Lecture 10&11

19&24.09.2018

Free energies

Classical mechanics versus thermodynamics

☐ In classical mechanics, the stable equilibrium of a mechanical system is related to the minimum of its potential energy

Potential energy in classical mechanics	Variables	Driving force to equilibrium
V(x,y,z)	х, у, z	$F = -\nabla V$

What is the analogue of this for a thermodynamic system?

Free energies as thermodynamic potentials

☐ Describe the thermodynamic st	ate of a system depending on how it
interacts with its environment	

- ☐ When a system is **isolated**, the thermodynamic potential which is at **minimum at equilibrium** is its internal energy **U**
- \square But, when a system is at equilibrium with a thermal bath at fixed T, which *energy* is then minimized?
- \square When a system is at equilibrium with a reservoir at fixed T and P, which energy is then minimized?

Thermodynamic Potentials	Thermodynamic (natural) Variables
U (S,V,N)	S, V, N
H (S,P,N)	S, P, N
F (T,V,N)	V, T, N
G (T,P,N)	P, T, N

Potential energy in classical mechanics	Variables
V(x,y,z)	х, у, z

Isolated systems and internal energy U(S, V, N)

- ☐ Sum of all the kinetic and potential energies of all the particles in the system
- \square An infinitesimal dU is due to infinitesimal and independent changes in S, V, or N

$$dU = \left(\frac{\partial U}{\partial S}\right)_{V,N} dS + \left(\frac{\partial U}{\partial V}\right)_{S,N} dV + \left(\frac{\partial U}{\partial N}\right)_{S,V} dN$$

☐ Identify it with the **thermodynamic identity for** energy change in a **reversible** process

$$dU = TdS - PdV + \mu dN$$

we can define T, P and μ from changes in U with respect to their conjugate variables

$$T = \left(\frac{\partial U}{\partial S}\right)_{V,N}$$
, $P = -\left(\frac{\partial U}{\partial V}\right)_{S,N}$, $\mu = \left(\frac{\partial U}{\partial N}\right)_{S,V}$

Isolated systems and internal energy U(S, V, N)

☐ From the 2nd law of thermodynamics, the entropy change satisfies this inequality

$$TdS \ge dU + PdV - \mu dN$$

Hence the change in the internal energy satisfies this thermodynamic inequality

$$dU \leq \mathrm{TdS} - PdV + \mu dN$$

 \square Reversible process in an **isolated** system at fixed S, V, and N means that U is conserved:

$$dU = 0$$
, hence $\delta Q = -\delta W$

Systems at constant P and Enthaly H(S, P, N)

☐ **The enthalpy H** is the thermodynamic potential given by the internal energy of a system plus the work needed to keep the system at a given P

$$H = U + PV$$

- ☐ It is the energy to create something (*system*) out of nothing and make room for it somewhere (*environment*)
- \square An infinitesimal change in H is due independent, infinitesimal changes in S, P, N

$$dH = \left(\frac{\partial H}{\partial S}\right)_{P,N} dS + \left(\frac{\partial H}{\partial P}\right)_{S,N} dP + \left(\frac{\partial H}{\partial N}\right)_{S,P} dN$$

By defining
$$T=\left(\frac{\partial H}{\partial S}\right)_{P,N}$$
, $V=\left(\frac{\partial H}{\partial P}\right)_{S,N}$ and $\mu=\left(\frac{\partial H}{\partial N}\right)_{S,P}$

$$dH = TdS + VdP + \mu dN$$

D. Schroeder

Systems at constant P and Enthaly H(S, P, N)

☐ Thermodynamic identity for an infinitesimal reversible process

$$dH = dU + d(PV)$$

Combing this with the 2nd law of thermodynamics,

$$dU \le TdS - PdV + \mu dN$$

☐ Thermodynamic inequality for any infitesimal process (reversible «=», irreversible «>»)

$$dU + d(PV) \le TdS + VdP + \mu dN$$

$$dH \leq TdS + VdP + \mu dN$$

- Reversible process at fixed S, P, and N means that H is conserved: $dH|_{S,P,N}=0$
- \triangleright Reversible process at fixed **P**, and N means that : $dH|_{P,N} = TdS = \delta Q_{rev}$

Systems at constant P and Enthaly H(S, P, N)

- ☐ System + surrounding at constant pressure = isolated system
- ☐ System can exchange work with the surrounding, thus from the conservation of energy

$$d(U + U_{surr}) = 0 \rightarrow dU = -dU_{surr} \rightarrow \delta W = -\delta W_{surr}$$

D. Schroeder

☐ Principle of maximum work

$$\delta W \le -PdV \to dU \le -PdV$$

☐ Pressure is constant, thus this spontaneous process will minimize enthalpy at equilibrium

$$d(U + PV) \le 0 \to dH \le 0$$

■ Working with enthalpy, we can describe the system in contact with its surrounding at constant P without actually keeping track of the transformations in the surroundings

