Lecture 10&11

19&24.09.2018

Free energies



Classical mechanics versus thermodynamics

Q In classical mechanics, the stable equilibrium of a mechanical system is related to the minimum of its potential energy

Potential energy in Variables Driving force to
classical mechanics equilibrium
V(X,y,Z) X, y; yA F = _VV

What is the analogue of this for a thermodynamic system?



Free energies as thermodynamic potentials

U Describe the thermodynamic state of a system depending on how it

interacts with its environment Thermodynamic Thermodynamic
Potentials (natural)
Variables

L When a system is isolated, the thermodynamic potential which is at
minimum at equilibrium is its internal energy U

0 But, when a system is at equilibrium with a thermal bath at fixed T,
which energy is then minimized?

0 When a system is at equilibrium with a reservoir at fixed Tand P, which
energy is then minimized?
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Isolated systems and internal energy U(S,V,N)

1 Sum of all the kinetic and potential energies of all the particles in the system

O An infinitesimal dU is due to infinitesimal and independent changesin S,V,or N

w0=(") ase(®) are(2) an
B daS V,N av SN oN S,V

O Identify it with the thermodynamic identity for energy change in a reversible process
dU =TdS — PdV + udN

we can define T, P and u from changes in U with respect to their conjugate variables

T= (Z_Z)V,N' F=r (Z_Z)S'N, . (Z_Z)S'V

S,V,N



Isolated systems and internal energy U(S,V,N)

 From the 2nd law of thermodynamics, the entropy change satisfies this inequality
TdS = dU + PdV — udN
Hence the change in the internal energy satisfies this thermodynamic inequality

dU < TdS — PdV + udN

Then any change in the internal energy when S, V,and N are fixedis dU|gyy < 0

Which is to lower the internal energy to its miminum value at equilibrium

(d Reversible process in an isolated system at fixed S, V,and N means that U is conserved:

dU = 0, hence 6Q = —6W

S,V,N



Systems at constant P and Enthaly H(S, P, N)

U The enthalpy H is the thermodynamic potential given by the internal
energy of a system plus the work needed to keep the system at a given P

H=U+PV

O It is the energy to create something (system) out of nothing and make room for
it somewhere (environment)

O Aninfinitesimal change in H is due independent, infinitesimal changesin S, P, N

dH = (%’)P,N ds + (g—ﬁ)S’N dP + (Z—Z)S,P dN

By defining T = (g—?)P}N, V= (Z—IZ)S,N and u = (Z_Z)S,P

[ Thermodynamic identity for an infinitesimal reversible process

dH = TdS + VdP + udN
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Systems at constant P and Enthaly H(S, P, N)

 Thermodynamic identity for an infinitesimal reversible process

dH = dU + d(PV)
Combing this with the 2nd law of thermodynamics,
dU < TdS — PdV + udN
J Thermodynamic inequality for any infitesimal process (reversible «=», irreversible «>»)
dU + d(PV) < TdS + VdP + udN
dH <TdS +VdP + udN

» Any change in enthalpy H when S, P,and N are fixed is dH|sp y < 0. This is to lower
H to its miminum value at equilibrium

> Reversible process at fixed S, P,and N means that H is conserved: dH|sp y = 0

> Reversible process at fixed P,and N means that : dH|p y = TdS = 6Q, ¢,
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S,P,N
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Systems at constant P and Enthaly H(S, P, N)

 System + surrounding at constant pressure = isolated system

[ System can exchange work with the surrounding, thus from the
conservation of energy

D. Schroeder

d(U + Ugyryr) = 0 - dU = —dUgypy = SW = —5Wsypr
O Principle of maximum work
oW < —PdV — dU < —PdV

U Pressure is constant, thus this spontaneous process will minimize enthalpy at

equilibrium S, P,N p

d({U+PV)<0->dH<O0

O Working with enthalpy, we can describe the system in contact with its
surrounding at constant P without actually keeping track of the transformations

in the surroundings
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Joule-Thomson expansion: constant enthalpy

Q=0->AU=W

Initial

Work done on the gas at P, =const:

0
le_f PldV:P]_Vl
|4

1

Work done by the gas at P, = const:

V2
W2:—j Pde:—P2VZ
0

Total work to move the gas from one chamber to the other

W:W1+W2:P1V1_P2VZ
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Joule-Thomson expansion

AU =W -
U, -Uy=PV1— PV,

U1 +P1V1 —_ Uz +P2V2

This expansion is at constant enthalpy

AH=AU+PV)=0

Fys2160 2018
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Systems at constant T and Helmholtz free energy F(T,V,N)

O The Hemholtz free energy F is the thermodynamic potential given by the
internal energy of a system minus the available heat exchange with the thermal
bath fixed T

