Lecture 12
 01.10.2018

Phase transformations

A phase transformation

- Discontinuous change in the properties of substance when the environent is changed infinitesimaly.
- Change between phases - different forms of the substance
- Example: water vs. temperature...

A phase transformation

- Often more than one variable that affects the phase of substance (eg, temperature \& pressure

WORLD'SHIGHEST MOUNTAIN

ELEVATION: -427m WATER BOILS: $101.4^{\circ} \mathrm{C}$,

Phase diagram

- A graph showing the equilibrium phases as a function of pressure and temperature.
- Critical point - gas too dense -> fluid...

After: Chemistry, OpenStax

Phase diagram, $\mathrm{H}_{2} \mathrm{O}$

- Let us consider water, $\mathrm{H}_{2} \mathrm{O}$
- Vapour pressure: coexisting gas and solid/liquid phase.
- Triple and critical points.
- Low pressures: no liquid phase
- We can still have metastable phases (superheated, supercooled)

1atm=101,3 kPa

Temperature (${ }^{\circ} \mathrm{C}$)

Phase diagram, $\mathrm{H}_{2} \mathrm{O}$

- $\mathrm{H}_{2} \mathrm{O}$ vs. other most other substances - different slope of liquid/solid.

Peculiarity of Ice

Ice less dense than water...

Fig. 47.-Wire cutting through ice (from Tyndall).

Bragg, Concering the Nature of Things, 1925

Phase diagram, CO_{2}

- Higher pressure raises melting temperature.
- Dry ice sublimation is easily observed for CO_{2}

Phase diagram, Helium

- The most «exotic» phase behavior
- Liquid at zero T .

Zero viscosity, very high thermal conductivity
Fys2160, 2018
9

Ferromagnet

- Curie temperature (iron 1043 K) magnetization disappears - no more phase boundary above critical point

Superconductor

- Type I-tin, mercury, lead
- Low B-field and T gives zero electrical resistivity.

Graphite vs. Diamonds

- Graphite more stable than diamond
- Gibbs free energy (G) is larger by 2900 J from graphite per mole at 1atm and room temperature.
- G - thermodynamic potential with thermal bath and fixed pressure.

$$
G=U-T S+P V
$$

Graphite vs. Diamonds

- Pressure dependence of Gibbs free energy depends on volume

$$
\left(\frac{\partial G}{\partial P}\right)_{T, N}=V
$$

- This gives us slope:
$V=5.31 \times 10^{-6} \mathrm{~m}^{3}$ (graphite)
$V=3.42 \times 10^{-6} \mathrm{~m}^{3}$ (diamond)
$15 \mathrm{GPa}=>50 \mathrm{~km}$ into the Earth.

Graphite vs. Diamonds

- Temperature dependence of Gibbs free energy depends on entropy

$$
\left(\frac{\partial G}{\partial T}\right)_{P, N}=-S
$$

- Larger temperature => Lower G.
- Decrease in G is larger for graphite which has more entropy.
- High T => more pressure needed to keep diamonds stable

Figure 1. Gibbs free energy vs. temperature for graphite (G_{g}), liquid carbon ($\mathrm{G}_{\text {liq }}$), and diamond $\left(\mathrm{G}_{\mathrm{d}}\right)$.

From : Mat. Res. Lett. 7, 353, 2018

Graphite vs. Diamonds

- Temperature dependence of Gibbs free energy depends on entropy

$$
\left(\frac{\partial G}{\partial T}\right)_{P, N}=-S
$$

- Larger temperature => Lower G.
- Decrease in G is larger for graphite which has more entropy.
- High T => more pressure needed to keep diamonds stable

Complex plasmas

Plasmas = ionised gas, electrically conductive
99% of visible matter in the universe

Complex plasma - small particles injected into plasma get charged and interact with each other.

Plasma crystal

To counteract the gravity we carry out experiments on parabolic flights or in on ISS

First experiment in physics on ISS!

Complex plasmas

- Potential energy vs. Kinetic energy (coupling parameter)

$$
\Gamma=\frac{Z_{d}^{2} e^{2}}{4 \pi \epsilon_{0} \Delta k_{B} T_{d}}
$$

- Interparticle distance vs. sceening length

$$
\kappa=\frac{\Delta}{\lambda_{D}}
$$

Complex plasmas

- Potential energy vs. Kinetic energy (coupling parameter)

$$
\Gamma=\frac{Z_{d}^{2} e^{2}}{4 \pi \epsilon_{0} \Delta k_{B} T_{d}}
$$

- Interparticle distance vs. sceening length

$$
\kappa=\frac{\Delta}{\lambda_{D}}
$$

Phase diagram

- A summary

Clausius-Clapeyron Relation

- Entropy determines the temperature dependence of the Gibbs free energy
- Volume determines the pressure dependence of the Gibbs free energy.
- The line on the phase transition diagram can be related to the entropies and volumes of the two phases!

