Lecture 13

03.10.2018

Boltzmann statistics

So far...

- We have worked mainly with the second law of thermodynamics.
- and we often needed to do measurements (enthalpy, entropy) to get some results...
- But we want to calculate all thermodynamics quantities from first principles and microscopic models.
- We tried to use direct combinatoric models with multiplicity Ω.

Boltzmann statistics

- We will introduce the MOST powerful tool in all statistical mechanics
- We want to find the PROBABILITY of a system in any given microstate.
- For an atom microstates would be various energy levels...

Energy Levels of Hydrogen $(n=1-4)$

Boltzmann statistics

- We want to find the PROBABILITY of a system in any given microstate.
- For an atom microstates would be various energy levels...

Degenerate energy levels
Shells K ($n=1$, violet), L ($n=2$, blue), M ($n=3$,green) and N ($n=4$, red)

Atom in contact with reservoir...

- Temperature of reservoir is fixed.
- Any microstate possible, but some are more probable (energy is the key factor)
- Probability depends on how many possible microstates there are!
- We take two states: $\mathrm{E}\left(\mathrm{s}_{1}\right)$ and $\mathrm{E}\left(\mathrm{s}_{2}\right)$. Probabilities: $\mathrm{P}\left(\mathrm{s}_{1}\right)$ and $\mathrm{P}\left(\mathrm{s}_{2}\right)$.
- Recall: all accessible microstates in isolated system equally possible.
- But what about reservoir???
- Atom + reservoir = isolated system. Together they are in all microstates.

Atom in contact with reservoir...

- $\Omega_{\mathrm{R}}\left(\mathrm{s}_{1}\right)$ - Multiplicity of reservoir when atom is in state s_{1}.
- $\Omega_{\mathrm{R}}\left(\mathrm{s}_{2}\right)$ - Multiplicity of reservoir when atom is in state s_{2}.
- They are different. If $\mathrm{E}\left(\mathrm{s}_{1}\right)<\mathrm{E}\left(\mathrm{s}_{2}\right)$, then more energy is left for R.
- But all microstates are equally probable.
- Probability of atom in a given state is proportional to number of microstates accessible to the reservoir.

$$
\frac{\mathcal{P}\left(s_{2}\right)}{\mathcal{P}\left(s_{1}\right)}=\frac{\Omega_{R}\left(s_{2}\right)}{\Omega_{R}\left(s_{1}\right)}
$$

Atom in contact with reservoir...

- We remember that $S=k \ln \Omega$, then we can write:

$$
\frac{\mathcal{P}\left(s_{2}\right)}{\mathcal{P}\left(s_{1}\right)}=\frac{e^{S_{R}\left(s_{2}\right) / k}}{e^{S_{R}\left(s_{1}\right) / k}}=e^{\left[S_{R}\left(s_{2}\right)-S_{R}\left(s_{1}\right)\right] / k}
$$

- So we have probability related to change in the entropy of the reservoir. Change related to one atom - tiny...
- Thermodynamic identity gives:

$$
d S_{R}=\frac{1}{T}\left(d U_{R}+P d V_{R}-\mu d N_{R}\right)
$$

- But we can forget about the two last terms: $\quad d S_{R}=\frac{1}{T} d U_{R}$

Atom in contact with reservoir...

- And we get:

$$
S_{R}\left(s_{2}\right)-S_{R}(s 1)=\frac{1}{T}\left[U_{R}\left(s_{2}\right)-U_{R}\left(s_{1}\right)\right]=-\frac{1}{T}\left[E\left(s_{2}\right)-E\left(s_{1}\right)\right]
$$

- By putting it back to the equation for probability, we get:

$$
\frac{\mathcal{P}\left(s_{2}\right)}{\mathcal{P}\left(s_{1}\right)}=e^{-\left[E\left(s_{2}\right)-E\left(s_{1}\right)\right] / k T}=\frac{e^{-E\left(s_{2}\right) / k T}}{e^{-E\left(s_{1}\right) / k T}}
$$

- The ratio of probabilities is related to the ratio of exponential factors related to energy of a microstate and temperature of reservoir!
- The exponent is called Boltzmann factor

Boltzmann factor $e^{-E(s) / k T}$

- So it follows that the probability is proportional to the Boltzmann factor:

$$
P(s)=\frac{1}{Z} e^{-E(s) / k T}
$$

- The higher the energy the smaller probability
- The ground state has highest probability

Z - the partition function

- Sum of probabilities is unity

$$
1=\sum_{s} P(s)=\sum_{s} \frac{1}{Z} e^{-E(s) / k T}=\frac{1}{Z} \sum_{s} e^{-E(s) / k T}
$$

- So Z is a sum of ALL Boltzmann factors!

$$
Z=\sum_{s} e^{-E(s) / k T}
$$

- Z depends on temperature. It «counts» how many states are accessible by the atom by weighting them with their probability.
- Z larger at larger T. If we shift everything, Z will reflect that by a constant.

