the same orbital.

This means that the distribution function f also must be very small, f � 1, which in turn implies that
the exponential term must be very large. In that case, we can assume that it is much larger than 1 and
the ±1 in the denominator does not matter. In the classical limit we therefore get:

f(ε, µ, T ) ' e(ε−µ)/kT ,
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We call this the classical distribution function.

We plotted this in the same plot, and see that it matches nicely for large values of (ε− µ)/kT .

How does this results pair up with our previous results for an ideal gas in the classical limit?

Our previous results were for a given number of particles, N , but our results now are for a given chemical
potential. For a given chemical potential, µ, we can find the average number of particles as the sum of
the (average) number of particles in each possible orbital, s, summed over all possible orbitals s:

N ' 〈N〉 =
∑
s

〈N〉s =
∑
s

f(εs, µ, T ) ,

In the classical limit, we have found that f has a simple form, so that the sum is:

N =
∑
s

exp((εs − µ)/kT = eµ/kT
∑
s

eε/kT ,

where we regonize the sum as the one-particle partition function, Z1:

N = eµ/kTZ1 ,

and the chemical potential therefore is:

µ = kT ln(N/Z1) .

For an ideal gas – that is for a particle in a box – we found that the one-particle partition function is

Z1 = nQV ,

where

nQ =

(
mkT

2πh2

)3/2

,

was called the quantum concentration. The chemical potential is therefore

µ = kT ln(N/(nQV )) = kT ln(n/nQ) .

3 Fermi gases

We can use a similar approach to determine the number of particle in a Fermi or a Boson gas – we know
that the number of particles is given as the sum of the number of particles in each orbital:

N ' 〈N〉 =
∑
s

f(εs, µ, T ) ,

where we find the (average) number of particles for a given µ. We could also assume that the number of
particles is given, and that we want to find the chemical potential. How would we proceed?

Let as start at very low temperatures – or at T = 0. In this case, the Fermi distribution is a step function.
All the states below the chemical potential are occupied by one particle, and none of the states above
the chemical potential are occupied.

We call the chemical potential at T = 0 the Fermi energy for the system:

εF = µ(T = 0) .

For a given value of the Fermi energy, we can simply find the number of particles as the number of states
with energies below (or at) the Fermi energy, because for all these states will be filled with exactly one
particle.:

N ' 〈N〉 =
∑
s

f(εs, µ, T = 0) =
∑
εs≤εF

1 .
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We therefore need to find how the states are distributed in energy. The states for a single particle in a
box of size L× L× L are given as:

ε(nx, ny, nz) =
~2

2m

(π
L

)2n2x + n2y + n2z︸ ︷︷ ︸
n2

 .

Since at T = 0 all the states with energy less than εF are filled, this means that all the states with
nx, ny, nz less than some value nF are filled, where nF is

εF =
~2

2m

(πnF
L

)2
In n-space we have a uniform density of states: For each integer value of nx, ny, and nz we have two
states (corresponding to spin up and spin down for spin 1/2 systems). The number of states with energy
below εF , which corresponds to the number of states with n below nF therefore correspond to two times
the volume of 1/8 of a sphere in the n-space. And since each of these states are occupied by a particle
at T = 0, this also corresponds to the number of particles:

N = 2 · VF = 2︸︷︷︸
2 spins

· 1

8︸︷︷︸
nx,ny,nz>0

· 4π

3
n3F︸ ︷︷ ︸

volume of sphere

.

which finally gives us a value for nF :

nF =

(
3N

π

)1/3

,

we can insert this into the equation for the Fermi energy, εF , getting:

εF =
~2

2m

(
π
(
3N
π

)1/3
V 1/3

)3

=
~2

2m

(
3π2N

V

)2/3

=
~2

2m

(
3π3n

)2/3
.

We repeat the argument that lead to this conclusion: At T = 0 all the orbitals up to the chemical
potential are occupied by one particle. We can therefore find the number of particles, N , in the gas when
the chemical potential is given, by summing up how many orbitals we have below the chemical potential.
We reverse this argument, and find the chemical potential given the number of particles, which gives us
µ(T = 0) = εF as a function of N (and V ) – which is what we found above.