Clausius-Clapeyron Relation

- Let us consider a mole of material, and for example liquid to gas tranisition.
- At the phase boundary the Gibbs free energy must the the same:

$$
G_{l}=G_{g}
$$

(the same is valid for their chemical potentials i.e., $\mathrm{G} /$ molecule)

- Now let us change T and P by dT and dP in such a way that we stay on the line.

$$
d G_{l}=d G_{g}
$$

Clausius-Clapeyron Relation

If we now take that

$$
d G=-S d T+V d P+\mu d N
$$

we can obtain (we do not change N in the system)

$$
-S_{l} d T+V_{l} d P=-S_{g} d T+V_{g} d P
$$

and we get the slope of the line:

$$
\frac{d P}{d T}=\frac{S_{g}-S_{l}}{V_{g}-V_{l}}
$$

Clausius-Clapeyron Relation

Often it is more convenient to use difference in entropies:

$$
S_{g}-S_{l}=L / T
$$

where L is latent heat needed for converting the materials phase. An we get the Clausius-Clapeyron Relation:

$$
\frac{d P}{d T}=\frac{L}{T \Delta V}
$$

The van der Waals Model

Ideal gas low modified for liquid-gas system to account for interactions:

$$
\left(P+\frac{a N^{2}}{V^{2}}\right)(V-N b)=N k T
$$

Volume modified by Nb - we can not compress a fluid to $\mathrm{V}=0$! b - minimum volume occupied by a molecule $\times N$

Pressure modified by $a N^{2} / V^{2}$ reflects short range interactions between molecules.

The van der Waals Model

Pressure modified by $a N^{2} / V^{2}$ reflects short range interactions between molecules.
Potential interactions of single molecule with all its neighbors is proportional to the density: $\sim N / V$
Total potential energy (N molecules): $E=-\frac{a N^{2}}{V}$
From thermodynamic identitty and fixed entropy («frozen» particles):

$$
d U=-P d V \rightarrow P=-(\partial U / \partial V)_{S}
$$

Thus the pressure due to interactions between molecules:

$$
P_{e}=-\frac{d}{d V}\left(-\frac{a N^{2}}{V}\right)=-\frac{a N^{2}}{V^{2}}
$$

van der Waals equation $P=\frac{N k T}{V-N b}-\frac{a N^{2}}{V^{2}}$

- Is qualitative exact for describing fluids.
- Does not account for that gas gets denser with P and clusterisation can occur.
- a and b depend on substances. Eg. water: $b^{\sim}(4 \AA)^{3}$, a $\sim 10 \mathrm{eV} \AA^{3}$
Eg. nitrogen: $b^{\sim}(4 \AA)^{3}, a \sim 2.5 \mathrm{eV} \AA^{3}$

Problem: Pressure decreases when we compress a fluid???

Isotherms of the hard-sphere gas

van der Waals equation $P=\frac{N k T}{V-N b}-\frac{a N^{2}}{V^{2}}$
Equilibrium state at given T and P is determined by the Gibbs energy

$$
d G=-S d T+V d P+\mu d N
$$

we find, for a fixed amount N :

$$
\left(\frac{\partial G}{\partial V}\right)_{N, T}=V\left(\frac{\partial P}{\partial V}\right)_{N, T}
$$

we can now use the van der Waals equation and get:

$$
\left(\frac{\partial G}{\partial V}\right)_{N, T}=\frac{N k T V}{(V-N b)^{2}}+\frac{a N^{2}}{V^{2}}
$$

van der Waals equation $P=\frac{N k T}{V-N b}-\frac{a N^{2}}{V^{2}}$

$$
\left(\frac{\partial G}{\partial V}\right)_{N, T}=\frac{N k T V}{(V-N b)^{2}}+\frac{a N^{2}}{V^{2}}
$$

After taking $V=(V-N b)+N b$ and integrating the last equation we get:

$$
G=-N k T \ln (V-N b)+\frac{(N k T)(N b)}{(V-N b)}-\frac{2 a N^{2}}{V}+c(T)
$$

which allows us to plot G for any given T .

van der Waals equation

Thermodynamically stable are only the lowest Gibbs energies

We should go straight from point 2 to 6

What is the pressure at the phase transformation?

We can find it from the figure, but also calculate it from PV diagram...
Let us integrate around the closed loop... 2-3-4-5-6

Figure 5.21. Gibbe free energy as a function of pressure for a van der Waals fluid at $T=0.9 T_{c}$. The corresponding isotherm is shown at right. States in the range 2-3-4-5-6 are unstable.

van der Waals equation

$$
0=\int_{\text {loop }} d G=\int_{\text {loop }}\left(\frac{\partial G}{\partial P}\right)_{T} d P=\int_{\text {loop }} V d P
$$

This corresponds to the area below A - area below B. If $A=B$ we found the pressure!

Phase diagrams...

- Vapor pressure at phas ϵ transition
- We have critical temperature T_{c} and critical volume and pressure: V and P at T_{c}
- They all together define the critical point

Figure 5.23. Complete phase diagrams predicted by the van der Waals model.

