Lecture 16

05.11.2018

Fermi and Bose Distributions



Reminder:

* To derive the Boltzmann factor, we have considered a system which
can exchange the energy with the reservoir, but not particles.

* With this assumption, we found the PROBABILITY of a system in any
given microstate.

* We had:
Isolated system System in a thermal bath
1
P(s) = —— _ 1 sm
(2 counts number of equally- Z(T) counts microstates when they do

likely states not have the same probability at given T
Fys2160, 2018



Reminder: Atom in contact with reservoir...

* Temperature of reservoir is fixed.

* Any microstate possible, but some are more probable (energy is the
key factor)

* Probability depends on how many possible microstates there are!

* We take two states: E(s;) and E(s,). Probabilities: P(s;) and P(s,).

* Recall: all accessible microstates in isolated system equally possible.
* But what about reservoir???

* Atom + reservoir = isolated system. Together they are in all
microstates.



Reminder: Atom in contact with reservoir...

e ((s;) — Multiplicity of reservoir when atom is in state s,.
e (c(s,) — Multiplicity of reservoir when atom is in state s,.
* They are different. If E(s,)< E(s,), then more energy is left for R.

* But all microstates are equally probable.

* Probability of atom in a given state is proportional to number of
microstates accessible to the reservoir.

P(s2) _ Qr(s2)
P(s1)  Qg(s1)




Reminder: Atom in contact with reservoir...

* We remember that S=k InQ2, then we can write:
P(sy) _ eSnlsa)/k
P(s1) eSr(s1)/k
* So we have probability related to change in the entropy of the
reservoir. Change related to one atom — tiny...
* Thermodynamic identity gives:

_ olSr(s2)=Sr(s1)]/k

1
dSr = f(dUR + PdVgp — ,LLdNR)

* But we can forget about the two last terms: dSp = ldUR
T



Reminder: Atom in contact with reservoir...

* And we get:

Si(s2) ~ Sn(s1) = 7 [Un(s2) ~ Un(s1)] = — 7 [E(s2) — E(s1)

* By putting it back to the equation for probability, we get:

7)(82) _ —[E(s2)—FE(s1)]/kT _ e_E(SQ)/kT

€

P(s1) o—E(s1)/kT

* The ratio of probabilities is related to the ratio of exponential factors related to
energy of a microstate and temperature of reservoir!

* The exponent is called Boltzmann factor




Let us now allow particles to be exchanged
dSRI %(dUR-FPdVR—,LLdNR)

We still neglect PdV term, but need to keep the last term...
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Let us now allow particles to be exchanged

1
dSr = =(dUr + PdVg — udN
R T( R R — HANR) @ @@ o ©
| © o@
We still neglect PdV term, but need to keep the last term... ©
When considering a small system we will get minus sign :

Sn(s2) — Sn(s1) = — £ [E(s2) — B(s1) — N (s2) + uN(s1)

P(s1) e [E(s1)=nN(s1)]/kT

Fys2160, 2018 8



Z —the grand partition function (Gibbs sum)

e Again — if we want to have the absolute probability we need to find

the proportionality constant Z.

P(S) = le_[E(S)—/U\T(S)]/lcT

Z

* Sum of all probabilities equals 1, so we have:

Z =3 e IE@-uN@I/kT

* If the are more types of particles in the system — we need to have a
sum over species as well in the Gibbs factor:

(Gibbs factor = 6_[E(S)_,LLANA(S)—,LLBNB(S)]/]CT



“in solution”

Example: Oxygen in blood AN

Each red cell (hemglobin molecule) can carry up to 4 . xygan -
. . . 2+ bound to hemoglobin”
oxygen atoms — 4 adsorption sites with Fe*".

oxygen - “c— hemoglobin
lK‘ @
o @

Let us consider 1 site only, for simplicity.

If there is only O? that can take the site, we have two states:
unoccupied (energy 0) and occupied (¢ =-0.7 eV).

Grant partition function: 2 = 1 + e le—ml/kT

* What is the chemical potential for the lungs?
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oxygen ” '.— hemoglobin
“in solution” ®

Example: Oxygen in blood AN _ B
i S |

e Recall from last week that: § oxygen -
OF VZ bound to hemoglobin
W, V)= |+ = —kT In
ON ) 1+ Nug
* So we have:
u~ —0.6eV

For the body temperature 310 K we gett the value of gibbs factor:

Finally we get the probability of the site being occupied by oxygen:

40
P=q071 = %%
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oxygen ” “_ hemoglobin
“in solution” &

Example: Oxygen in blood AN _ &
. |

But what if we have a CO — carbon monoxide present? sxyaen _
“bound to hemoglobin”

The grand partition function is then (‘ corresponds to CO):

Z =1+ e lempl/RT o o€ ']/ kT

 COisless abundand. If it is less by a factor of 100. Then we have: ILL/ ~ —(0.72eV

e But it more tightly bound than oxygen: E/ ~ —(0.85eV

* For the body temperature 310 K we gett the value of gibbs factor: e [6/ —,u’]/kT = 120
40

* Probability of the site being occupied by oxygen is much lower: P = = 25%

40 + 1+ 120
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Example: Saha equation

* How much can a gas be ionisied if it is in thermal
equilibrium?