We can also find the (internal) energy of the system. The contribution to the energy from state s is the
energy of state s multitplied by the number of particles in state s. To find the total energy, we sum over
all states:

〈U〉 =
∑
s

εs〈N〉s =
∑
s

εsf(εs, µ, T ) .

When T = 0, all states with energies below εF are occupied by one particle:

f(εs, εF , T = 0) =

{
1 εs ≤ εF
0 εs > εF

.

The energy is therefore found from the sum of states up to the Fermi energy:

〈U〉 =
∑
εs≤εF

εs ,

which we can also formulate as a sum over all possible values of nx, ny, nz for n ≤ nF :

〈U〉 = 2 ·
∑
n≤nF

~2

2m

(
pi

L

)2

n2 ,
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where the factor 2 is included to account for two quantum states (spin up and down) for each value in
n-space.

We replace the sum over all values of ~n to an integral over n:

〈U〉 = 2 · 1

8
·
∫ nF

0

ε(n)4πn2dn

=
π3

2m

(
~
L

)2 ∫ nF

0

n4dn

=
π3

10m

(
~
L

)2

n5F

=
π3

10m

(
~
L

)2

n5F

=
~2

2m

(π
L

)2
n2F ·

π

3
n3F ·

3

5

= εF ·N ·
3

5

=
3

5
NεF .

We notice some properties of this solution: If we keep N constant and decrease V , we see that εF increases
and hence U increases – as expected – this gives rise to a repulsion due to Fermi-exclusion.

3.1 Density of states

So far we have described the system in n-space where the density of states – the number of states per unit
“volume” in n-space is uniform: The number of states in a volume from x, y, z to x+ dx, y+ dy, z+ dz is

D(nx, ny, nz)dxdydz

where D(nx, ny, nz) = 2 is a constant. It is 2 because there are two spin states per value of ~n =
(nx, ny, nz).

We can similarly introduce a density of states in n-space – so that the number of states with magnitude
n between n and n+ dn

D(n)dn = 2 · 1

8
· 4πn2dn ,

where the factor 2 again comes from the two spin states per ~n value and the factor of 1/8 is included
because only positive values of nx, ny, and nz are used, hence only 1/8 of the volume of a sphere with
radius n is in the first octant.

We therefore call D(n) = πn2 the density of states for the three-dimensional ideal gas. Notice that the
density of states would be different for a one- or a two-dimensional gas – the n-dependence would be
different!

However, the density of states in n-space is not that useful since the occupation number – f(ε, µ, T ) – is
given in terms of ε. If we want to calculate average values – such as the average number of particles or the
average energy – we perform the “sums” over ~n which we convert to integrals of n (since all quantities
only depend on the length of ~n – and since the number of states is large so that the integral is a good
approximation for the sum):

〈N〉 =
∑
~n

2f(ε(n), µ, T ) =

∫
f(ε(n), µ, T )D(n)dn ,
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and

〈U〉 =
∑
~n

2ε(n)f(ε(n), µ, T ) =

∫
ε(n)f(ε(n), µ, T )D(n)dn ,

Now – we can perform this integral by inserting ε(n) into the equations. Or – we can change integration
variable in the integral, and instead integrate over ε. That is, we introduce the variable ε(n) and the
differential:

dε(n) =
dε

dn
dn ,

giving the integrals:

〈N〉 =

∫
f(ε, µ, T )D(n(ε))

1

dε/dn
dε ,

and

〈U〉 =

∫
εf(ε, µ, T )D(n(ε))

1

dε/dn
dε .

From these expressions we see that we can interpret

D(n(ε))
1

dε/dn
dε = D(ε)dε ,

as the density of states in ε space. The quantity D(ε)dε gives the number of states with energies between
ε and ε+ dε.