Joule-Thomson expansion: constant enthalpy

$$Q = 0 \rightarrow \Delta U = W$$

*Work done on the gas at P*₁ = const:

$$W_1 = -\int_{V_1}^0 P_1 \, dV = P_1 V_1$$

Work done by the gas at $P_2 = const$:

$$W_2 = -\int_0^{V_2} P_2 \, dV = -P_2 V_2$$

Total work to move the gas from one chamber to the other

$$W = W_1 + W_2 = P_1 V_1 - P_2 V_2$$

Joule-Thomson expansion

$$\Delta U = W \rightarrow$$

$$U_2 - U_1 = P_1 V_1 - P_2 V_2$$

$$U_1 + P_1 V_1 = U_2 + P_2 V_2$$

This expansion is at constant enthalpy

$$\Delta H = \Delta (U + PV) = 0$$

Systems at constant T and Helmholtz free energy F(T, V, N)

☐ The Hemholtz free energy F is the thermodynamic potential given by the internal energy of a system minus the available heat exchange with the thermal bath fixed T

$$F = U - TS$$

- ☐ It is the energy to create something (system) out of nothing when there is "free" heat supply from the environment
- \square An infinitesimal change in F is due to independent, infinitesimal changes in T, V, N

$$dF = \left(\frac{\partial F}{\partial T}\right)_{V,N} dT + \left(\frac{\partial F}{\partial V}\right)_{T,N} dV + \left(\frac{\partial F}{\partial N}\right)_{T,V} dN$$

By defining
$$S=-\left(\frac{\partial F}{\partial T}\right)_{V,N}$$
, $P=-\left(\frac{\partial F}{\partial V}\right)_{T,N}$ and $\mu=\left(\frac{\partial F}{\partial N}\right)_{T,V}$

☐ Thermodynamic identity for an infinitesimal reversible process

$$dF = -SdT - PdV + \mu dN$$

Systems at constant T and Helmholtz free energy F(T, V, N)

☐ Thermodynamic identity for an infinitesimal reversible process

$$dF = -SdT - PdV + \mu dN$$

Combing this with the 2nd law of thermodynamics,

$$dU \le TdS - PdV + \mu dN$$

☐ Thermodynamic inequality for any infitesimal process (reversible «=», irreversible «>»)

$$dU - d(TS) \le -TdS - PdV + \mu dN$$

$$dF \le -SdT - PdV + \mu dN$$

- Any change in F when T, V, and N are fixed must be $dF|_{T,V,N} \leq 0$. This is to *lower* F to its miminum value at equilibrium
- ightharpoonup Reversible process at fixed T, V, and N means that F is conserved: $dF|_{T,V,N}=0$
- ightharpoonup Reversible process at fixed T, and N means that : $dF|_{T,N} = -PdV$
- \triangleright Changes in F at a fixed T equals to the *available work* that a system can do.

The system + its thermal bath = isolated system. Hence total internal energy is conserved $d(U+U_{hath})=0 \rightarrow dU=-dU_{hath}$

 \square System can exchange heat with its thermal bath, while both mentained the same temperature T. Using the conservation of energy and Clausius inequality

$$\delta Q_{bath} = -\delta Q \rightarrow \delta Q_{bath} = -\frac{dU}{T} \leq dS_{bath}$$

$$dS + dS_{bath} \ge dS - \frac{dU}{T} \ge 0$$

☐ Minimizing the Helmholtz free energy is equivalent to maximizing the total entropy

$$dS_t \geq 0 \rightarrow d(U - TS) \leq 0 \rightarrow dF \leq 0$$

• Describing the system by its Helmholtz free energy, we capture the evolution of both the system and its thermal bath in accord to the thermodynamic principles

Helmholtz free energy F(T, V, N) in the ideal gas

$$\square F = U - TS \to F = \frac{3NkT}{2} - NkT \left[\ln \left(\frac{V}{N} \right) + \ln \left(\frac{2\pi mkT}{h^2} \right)^{\frac{3}{2}} + \frac{5}{2} \right]$$

$$F(T,V,N) = -NkT \left[\ln \left(\frac{V}{N} \right) + \ln \left(\frac{2\pi mkT}{h^2} \right)^{\frac{3}{2}} + 1 \right]$$

$$\square P = -\left(\frac{\partial F}{\partial V}\right)_{T,N} \to P = NkT\left(\frac{\partial}{\partial V}\ln V\right)_{T,N} \to P = \frac{NkT}{V}$$

