Lecture 16

05.11.2018

Fermi and Bose Distributions

Reminder:

- To derive the Boltzmann factor, we have considered a system which can exchange the energy with the reservoir, but not particles.
- With this assumption, we found the PROBABILITY of **a** system in any given microstate.
- We had:

Isolated system

$$P(s) = \frac{1}{\Omega(U)}$$

 Ω counts number of equally-likely states

System in a thermal bath

$$P(s) = \frac{1}{Z(T)}e^{-\beta E_s}$$

Z(T) counts microstates when they do not have the same probability at given T

- Temperature of reservoir is fixed.
- Any microstate possible, but some are more probable (energy is the key factor)
- Probability depends on how many possible microstates there are!
- We take two states: $E(s_1)$ and $E(s_2)$. Probabilities: $P(s_1)$ and $P(s_2)$.
- Recall: all accessible microstates in isolated system equally possible.
- But what about reservoir???
- Atom + reservoir = isolated system. Together they are in all microstates.

- $\Omega_R(s_1)$ Multiplicity of reservoir when atom is in state s_1 .
- $\Omega_R(s_2)$ Multiplicity of reservoir when atom is in state s_2 .
- They are different. If $E(s_1) < E(s_2)$, then more energy is left for R.
- But all microstates are equally probable.
- Probability of atom in a given state is proportional to number of microstates accessible to the reservoir.

$$\frac{\mathcal{P}(s_2)}{\mathcal{P}(s_1)} = \frac{\Omega_R(s_2)}{\Omega_R(s_1)}$$

• We remember that $S=k \ln \Omega$, then we can write:

$$\frac{\mathcal{P}(s_2)}{\mathcal{P}(s_1)} = \frac{e^{S_R(s_2)/k}}{e^{S_R(s_1)/k}} = e^{[S_R(s_2) - S_R(s_1)]/k}$$

- So we have probability related to change in the entropy of the reservoir. Change related to one atom – tiny...
- Thermodynamic identity gives:

$$dS_R = \frac{1}{T}(dU_R + PdV_R - \mu dN_R)$$

 $dS_R = \frac{1}{T}(dU_R + PdV_R - \mu dN_R)$ • But we can forget about the two last terms: $dS_R = \frac{1}{T}dU_R$

• And we get:

$$S_R(s_2) - S_R(s_1) = \frac{1}{T} [U_R(s_2) - U_R(s_1)] = -\frac{1}{T} [E(s_2) - E(s_1)]$$

• By putting it back to the equation for probability, we get:

$$\frac{\mathcal{P}(s_2)}{\mathcal{P}(s_1)} = e^{-[E(s_2) - E(s_1)]/kT} = \frac{e^{-E(s_2)/kT}}{e^{-E(s_1)/kT}}$$

- The ratio of probabilities is related to the ratio of exponential factors related to energy of a microstate and temperature of reservoir!
- The exponent is called Boltzmann factor

Let us now allow particles to be exchanged

$$dS_R = \frac{1}{T}(dU_R + PdV_R - \mu dN_R)$$

We still neglect PdV term, but need to keep the last term...

•

Let us now allow particles to be exchanged

$$dS_R = \frac{1}{T}(dU_R + PdV_R - \mu dN_R)$$

We still neglect *PdV* term, but need to keep the last term... When considering a small system we will get minus sign :

$$S_R(s_2) - S_R(s_1) = -\frac{1}{T} [E(s_2) - E(s_1) - \mu N(s_2) + \mu N(s_1)]$$

And we end up with the ratio of probabilities:

$$\frac{\mathcal{P}(s_2)}{\mathcal{P}(s_1)} = \frac{e^{-[E(s_2) - \mu N(s_2)]/kT}}{e^{-[E(s_1) - \mu N(s_1)]/kT}}$$

Z – the grand partition function (Gibbs sum)

 Again – if we want to have the absolute probability we need to find the proportionality constant Z.