* Neglect spin and exicted states. Consider a system
with single hydrogen atom/ion, which has two
possible states:

Unocuppied (no electron present —ionised):
E=0, N=0, Gibbs factor: 60 —1

Occupied (electron present — neutral atom):
E=-I, N=1, Gibbs factor: o~ (—I—p)/kT
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Example: Saha equation

 Ratio of probabilities eugals the ratio of pressures
of ionised and neutral states.

P’i 7)@ 1 €_I/kT

P, P, e (—I-w/kT  ou/kT
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Example: Saha equation

* Chemical potential for electrons (treated as ideal gas):

A T
,u:—len<V )z—len(k )
NUQ Pe’UQ

* This gives us Saha equation, where / is the ionisation potential:

P, kKT _pap 1 (27kTm 3/26
e = —
Pn Per Ne h3

e Surface of the Sun — less than 1 in 10000 atoms are ionised...

—I/kT
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Bosons vs. Fermions OO000
NN

Gibbs factor applicable to quantum statistics...
Many identical particles want to occupy single particle state.

1

We had for indistinguishable, noninteracting particles: [/ — —' ZiN
N!

But this breaks down — particles can have the same states...

Particles distinguishable: 25 states
Particles indistinguishable: 25/2 states ? But Z must be integer.

In fact we have 15 states: 10 where particles are in different states (20
if particles are distinguishable), and 5 when they occupy the same
state.
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Bosons vs. Fermions

FERMIONS BOSONS

Bosons: particles can occupy the same state (can share the state).
* Photons, pions, helium-4 atoms etc. ‘ (“

spin = ; spin=0 spin=1,2,3,.

Fermions: particles can NOT share a state with another particle of
the same type.

—rT"
—

* Electrons, protons, neutrons, neutrinos, helium-3 atoms etc.

Bosons are social

Fermions are antisocial .
Bosons Fermions

Bosons -> integer spin
Fermions -> half-integer spin

Fys2160, 2018 17



Bosons vs. Fermions

* If Z, >> N; the number of available sin%le particle states is much
greater than the number of particles, boson-fermion
differences are not crucial

* |deal gas: single particle partition function is: 7, = V Zint
vQ
* Where the quantum volume is ca. the cube of de Broglie
wavelength. L 3
vo =13 = [ ——
N (\/ 27rka>

* Then the condition Z, >> N for many particles Z=2" ,/N! is
V/N>> v, . So the average distance must be greater than de
Broglie length.

* But the condition broken in very dense or very cold
environments (e.g., neutron star, liquid helium) 18



Distribution function

Let us now take a system where Z; >> N is not fulfilled - we
need to use Gibbs factors instead of the Boltzmann factor.

Consider a system of 1 single-particle state. System consists of
a spatial wavefunction.

Particle in a box: system and reservoir have the same physical
space. Only one wavefunction is the system (particle).

Probability of a state being occupied by n particles is:

P(n) = —e~me—um)/KT _ L —n(e—p)/KT

Z A
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n

26

n=1

Particle in a box
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Distribution function - Fermions

e For fermions: n=0 or n=1.
* The grand partition function:

J =14+ 6—(€—M)/kT

* Occupancy — probability: T

6_(6_/"')/kT

1 + e—(e—n)/ET

n—ZnP )=0-P(0)+1-P(1) =

 Fermi-Dirac distribution:

- T
"ED = Ce—p)/kT 4 1

Fys2160, 2018

0.2

anaead’ /& "[l,.".}(:]()

wr—kT=u/10

—— T =112
kT'=

0.0F
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Distribution function - Bosons

* For bosons: n=0,1,2 ....

* The grand partition function (u<e):

J =1+ 6—(€—M)/kT + 6—2(€—H)/kT + 6—3(6—M)/kT + ...
B 1
- 1 — e—(e—p)/ET

* Occupancy — probability:
n=>Y nP(n)=0-P0)+1-P(1)+2-P(2)...

— Zn: %e—n(e—,u,)/k:T — _% ZS: %e—na}

where we used: 1 aZ

L= (6 o ,u)/kT Fys2160, 2018 - = E 8x

Bose-Einstein distribution

- T
"BE = (e—m)/kT _ |
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Distribution functions - comparison

3 T T T T T T T

* For Boltzmann distribution Bose-Einstein

Maxwell-Boltzmann

Fermi-Dirac

* Fermi-Dirac distribution

i T
"ED = (i) /T 4 q

{n}

* Bose-Einstein distribution

1

MBE T (e=m/RT ]

(e-p)/KT

Fys2160, 2018 22