- Slopes are negative (higher volume, higher entropy, lower F)
- $\frac{\partial F_A}{\partial V_A} > \frac{\partial F_B}{\partial V_B} \rightarrow \text{gas A expands into gas B to lower its free energy } F_A$
- $hinspace P_A > P_B$ the gas with higher pressure expands
- \succ The reduction in F_A is larger than the increase in F_B

$$-\Delta F_A > \Delta F_B \rightarrow \Delta (F_A + F_B) < 0$$

Systems at constant T and P and Gibbs free energy G(T, P, N)

☐ The Gibbs free energy F is the thermodynamic potential given by the internal energy of a system minus the available heat exchange plus the work done on the reservoir

$$G = U - TS + PV$$

- ☐ It is the energy to create something (system) out of nothing and put into an environment when there is "free" heat
- \square An infinitesimal change in G is due to independent, infinitesimal changes in T, P, N

$$dG = \left(\frac{\partial G}{\partial T}\right)_{P,N} dT + \left(\frac{\partial G}{\partial P}\right)_{T,N} dP + \left(\frac{\partial G}{\partial N}\right)_{T,P} dN$$

By defining
$$S=-\left(\frac{\partial G}{\partial T}\right)_{P,N}$$
, $V=\left(\frac{\partial G}{\partial P}\right)_{T,N}$ and $\mu=\left(\frac{\partial G}{\partial N}\right)_{T,P}$

☐ Thermodynamic identity for an infinitesimal reversible process

$$dG = -SdT + VdP + \mu dN$$

Systems at constant T and P and Gibbs free energy G(T, P, N)

☐ Thermodynamic identity for an infinitesimal reversible process

$$dG = -SdT + VdP + \mu dN$$

Combing this with the 2nd law of thermodynamics,

$$dU \le TdS - PdV + \mu dN$$

☐ Thermodynamic inequality for any infitesimal process (reversible «=», irreversible «>»)

$$dU - d(TS) + d(PV) \le -TdS + VdP + \mu dN$$

$$dG \leq -SdT + VdP + \mu dN$$

- Any change in the Gibbs free energy G when T, P, and N are fixed must be $dG|_{T,P,N} \leq 0$ Which is **to minimize** G at equilibrium
- \square Reversible process at fixed T, P, and N means that G is conserved: $dG|_{T,P,N}=0$
- \square Reversible process at fixed T, and P means that : $dG|_{T,P} = \mu dN$
- ☐ Changes in *G* at a fixed T and P equals to the *available chemical work* to increase or decrease the number of particles, or any **other work which is not mechanical**

Gibbs free energy G(T, P, N) and chemical potential μ

 \square Gibbs free energy G(T, P, N) is an extensive thermodynamic potential. Since, T and P are intensive variable, the only extensive variable that it depends on is N, therefore

$$G(T, P, N) = NG(T, P, 1)$$

Combining this with the definition of the chemical potential

$$\mu = \left(\frac{\partial G}{\partial N}\right)_{T,P} = G(T,P,1) = \frac{G(T,P,N)}{N}$$

$$\mu(T,P) = \frac{G(T,P,N)}{N}, \qquad G(T,P,N) = N\mu(T,P)$$

Chemical potential is the Gibbs free energy per unit particle at fixed pressure P and temperature T

- By adding more particles we dont change the value of μ : each particles comes with the same amount of energy indepent of the density of particles in the system when we keep the pressure and temperature constant!
- \blacktriangleright In all the other thermodynamics conditions described by U, H and F, μ can vary with N

Ideal gas: G(T, P, N) and μ

 \Box Gibbs free energy G(T, P, N)

$$G = U - TS + PV = F + PV$$

$$G(T, P, N) = -NkT \left[\ln \left[\frac{V}{N} \left(\frac{2\pi mkT}{h^2} \right)^{\frac{3}{2}} \right] + 1 \right] + NkT$$

$$G(T, P, N) = -NkT \ln \left[\frac{kT}{P} \left(\frac{2\pi mkT}{h^2} \right)^{\frac{3}{2}} \right]$$

 \square Chemical potential $\mu(T, P)$

$$\mu(T, P) = \frac{G}{N} = -kT \ln \left[\frac{kT}{P} \left(\frac{2\pi mkT}{h^2} \right)^{\frac{3}{2}} \right]$$

 \Box Change in chemical potential $\Delta\mu(P)$ at fixed T

$$\Delta\mu(P) = \mu(P) - \mu(P_0) = kT \ln\left[\frac{P}{P_0}\right]$$

Thermodynamic potentials are related by Legendre transforms

• The extensive variables (S, V, N) and intensive variables (T, P, μ) are conjugate variables When one is an independent (control) variable fixed by the surroundings, its conjugate variable is a derivative:

When S is a control variable then
$$T = \left(\frac{\partial U}{\partial S}\right)_{V,N}$$