$$P(s) = \frac{1}{Z}e^{-[E(s)-\mu N(s)]/kT}$$

• Sum of all probabilities equals 1, so we have:

$$Z = \sum_{s} e^{-[E(s) - \mu N(s)]/kT}$$

• If the are more types of particles in the system – we need to have a sum over species as well in the Gibbs factor:

Gibbs factor =
$$e^{-[E(s)-\mu_A N_A(s)-\mu_B N_B(s)]/kT}$$

Example: Oxygen in blood

- Each red cell (hemglobin molecule) can carry up to 4 oxygen atoms – 4 adsorption sites with Fe²⁺.
- Let us consider 1 site only, for simplicity.
- If there is only O^2 that can take the site, we have two states: unoccupied (energy 0) and occupied (ε =-0.7 eV).

• Grant partition function: $Z=1+e^{-[\epsilon-\mu]/kT}$

What is the chemical potential for the lungs?

Example: Oxygen in blood

Recall from last week that:

$$\mu(T, V) = \left(\frac{\partial F}{\partial N}\right)_{T, V} = -kT \ln \left(\frac{VZ}{Nv_Q}\right)$$

• So we have:

$$\mu \approx -0.6 \text{eV}$$

• For the body temperature 310 K we gett the value of gibbs factor:

$$e^{-[\epsilon-\mu]/kT} = 40$$

• Finally we get the probability of the site being occupied by oxygen:

$$\mathcal{P} = \frac{40}{40+1} = 98\%$$

Example: Oxygen in blood

- But what if we have a CO carbon monoxide present?
- The grand partition function is then ('corresponds to CO):

$$Z = 1 + e^{-[\epsilon - \mu]/kT} + e^{-[\epsilon' - \mu']/kT}$$

• CO is less abundand. If it is less by a factor of 100. Then we have:

$$\mu' \approx -0.72 \text{eV}$$

• But it more tightly bound than oxygen:

$$\epsilon' \approx -0.85 \mathrm{eV}$$

• For the body temperature 310 K we gett the value of gibbs factor:

$$e^{-[\epsilon'-\mu']/kT} = 120$$

- Probability of the site being occupied by oxygen is much lower: $\mathcal{P}=\frac{40}{40+1+120}=25\%$

Example: Saha equation

- How much can a gas be ionisied if it is in thermal equilibrium?
- Neglect spin and exicted states. Consider a system with single hydrogen atom/ion, which has two possible states:

Unocuppied (no electron present – ionised):

E=0, N=0, Gibbs factor:
$$e^0 = 1$$

Occupied (electron present – neutral atom):

E=-I, N=1, Gibbs factor:
$$e^{-(-I-\mu)/kT}$$

Example: Saha equation

• Ratio of probabilities euqals the ratio of pressures of ionised and neutral states.

$$\frac{P_i}{P_n} = \frac{P_i}{P_n} = \frac{1}{e^{-(-I-\mu)/kT}} = \frac{e^{-I/kT}}{e^{\mu/kT}}$$

Example: Saha equation

Chemical potential for electrons (treated as ideal gas):

$$\mu = -kT \ln \left(\frac{VZ}{Nv_Q}\right) = -kT \ln \left(\frac{kT}{P_e v_Q}\right)$$

• This gives us Saha equation, where *I* is the ionisation potential:

$$\frac{P_i}{P_n} = \frac{kT}{P_e v_O} e^{-I/kT} = \frac{1}{n_e} \left(\frac{2\pi kTm}{h^3}\right)^{3/2} e^{-I/kT}$$

• Surface of the Sun – less than 1 in 10000 atoms are ionised...

Bosons vs. Fermions

- Gibbs factor applicable to quantum statistics...
- Many identical particles want to occupy single particle state.
- We had for indistinguishable, noninteracting particles: $Z=rac{1}{N!}Z_1^N$
- But this breaks down particles can have the same states...
- Particles distinguishable: 25 states
- Particles indistinguishable: 25/2 states? But Z must be integer.
- In fact we have 15 states: 10 where particles are in different states (20 if particles are distinguishable), and 5 when they occupy the same state.