F=U-TS

[ It is the energy to create something (system) out of nothing when there is “free” heat
supply from the environment
O An infinitesimal change in F is due to independent, infinitesimal changesin T,V, N

dF = (g—i)V’N dT + (%)T’N dv + (S—Z)T’V dN

By defining S = — (Z_i)v,zv' P=-— (g—s)T’N and u = (a_N)T,V

[ Thermodynamic identity for an infinitesimal reversible process

dF = —SdT — PdV + udN
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Systems at constant T and Helmholtz free energy F(T,V,N)

[ Thermodynamic identity for an infinitesimal reversible process

dF = —SdT — PdV + udN
Combing this with the 2nd law of thermodynamics,

dU < TdS — PdV + udN
J Thermodynamic inequality for any infitesimal process (reversible «=», irreversible «>»)
dU — d(TS) < —TdS — PdV + udN
dF < —SdT — PdV + udN

> Any change in F when T, V,and N are fixed must be dF |7y y < 0. This is to lower F to its
miminum value at equilibrium

> Reversible process at fixed T, V,and N means that F is conserved: dF |, y = 0
> Reversible process at fixed T, and N means that : dF | y = —PdV

» Changes in F at a fixed T equals to the available work that a system can do.
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d The system + its thermal bath = isolated system. Hence total internal energy is conserved
d(U + Upgen) = 0 > dU = —dUpgen

O System can exchange heat with its thermal bath, while both mentained the same
temperature T. Using the conservation of energy and Clausius inequality

dUu
8Qpaen = —0Q = 6Qpqen = —? < dSpatn

L Hence, the change in the total entropy, St = S + Spqin, iS

dU
dS + dSpacn 2 dS =~ 2 0

QO Minimizing the Helmholtz free energy is equivalent to maximizing the total entropy
ds;, >0->dU-TS)<0-dF<0

* Describing the system by its Helmholtz free energy, we capture the evolution of both the
system and its thermal bath in accord to the thermodynamic principles
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Helmholtz free energy F(T,V, N) in the ideal gas

3

DF=U—TS—>F—M—Nle1n Z"m"T) +°
3
V 2TtmkT\2
F(T,V,N) = —NKT |In (ﬁ) +ln( e ) +1
oF 0 NKT
QpP=- (a_v)r,zv ~ P = NKT (Wlnv)m »p ="

» Slopes are negative (higher volume, higher entropy, lower F)

OF OF . :
> — # > — ﬁ — gas A expands into gas B to lower its free energy F,
A B

» P, > Pg the gas with higher pressure expands
» The reduction in F, is larger than the increase in Fg

T

Fil

Fy(T,Vy,N)

steeper

Fz(T,Vg, N)

Fp A




Systems at constant T and P and Gibbs free energy G(T, P, N)

O The Gibbs free energy F is the thermodynamic potential given by the internal
energy of a system minus the available heat exchange plus the work done on
the reservoir

G=U-TS+ PV

O It is the energy to create something (system) out of nothing and put into an
environment when there is “free” heat
O Aninfinitesimal change in G is due to independent, infinitesimal changes in T, P, N

dG = (g—j)P’N dT + (g—lf)T’N dP + (S—Z)T)P dN

By defining S = — (Z—i)P’N, V= (%)T,N and p = (Z_,(\;,)T,P

[ Thermodynamic identity for an infinitesimal reversible process

dG = —SdT + VdP + pdN
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Systems at constant T and P and Gibbs free energy G(T, P, N)

[ Thermodynamic identity for an infinitesimal reversible process

dG = —SdT + VdP + udN
Combing this with the 2nd law of thermodynamics,

dU < TdS — PdV + udN
J Thermodynamic inequality for any infitesimal process (reversible «=», irreversible «>»)
dU — d(TS) + d(PV) < =TdS + VdP + udN
dG < —SdT + VdP + udN

O Any change in the Gibbs free energy G when T, P,and N are fixed must be dG|rpy < 0
Which is to minimize G at equilibrium
[ Reversible process at fixed T, P,and N means that G is conserved: dG|7py = 0

[ Reversible process at fixed T, and P means that : dG|; p = pdN

1 Changes in G at a fixed T and P equals to the available chemical work to increase or
decrease the number of particles, or any other work which is not mechanical
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Gibbs free energy G(T, P, N) and chemical potential u

L Gibbs free energy G(T, P, N) is an extensive thermodynamic potential. Since,
T and P are intensive variable, the only extensive variable that it depends on is N,
therefore

G(T,P,N) = NG(T,P,1)

<
Combining this with the definition of the chemical potential
n= (G, = 6P = T,P,N
G(T,P,N) Gy = Nu
Q u(T,P) =—=-=,  G(T,P,N) = Nu(T,P)

Chemical potential is the Gibbs free energy per unit particle at fixed pressure P and temperature T

» This means that when we add a particle to the system, its Gibbs enery increases by one unit equal to u
» By adding more particles we dont change the value of u: each particles comes with the same amount

of energy indepent of the density of particles in the system when we keep the pressure and
temperature constant!