Let us find the density of states in energy space for the three-dimensional gas. We find it using the
integral transformation we introduced above:

D(n)dn = D(ε)dε ,

and therefore

D(n(ε))
1

dε/dn
= D(ε) ,

where we now use that

ε(n) =
~

2m

(π
L

)2
n2 = an2 ,

and therefore we find:
n = (ε/a)

1/2
,

and that
dε

dn
= 2an ,

which we insert in 3.1 to get

D(ε) = D(n)
1

dε/dn

= πn2
1

2an

=
π

2a
n

=
π

2a

√
ε

a

=
π

2a3/2
ε1/2

=
π(8m)3/2

2h3
V
√
ε

=
3N

2ε
3/2
F

√
ε .

The nice thing about this expression is that it can be interpreted in the same plot – in the same space
as we say here – as the distribution function f . This is illustrated in the following figure, where we have
plotted both the density of states D(ε) and f(ε, µ, T ) in the same plot for three different temperatures,
T0 = 0 and for two finite temperatures, T1 < T2.
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4 Photon Systems

Let us now use the theory we have developed to address the behavior of a photon gas – a system with
electromagnetic waves inside a container – in equilbrium with the container walls. In this case the walls
will absorb and emit electromagnetic wave (packets) – so the number of photons is not conserved.

For a container of length L, we assume that the field only consists of standing waves (in equilbrium).
These waves can therefore have frequencies f = c/λ and corresponding energies ε = nhf = n~ω, where
n is an integer corresponding to the state.

(The integer n comes from the number of half-wavelengths that make up the length L: L = (n/2)λ,
where n is an integer.)

This corresponds to the harmonic oscillator we have already studied.

We will now study the occupancy probability for these states. We can assume that the system has
constant volume V and temperature T , and that since photons are continually created and destroyed –
the chemical potential for the system is therefore zero.

We can then use the Bose-Einstein distribution law:

fBE(ε, µ, T ) =
1

e(ε−µ)/kT − 1
,

which we can simplify since µ = 0 to

fBE(ε, µ = 0, T ) =
1

e(ε/kT − 1
,

which is the same as we found for the harmonic oscillator in the canonical ensemble.

This tells us the occupancy of a given energy level εs. In addition we need to know the density of states
for the photon gas.

For particles (fotons) in a box, the possible (standing wave) solutions are

λ =
2L

n
,
hn

2L
,

where n is a positive integer. The energy of the photon is

ε = pc = ~ω =
hcn

2L
,

instead of ε = p2/2m for classical particles.

This means that the energy of a photon generally is proportional to n while the energy of a classical
moving particles (in an ideal gas / Fermi gas) is proportional to n2.

This is also true in three dimensions, where the momentum is independent in the three direction, and
equal to hc n/2L in each direction:

~p =
hc

2L
(nx, ny, nz) ,

and the energy still is ε = pc, where p is the magnitude of ~p:

ε =
hc

2L

(
n2x + n2y + n2z

)1/2
=
hcn

2L
.

In order to use the distribution function, we need to sum over all possible states (and their corresponding
energies) to find the number of photons and the total energy of the photon gas.
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Let us first look at the total energy – which we find by summing over all possible n-values – including
the effect of two possible polarizations:

U = 2
∑
nx

∑
ny

∑
nz

ε(nx, ny, nz)fBE(ε, µ = 0, T ) ,

where ε = hcn/L. Instead of summing, we integrate over n in n-space:

U = 2

∫ ∞
0

4πn2

8

hcn

L

1

ehcn/2LkT − 1
dn .

We can now transform to a variable that simplifies the exponent, choosing x = hcn/2LkT , which gives
n = 2LkTx/hc and dn = 2LkT/hc dx:

U =
8π(kT )4L3

(hc)3

∫ ∞
0

x3

ex − 1
dx ,

where the integral is π4/15. Energy per volume is therefore then

U

V
=

8π5

15h3c3
(kT )4 .

This is called the Stehan-Boltzmann law of radiation.

We can also find the frequency (or energy, since they are propotional ε = hν) distribution of the photon
gas / blackbody radiation.

What does that mean? We can find for example how many photons are in the range from ν to ν+dν, how
many photons are in the range from ε to ε+dε – or preferrably – how much energy is in the corresponding
range of frequencies / energies: We find this as the number of photons in the range multiplied by the
energy per photon, ε.