Bosons vs. Fermions

- Bosons: particles can occupy the same state (can share the state).
 - Photons, pions, helium-4 atoms etc.
- Fermions: particles can NOT share a state with another particle of the same type.
 - Electrons, protons, neutrons, neutrinos, helium-3 atoms etc.
- Bosons are social
- Fermions are antisocial
- Bosons -> integer spin
- Fermions -> half-integer spin

Bosons vs. Fermions

- If $Z_1 >> N$; the number of available single particle states is much greater than the number of particles, boson-fermion differences are not crucial
- Ideal gas: single particle partition function is: $Z_1 = rac{VZ_{int}}{v_Q}$
- Where the quantum volume is ca. the cube of de Broglie wavelength. $v_Q=l_Q^3=\left(\frac{h}{\sqrt{2\pi mkT}}\right)^3$
- Then the condition $Z_1 >> N$ for many particles $Z=Z^N_1/N!$ is $V/N>>v_Q$. So the average distance must be greater than de Broglie length.
- But the condition broken in very dense or very cold environments (e.g., neutron star, liquid helium).

Distribution function

- Let us now take a system where Z₁ >> N is not fulfilled we need to use Gibbs factors instead of the Boltzmann factor.
- Consider a system of 1 single-particle state. System consists of a spatial wavefunction.
- Particle in a box: system and reservoir have the same physical space. Only one wavefunction is the system (particle).
- Probability of a state being occupied by *n* particles is:

$$\mathcal{P}(n) = \frac{1}{Z}e^{-(n\epsilon - \mu n)/kT} = \frac{1}{Z}e^{-n(\epsilon - \mu)/kT}$$

Particle in a box

Distribution function - Fermions

- For fermions: n=0 or n=1.
- The grand partition function:

$$Z = 1 + e^{-(\epsilon - \mu)/kT}$$

• Occupancy – probability:

$$\bar{n} = \sum_{n} n \mathcal{P}(n) = 0 \cdot \mathcal{P}(0) + 1 \cdot \mathcal{P}(1) = \frac{e^{-(\epsilon - \mu)/kT}}{1 + e^{-(\epsilon - \mu)/kT}}$$

Fermi-Dirac distribution:

$$\bar{n}_{FD} = \frac{1}{e^{(\epsilon - \mu)/kT} + 1}$$

Distribution function - Bosons

- For bosons: n=0,1,2
- The grand partition function ($\mu < \epsilon$):

$$Z = 1 + e^{-(\epsilon - \mu)/kT} + e^{-2(\epsilon - \mu)/kT} + e^{-3(\epsilon - \mu)/kT} + \dots$$

$$= \frac{1}{1 - e^{-(\epsilon - \mu)/kT}}$$

• Occupancy – probability:

$$\bar{n} = \sum_{n} n \mathcal{P}(n) = 0 \cdot \mathcal{P}(0) + 1 \cdot \mathcal{P}(1) + 2 \cdot \mathcal{P}(2) \dots$$

$$= \sum_{n} \frac{n}{Z} e^{-n(\epsilon - \mu)/kT} = -\frac{1}{Z} \sum_{s} \frac{\partial}{\partial x} e^{-nx}$$

where we used:

$$x = (\epsilon - \mu)/kT$$

$$= -\frac{1}{Z} \frac{\partial Z}{\partial x}$$

Bose-Einstein distribution

$$\bar{n}_{BE} = \frac{1}{e^{(\epsilon - \mu)/kT} - 1}$$

Distribution functions - comparison

• For Boltzmann distribution

$$\bar{n}_{Bol} = e^{(\epsilon - \mu)/kT}$$

Fermi-Dirac distribution

$$\bar{n}_{FD} = \frac{1}{e^{(\epsilon - \mu)/kT} + 1}$$

• Bose-Einstein distribution

$$\bar{n}_{BE} = \frac{1}{e^{(\epsilon - \mu)/kT} - 1}$$