Example: Hydrogen in the solar atmosphere

Average values

- One way of calculating average Energy $\bar{E}=\frac{a E_{1}+b E_{2}+c E_{3}}{a+b+c}$
- And another way $\bar{E}=\frac{a}{a+b+c} E_{1}+\frac{b}{a+b+c} E_{2}+\frac{c}{a+b+c} E_{3}$
- This gives us the general formula

$$
\bar{E}=\frac{\sum_{s} E(s) N(s)}{N}=\sum_{s} E(s) \frac{N(s)}{N}=\sum_{s} E(s) \mathcal{P}(s)
$$

- Which translated into our probability with the Boltzmann factor and Partition function:

$$
\bar{E}=\frac{1}{Z} \sum_{s} E(s) e^{-E(s) / k T}
$$

Average value (for any variable X)

$$
\bar{X}=\sum_{s} X(s) \mathcal{P}(s)=\frac{1}{Z} \sum_{s} X(s) e^{-\beta E(s)}
$$

$$
\text { Here } \beta=1 / k T
$$ and X any variable

Note: average values are additive: $U=N \bar{E}$

Equipartition theorem

- Applies to systems with energy with quadratic degrees of freedom: $E(q)=c q^{2}$ examples are coordinate or momentum variables.

$$
Z=\sum_{q} e^{\beta E(q)}=\sum_{q} e^{-\beta c q^{2}}
$$

- My system has now a partition function (just one variableq):

$$
Z=\frac{1}{\Delta q} \sum_{q} e^{-\beta c q^{2}} \Delta q \quad \square \quad Z=\frac{1}{\Delta q} \int_{-\infty}^{\infty} e^{-\beta c q^{2}} d q
$$

Equipartition theorem

- This is a Gaussian function, which we can integrate

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

$$
Z=\frac{1}{\Delta q} \frac{1}{\sqrt{\beta c}} \int_{-\infty}^{\infty} e^{-x^{2}} d x
$$

- And this gives us

$$
Z=\frac{1}{\Delta q} \sqrt{\frac{\pi}{\beta c}}=C \beta^{-1 / 2}=C \sqrt{k T}
$$

- If we have explicit formula for Z, we can calculate the average energy...

$$
\bar{E}=-\frac{1}{Z} \frac{\partial Z}{\partial \beta}=\frac{1}{2} k T
$$

Maxwell distribution for speed

- From equipartition theorem: $\quad v_{r m s}=\sqrt{\frac{3 k T}{m}}$
- The «average». But what if we need to know exactly how many particles have speeds in some interval?
- Probability: $\mathcal{P}(v \cdots v+d v)=D(v) d v$
- $D(v)$ is the distribution function.
- What does $D(v)$ correspond to?

Distribution function

- $D(v)$ proportional to:

Probability of molecule having velocity \boldsymbol{v}
X
Number of vectors \boldsymbol{v} that correspond to speed v

Distribution function

- $D(v)$ proportional to:

Probability of molecule having velocity $\boldsymbol{v}=>e^{-m v^{2} / 2 k T}$
X
Number of vectors \boldsymbol{v} that correspond to speed $v=>$

Distribution function

- $\mathrm{D}(\mathrm{v})$ proportional to:

Probability of molecule having velocity \boldsymbol{v} is proportional to
$e^{-m v^{2} / 2 k T} T_{\text {The most probable velocity vector is } 0 \text { in ideal gas! }}$

Translational kinetic energy

Distribution function

- $\mathrm{D}(\mathrm{v})$ proportional to:

Number of vectors v that correspond to speed v is proportional to the area of the sphere: $4 \pi v^{2}$

Note: we can also figure it out from the change of coordinate system to the spherical coordinates:

$$
d^{3} v=d v_{x} d v_{y} d v_{z} \Longrightarrow d^{3} v=v^{2} d v d \Omega
$$

Distribution function

- $D(v)$ can now be written down:

$$
\mathcal{D}(v)=C \cdot 4 \pi v^{2} e^{-m v^{2} / 2 k T}
$$

- We only need to normalize it now; recall that total probability is 1 :

$$
1=\int_{0}^{\infty} \mathcal{D}(v) d v=4 \pi C \int_{0}^{\infty} v^{2} e^{-m v^{2} / 2 k T} d v
$$

- And we can get:

$$
1=\int_{0}^{\infty} \mathcal{D}(v) d v=4 \pi C\left(\frac{2 k T}{m}\right)^{3 / 2} \int_{0}^{\infty} x^{2} e^{-x^{2}} d x
$$

Maxwell distribution function

$$
D(v)=\left(\frac{m}{2 \pi k T}\right)^{3 / 2} 4 \pi v^{2} e^{-\frac{m v^{2}}{2 k T}}
$$

Partition function for composite systems

- Partition function of two noninteracting particles:

$$
\begin{aligned}
& Z=\sum_{s} e^{-\beta\left[E_{1}(s)+E_{2}(s)\right]}=\sum_{s} e^{-\beta E_{1}(s)} e^{-\beta E_{2}(s)} \\
& Z_{T}=\sum_{s_{1}} \sum_{s_{2}} e^{-\beta E_{1}\left(s_{1}\right)} e^{-\beta E_{2}\left(s_{2}\right)} \\
& \text { We can distinguish them, } \\
& \text { so take into account all } \\
& \text { pairs... }
\end{aligned}
$$

- If we can distinguish them:
- If we can not distinguish them:

Many particles:

- If we can distinguish them:
- If we can not distinguish them:

$$
\begin{aligned}
Z_{t} & =Z_{1} Z_{2} \ldots Z_{N} \\
Z_{t} & =\frac{1}{N!} Z_{1}^{N}
\end{aligned}
$$