We can read this directly from the integral, realizing that the integral for the total energy can be written
as

U =

∫ ∞
0

εnD(n)dn =

∫ ∞
0

εD(ε)dε ,

or if we are interested in the energy density (U/V) instead:

U

V
=

∫ ∞
0

εn
V
D(n)dn =

∫ ∞
0

ε

V
D(ε)dε ,

which is what we just found above.

Starting from

U = 2

∫ ∞
0

4πn2

8

hcn

L

1

ehcn/2LkT − 1
dn .

we can instead insert ε = hcn/2L, getting

U

V
=

∫ ∞
0

8πε

(hc)3eε/kT − 1
dε ,

and we see that the energy density in the range ε to ε+ dε is

u(ε) =
8π

(hc)3
ε3

eε/kT − 1
.

We can express it instead using ν where ε = hν:

u(ν) =
8πhν3

c3
1

ehν/kT − 1
dν .
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This is called the Planck radiation law.

We can plot this distribution in dimensionless form by plotting x3/(ex − 1) as a function of x = ε/kT .

This function has a maximum at x = 2.82, which corresponds to ε = 2.82 kT .

This shows that the maximum energy (or frequency) increases with temperature. This law is called
Wien’s law. (Wien’s displacement law).

This law implies that the temperature can been seen from the most prominent color – since the frequency
of this this color is proportional to the temperature. (If we can consider the body we examine as blackbody
radiation).

4.1 Entropy of the photon gas

We can find the entropy, since for constant volume we have

TdS = dU , dS =
dU

T
=

4aT 3

T
,

which we integrate from 0 to T , getting:

S(T ) = 4a
1

3
T 3 =

32π5

45
V

(
kT

hc

)3

k .

(We can find the total number of photon using the same formula, but with a different prefactor).

4.2 Radiation from a black body

What if we have a photon gas and we study the radiation emitted from a small whole in the container.

We say that such a hole radiates as a black body.

The energy flux is the rate of energy emission per unit area.

How much radiates out in a time dt?

The energy in the volume dV which is cdt times the opening area A times some geometric factor g (which
is 1/4 – see textbook and problems).

The flux is therefore

J =
dE

Adt
=
udV

Adt
=
uAcdtg

Adt
= ucg .

and

J =
cU

4V
=

2π5

15

(kT )4

(hc)3
= σT 4 ,

where σ is called the Stefan-Boltmann constant.

And the law is called Stefan’s law.

This is from a black body – non-reflecting! - body with surface temperature T .

Applications: Cosmic black body background radiation, Emission and absorption (Kirchoffs law).
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5 Phonon Systems

We have previously introduced the Einstein model – or the ideal crystal – as our model for a crystal. But
in this system there are no interactions between the atoms/particles. Does this have any consequence?

For the Einstein crystal we found that the heat capacity was:

CV = 3Nk

(
ε
kT

)2
eε/kT(

eε/kT − 1
)2 .

where N now is the number of atoms/particles, so that 3N is the number of oscillators.

What happens when ε � kT for this model? In that range the heat capacity approaches a constant:
3Nk. This corresponds to the equipartition theorem.

What happens for small temperatures, when ε � kT? In this range the heat capacity goes to zero
exponentially. This is not in correspondence with experiments, which show that the heat capacity goes
to zero at T 3 in the low temperature limit.

What went wrong?

We have ignored interactions among the atoms – which probably may be important for lattice vibrations.

Mainly because there are different vibration modes in systems with many atoms – the atoms may vibrate
together to form low frequency modes. At low temperatures the high frequencies (high energy) modes
are frozen out, but then the low frequency (low energy) modes become more important. By only looking
at single atoms we have overlooked collective modes that have lower energy. Therefore the heat capacity
goes to zero slower than predicited by the Einstein model.

The vibration modes in a crystal resembles electromagnetic waves:

They are waves, but they have smaller velocities (much smaller of course). We will here assume that the
speed is a constant cs – even if it acutally depends on the wave length in a crystal.

They have three polarizations. The transverse and one longitudinal. The polarizations really have different
velocities. At first we will ignore this effect.

The waves cannot have all possible wavelengths, because the atoms are on a lattice with a given lattice
spacing, and we cannot resolve waves with wavelength shorter than (two times) the lattice spacing.