» In all the other thermodynamics conditions described by U, H and F, p can vary with N

Fys2160, 2018
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Ideal gas: G(T, P, N) and u

U Gibbs free energy G(T, P, N)
G=U-TS+PV=F+PV

21tka

G(T,P,N) = —NKkT [ln[ ] + 1] + NKT

3
ankT)fl

kT
G(T,P,N) = —NKTIn | = (=3

L Chemical potential u(T, P)

3
kT (ankT)fl

¢~ it
u(T,P) = =—kTIn|—(~—

U Change in chemical potential Au(P) at fixed T

Au(P) = u(P) — u(Py) = kTn [PJ
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T,P,N

Gy

Nu
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Thermodynamic potentials are related by Legendre transforms

The extensive variables (S, V, N) and intensive variables (T, P, u) are conjugate variables
When one is an independent (control) variable fixed by the surroundings, its conjugate variable is a derivative:

as
Variables like S are hand to control experimentally, hence it is better to transform the internal energy U into another
thermodynamic potential that has instead T as a natural variable

ou
When S is a control variable then T = ( )
V.N

Legendre transform does precisely this: it is a transformation from one thermodynamic potential to another by changing
between conjugate variables

Example: the transformation from internal energy U(S,V, N) to entalphy H(S, P, N)

U(S,V,N) - H(S,P,N)

ou
H(S,P,N) =U(S,V,N) + PV,where P = — (—>
oV/sn

Example in mechanics:
JL

L(q,q9) =K(@) —-U(q), p= g

—Hp,q)=L(q,q9) —pg-Hp,q =K+U



Legendre transform: graphic intepretation

Given a function of x with the slope u

f(x), with u = g

The Legendre transform is

g () = f(x) —ux,
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Legendre transform

Suppose we have a function F(x,y) where z = (@) then the function G(z, y) is related to F(x, y)
y

0x
by the Legendre transform

G(z,y)=F(xy) —zx

Proof:
oF oF
d(F —zx) = (a)y dx + (E>x dy — zdx — xdz
d(F —zx) = (G_F) dy — xdz using that z = (8_F>
dy x ’ 0x y

The y-dependence is not changed thus (Z—i) = (3—5) AlsoG =F(x,y) —zx > x = — (g)
X z y

d(F - 7x) (aF) dy — xd <aa) d +(aG) dz = dG
—7X) = | =— —xdz = [— — | dz=
ay) ay) Y " \az),



Legendre transforms:

ues,v,N)

oU
H(S,P,N) = U(S,V,N) + PV,P = — (_)
oV /s

oUu
F(T,V,N)=U(S,V,N)—TS, T = (_)
S /vy N

G(T,P,N) = U(S,V,N) =TS + PV
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Thermodynamic identities

dU = TdS — PdV + udN
dF = —SdT — PdV + pdN
dH = TdS + VdP + udN

dG = —SdT + VdP + udN
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Thermodynamic square

Extensive variables

Intensive variables

F(T,V) r
Yooy, G(T, P)
/Cf:?/

H(S,P) — P
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H(S,P) = U(S,V) + PV

G(T,P) = F(T,V) + PV
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Thermodynamic square

Extensive variables Intensive variables

V F(T,V) T

s H(S, P) P

 Derivative of the thermodynamic potential with respect to one of its arguments while keeping the other
constant is determined by going along a diagonal line either with(+) or against(-) the direction of the arrow

=~ (57), =~ (&),

= (50), = 5),
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Thermodynamic square

Extensive variables Intensive variables
v F(T,V) —T
Ues,v) «\e‘«\%\ G(T, P)
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G(T,P)=H(S,P)—TS

F(T,V) = U(S,V) =TS
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Thermodynamic square

Extensive variables Intensive variables

V F(T,V) T

s H(S, P) P

 Derivative of the thermodynamic potential with respect to one of its arguments while keeping the other
constant is determined by going along a diagonal line either with (+) or against (-) the direction of the arrow

s==(57), =~ 7).

7= (5), = G5),

Fys2160, 2018



Maxwell’s relations

dU =TdS — PdV

7NN

du ((’)U) dS + (6U> dv
-~ \as/y v/
[ Thermodynamic potential U is a state variable, which implies that o°%u _ 0%V
Y ’ asov ~ ovoS

(& G5),), = G @)y, - ) = - Gs),

1 Other Maxwell relaxations follow from the other thermodynamic potentials

d Used to compute relations between response functions: heat capacities, thermal expansion coefficients