- Variables like S are hand to control experimentally, hence it is better to transform the internal energy U into another thermodynamic potential that has instead T as a natural variable
- Legendre transform does precisely this: it is a transformation from one thermodynamic potential to another by changing between conjugate variables

Example: the transformation from internal energy U(S, V, N) to entalphy H(S, P, N)

$$U(S, V, N) \rightarrow H(S, P, N)$$

$$H(S, P, N) = U(S, V, N) + PV$$
, where $P = -\left(\frac{\partial U}{\partial V}\right)_{S,N}$

Example in mechanics:

$$L(q,\dot{q}) = K(\dot{q}) - U(q), \qquad p = \frac{\partial L}{\partial \dot{q}}$$

$$-H(p,q) = L(q,\dot{q}) - p \,\dot{q} \rightarrow H(p,q) = K + U$$

Legendre transform: graphic intepretation

Given a function of x with the slope u

$$f(x)$$
, with $u = \frac{df}{dx}$

The Legendre transform is

$$g\left(u\right) =f(x)-ux,$$

Legendre transform

Suppose we have a function F(x,y) where $z=\left(\frac{\partial F}{\partial x}\right)_y$ then the function G(z,y) is related to F(x,y) by the Legendre transform

$$G(\mathbf{z}, \mathbf{y}) = F(\mathbf{x}, \mathbf{y}) - \mathbf{z}\mathbf{x}$$

Proof:

$$d(F-zx) = \left(\frac{\partial F}{\partial x}\right)_y dx + \left(\frac{\partial F}{\partial y}\right)_x dy - zdx - xdz$$

$$d(F-zx) = \left(\frac{\partial F}{\partial y}\right)_x dy - xdz, \qquad using \ that \ \ z = \left(\frac{\partial F}{\partial x}\right)_y$$
 The y-dependence is not changed thus $\left(\frac{\partial F}{\partial y}\right)_x = \left(\frac{\partial G}{\partial y}\right)_x$. Also $G = F(x,y) - zx \to x = -\left(\frac{\partial G}{\partial z}\right)_y$

$$d(F - zx) = \left(\frac{\partial F}{\partial y}\right)_x dy - xdz = \left(\frac{\partial G}{\partial y}\right)_z dy + \left(\frac{\partial G}{\partial z}\right)_y dz = dG$$

Legendre transforms:

$$H(S, P, N) = U(S, V, N) + PV, P = -\left(\frac{\partial U}{\partial V}\right)_{S,N}$$

$$F(T, V, N) = U(S, V, N) - TS, T = \left(\frac{\partial U}{\partial S}\right)_{V, N}$$

$$G(T, P, N) = U(S, V, N) - TS + PV$$

Thermodynamic identities

$$dU = TdS - PdV + \mu dN$$

$$dF = -SdT - PdV + \mu dN$$

$$dH = TdS + VdP + \mu dN$$

$$dG = -SdT + VdP + \mu dN$$

Extensive variables

Intensive variables

☐ Derivative of the thermodynamic potential with respect to one of its arguments while keeping the other constant is determined by going along a diagonal line either with(+) or against(-) the direction of the arrow

$$P = -\left(\frac{\partial U}{\partial V}\right)_S = -\left(\frac{\partial F}{\partial V}\right)_T$$

$$V = \left(\frac{\partial G}{\partial P}\right)_T = \left(\frac{\partial H}{\partial P}\right)_S$$

$$G(T, P) = H(S, P) - TS$$

$$F(T,V) = U(S,V) - TS$$

Extensive variables

Intensive variables

☐ Derivative of the thermodynamic potential with respect to one of its arguments while keeping the other constant is determined by going along a diagonal line either with (+) or against (-) the direction of the arrow

$$S = -\left(\frac{\partial F}{\partial T}\right)_{V} = -\left(\frac{\partial G}{\partial T}\right)_{P}$$

$$T = \left(\frac{\partial U}{\partial S}\right)_V = \left(\frac{\partial H}{\partial S}\right)_P$$

Maxwell's relations

$$dU = TdS - PdV$$

$$dU = \left(\frac{\partial U}{\partial S}\right)_{V} dS + \left(\frac{\partial U}{\partial V}\right)_{S} dV$$

 \Box Thermodynamic potential U is a state variable, which implies that $\frac{\partial^2 U}{\partial s \partial v} = \frac{\partial^2 U}{\partial v \partial s}$

$$\left(\frac{\partial}{\partial V} \left(\frac{\partial U}{\partial S}\right)_{V}\right)_{S} = \left(\frac{\partial}{\partial S} \left(\frac{\partial U}{\partial V}\right)_{S}\right)_{V} \to \left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$$

- ☐ Other Maxwell relaxations follow from the other thermodynamic potentials
- \Box Used to compute relations between response functions: heat capacities, thermal expansion coefficients