Let us assume that we can otherwise describe a phonon – a lattice vibration mode energy packet – just
as we have described photons: with uniformly spaced energy levels:

εs = hν =
hcs
λ

=
hcsn

2L
,

where L is the system size. Again n is the magnitude of the ~n vector in n-space.

We also assume that phonons are bosons with µ = 0, so that the distribution function is given by the
Bose-Einstein distribution:

fBE =
1

eε/kT − 1
.

We find the energy and the number of phonons by summing over all possible ~n values:

U = 3
∑
nx

∑
ny

∑
nz

ε(~n)f(ε, µ = 0, T ) .

The main difference with the crystal lattice is that not all values are possible – we can only have some
values for ~n.
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Let us look at the x-direction.

Along this direction we have Nx = (N)1/3 atoms as shown in the figure.

This puts at limit on the maximum upper number of n.

This should correspond to a cube in n-space.

The Debye approximation is to assume that we instead include all modes up to a radius nD in n-space,
but so that we ensure that the total number of modes is equal to 3N :

3
∑
nx

∑
ny

∑
nz

=
3

8

∫ nD

0

4πn2dn = 3N ,

This determines nD. Since the integral is simply the volume of a sphere of radius nD we find that

3N =
3

8

4π

3
n3D ,

and therefore that

nD =

(
6N

π

)1/3

.

Now, we have a theory we can use to find the energy of the phonon gas using the approach we now are
used to:

U =
∑
nx

∑
ny

∑
nz

εnf(εn, µ = 0, T ) =
3

8

∫ nD

0

n2
hνn

exp(hνn/kT )− 1
dn ,

where

hνn =
hcsn

2L
.

The integral is therefore

U =
3π

2

∫ nD

0

hcs
2L

n3

exp(hcsn/2LkT )− 1
dn .

We introduce the new integration variable x = hcsn/2LkT getting:

xD =
hcsnD
2LkT

=
hcs
2kT

(
6N

πV

)1/3

=
TD
T

,

where we call TD the Debye temperature.

This gives – after some algebra:

U =
9NkT 4

T 3
D

∫ TD/T

0

x3

ex − 1
dx .

This integral cannot be solved analytically, but it is easy to solve numerically.

However, we can also find the high and low temperature limits directly by approximations.

In the high temperature limit the upper bound of the integral is much smaller than 1 and in this limit
we can approximate ex = 1 + x, and the integral becomes

U =
9NkT 4

T 3
D

∫ TD/T

0

x3

x
dx

=
9NkT 4

T 3
D

1

3

(
TD
T

)3

= 3NkT .
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This corresponds to the equipartition principle.

In the lower limit, T � TD, the upper limit is so large that we can replace it by infinity (since the ex

will go very quickly to zero, this is not a problem). The integral is therefore the same as we did for the
photon gas – with value π4/15, and the total energy is

U =
3π4

5

NkT 4

T 3
D

,

and the heat capacity in this limit is

CV =
12π4

5

(
T

TD

)3

Nk ,

which agrees very well with experimental measurements.

We find the intermediate values by numerical integration.

For metals we need to include both the contribution from the phonos and the contributions from the
electrons, so that the heat capacity has the behavior:

CV = γT +
12π4Nk

5T 3
D

T 3 ,

when T � TD and γ = π2Nk2/2εF .

If we now plot CV /T as a function of T 2 we can check both constants in the resulting plot, which should
be linear in T 2 with an intercept corresponding to γ.

What are typical values for TD?

For lead 88K

For diamond 1860K

Above TD you can get away with using the equipartition theorem since the heat capacity by then has
reached 95% of its maximum value.

6 Boson Gas and Einstein Condensation

We have now looked at photons and phonons. For these particles we do not have a conservation law.
What about other bosons, such as Helium-4? In this case the chemical potential is not zero – we will
need to determine the chemical potential from the number of particles, just as we did for Fermions.

We start in the limit of small temperatures.

When T = 0 all the atoms will be in the lowest energy state.

For atoms in a box of volume V = L3 the energy states are

ε =
h2

8mL2

(
n2x + n2y + n2z

)
,

so that the lowest energy state has energy

ε0 =
3h2

8mL2
,

which is a very small value for realistic (macroscopic) values of L.
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The Bose-Einstein distribution gives the average number of atoms in this state:

N0 =
1

exp((ε0 − µ)/kT )− 1
,

As the temperature approaches zero, we know that N0 will be large, which means that exp((ε0−µ)/kT )−1
must be close to 1. This means that the exponent is close to zero. In this limit, we can expand the exponent
using exp(x) = 1 + x, getting:

N0 =
1

1 + (ε0 − µ) /kT − 1
=

kT

ε0 − µ
,

and therefore that µ = ε0 when T = 0 and then just a bit larger when T is small.

To make life simpler, let us change energy scales, so that ε0 = 0. The result is then

N0 = −kT
µ

, µ = −kT
N0

.

6.1 Spacing of levels

What is really a realistic value for the spacing of energy levels?

The energy is

ε =
h2

8mL2

(
n2x + n2y + n2z

)
the energy difference between the lowest and the second lowest is therefore

∆ε =
3h2

8mL2

Now if we look at Helium-4, m = 6.6× 10−24g and L = 1cm, then

∆ε

k
= 1.8× 10−14K .

This is a small splitting!

How could this play an important physical role at temperatures which are Kelvin or at best a thousands
of a Kelvin?

6.2 Approaching T = 0

What happens if we have a constant particle number, N , and we lower the temperature? Then the
number of particles in the lowest leverl, N0, approaches N – all the particles are in the state with the
lowest energy.

This means that

N0 =
1

exp((ε0 − µ)/kT )− 1
,

approaches N (which is very large) when µ ' ε0.

For low temperatures we separate out the number of particles in the lowest state, and write

N = N0 +

∞∑
j=1

1

exp((εj − µ)/kT )− 1
,

where we have removed the singularity in the lowest energy level.
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We can change this to an integral (since the energy levels are very close), but then we need the density
of states, D(ε):

N = N0 +

∫ ∞
ε1

g(ε)

exp((ε− µ)/kT )− 1
dε ,

Since ε1 also is very small ( ε1 ' 0) and g(0) = 0, we can instead put 0 as the lower bound for the
integral. In addition, we still assume that µ = 0:

N = N0

∫ ∞
0

g(ε)dε

eε/kT − 1
,

where we now insert for g(ε):

g(ε) =
2√
π

(
2πm

h2

)3/2

V
√
ε ,

and we introduce the variable x = ε/kT . The integral is then reduced to

N = N0 +
2√
π

(
2πmkT

h2

)3/2

V

∫ ∞
0

x1/2dx

ex − 1
,

where the integral is ∫ ∞
0

x1/2

ex − 1
dx =

√
π

2
· 2.612 = 2.315 ,

and therefore we find

N = N0 + 2.612

(
2πmkT

h2

)3/2

V .

This expression is only valid for low temperatures, but the second term increases with temperature.
What is the upper limit of validity of this expression? That is when N0 is zero and all the particles are
in higher energy levels, this occurs at a temperature TC given by:

N = 2.612

(
2πmkTC

h2

)3/2

V ,

which gives

kTC =
1

π(2.612)2/3
h2

2m

(
N

V

)2/3

.

The critical temperature TC therefore depends both on details of the particles, through m, and on the
density N/V of the system. (for low temperatures).

We can also use TC to rewrite the expression for N :

N = N0 +N

(
T

TC

)3/2

,

which gives

N0 = N

(
1−

(
T

TC

)3/2
)
.

In the range T < TC we have Bose-Einstein condensation. At T = 0 all the particles are in the lowest
energy state.

What happens when T < TC? In this case our calculation is no longer valid. Instead we must include
how the chemical potential varies with temperature. We can do this by solving the equation

N =

∫ ∞
0

g(ε)

e(ε−µ)/kT − 1
dε ,

numerically. We introduce new variables, x = ε/kTC , t = T/TC and c = µ/kTC , and get the integral

2.315 =

∫ ∞
0

x1/2dx

e(x−c)/t − 1
,

which you now know how to solve.
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