Lecture 13

03.10.2018

Boltzmann statistics

So far...

- We have worked mainly with the second law of thermodynamics.
- and we often needed to do measurements (enthalpy, entropy) to get some results...
- But we want to calculate all thermodynamics quantities from first principles and microscopic models.
- We tried to use direct combinatoric models with multiplicity Ω .

Boltzmann statistics

- We will introduce the MOST powerful tool in all statistical mechanics
- We want to find the PROBABILITY of a system in any given microstate.
- For an atom microstates would be various energy levels...

Boltzmann statistics

- We want to find the PROBABILITY of a system in any given microstate.
- For an atom microstates would be various energy levels...

Energy Levels of Hydrogen (n=1-4)

Shells K (n=1,violet), L (n=2,blue), M (n=3,green) and N (n=4,red)

Orbital angular momentum quantum number 1

- Temperature of reservoir is fixed.
- Any microstate possible, but some are more probable (energy is the key factor)
- Probability depends on how many possible microstates there are!
- We take two states: $E(s_1)$ and $E(s_2)$. Probabilities: $P(s_1)$ and $P(s_2)$.
- Recall: all accessible microstates in isolated system equally possible.
- But what about reservoir???
- Atom + reservoir = isolated system. Together they are in all microstates.

- $\Omega_R(s_1)$ Multiplicity of reservoir when atom is in state s_1 .
- $\Omega_R(s_2)$ Multiplicity of reservoir when atom is in state s_2 .
- They are different. If $E(s_1) < E(s_2)$, then more energy is left for R.
- But all microstates are equally probable.
- Probability of atom in a given state is proportional to number of microstates accessible to the reservoir.

$$\frac{\mathcal{P}(s_2)}{\mathcal{P}(s_1)} = \frac{\Omega_R(s_2)}{\Omega_R(s_1)}$$

• We remember that $S=k \ln \Omega$, then we can write:

$$\frac{\mathcal{P}(s_2)}{\mathcal{P}(s_1)} = \frac{e^{S_R(s_2)/k}}{e^{S_R(s_1)/k}} = e^{[S_R(s_2) - S_R(s_1)]/k}$$

- So we have probability related to change in the entropy of the reservoir. Change related to one atom – tiny...
- Thermodynamic identity gives:

$$dS_R = \frac{1}{T}(dU_R + PdV_R - \mu dN_R)$$

 $dS_R = \frac{1}{T}(dU_R + PdV_R - \mu dN_R)$ • But we can forget about the two last terms: $dS_R = \frac{1}{T}dU_R$

Fvs2160, 2018

And we get:

$$S_R(s_2) - S_R(s_1) = \frac{1}{T} [U_R(s_2) - U_R(s_1)] = -\frac{1}{T} [E(s_2) - E(s_1)]$$

• By putting it back to the equation for probability, we get:

$$\frac{\mathcal{P}(s_2)}{\mathcal{P}(s_1)} = e^{-[E(s_2) - E(s_1)]/kT} = \frac{e^{-E(s_2)/kT}}{e^{-E(s_1)/kT}}$$

- The ratio of probabilities is related to the ratio of exponential factors related to energy of a microstate and temperature of reservoir!
- The exponent is called Boltzmann factor

Boltzmann factor $e^{-E(s)/kT}$

• So it follows that the probability is proportional to the Boltzmann factor:

$$P(s) = \frac{1}{Z}e^{-E(s)/kT}$$

- The higher the energy the smaller probability
- The ground state has highest probability

Z — the partition function

Sum of probabilities is unity

$$1=\sum_s P(s)=\sum_s \frac{1}{Z}e^{-E(s)/kT}=\frac{1}{Z}\sum_s e^{-E(s)/kT}$$
 • So Z is a sum of ALL Boltzmann factors!

$$Z = \sum_{s} e^{-E(s)/kT}$$

- Z depends on temperature. It «counts» how many states are accessible by the atom by weighting them with their probability.
- Z larger at larger T. If we shift everything, Z will reflect that by a constant.

Example: Hydrogen in the solar atmosphere

Average values

- One way of calculating average Energy $\bar{E} = \frac{aE_1 + bE_2 + cE_3}{a + b + c}$
- And another way $\bar{E}=rac{a}{a+b+c}E_1+rac{b}{a+b+c}E_2+rac{c}{a+b+c}E_3$
- This gives us the general formula

$$\bar{E} = \frac{\sum_{s} E(s)N(s)}{N} = \sum_{s} E(s)\frac{N(s)}{N} = \sum_{s} E(s)\mathcal{P}(s)$$

 Which translated into our probability with the Boltzmann factor and Partition function:

$$\bar{E} = \frac{1}{Z} \sum_{s} E(s) e^{-E(s)/kT}$$

Average value (for any variable X)

$$\bar{X} = \sum_{s} X(s)\mathcal{P}(s) = \frac{1}{Z} \sum_{s} X(s)e^{-\beta E(s)}$$

Here $\beta=1/kT$ and X any variable

Note: average values are additive: U=NE

Equipartition theorem

• Applies to systems with energy with quadratic degrees of freedom: $E(q)=cq^2$ examples are coordinate or momentum variables.

$$Z = \sum_{q} e^{\beta E(q)} = \sum_{q} e^{-\beta cq^2}$$

• My system has now a partition function (just one variable q):

$$Z = \frac{1}{\Delta q} \sum_{q} e^{-\beta c q^2} \Delta q \qquad \longrightarrow \qquad Z = \frac{1}{\Delta q} \int_{-\infty}^{\infty} e^{-\beta c q^2} dq$$

Equipartition theorem

• This is a Gaussian function, which we can integrate $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$

$$\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}$$

$$Z = \frac{1}{\Delta q} \frac{1}{\sqrt{\beta c}} \int_{-\infty}^{\infty} e^{-x^2} dx$$

And this gives us

$$Z = \frac{1}{\Delta q} \sqrt{\frac{\pi}{\beta c}} = C\beta^{-1/2} = C\sqrt{kT}$$

If we have explicit formula for Z, we can calculate the average energy...

$$\bar{E} = -\frac{1}{Z} \frac{\partial Z}{\partial \beta} = \frac{1}{2} kT$$

Fvs2160, 2018 15

Maxwell distribution for speed

- From equipartition theorem: $v_{rms} = \sqrt{\frac{3kT}{m}}$
- The «average». But what if we need to know exactly how many particles have speeds in some interval?
- Probability: $\mathcal{P}(v\cdots v+dv)=D(v)dv$
- D(v) is the distribution function.
- What does *D(v)* correspond to?

• D(v) proportional to:

Probability of molecule having velocity v

X

Number of vectors **v** that correspond to speed v

• D(v) proportional to:

Probability of molecule having velocity ${\it v} => e^{-mv^2/2kT}$

X

Number of vectors \mathbf{v} that correspond to speed v = >

• D(v) proportional to:

Probability of molecule having velocity v is proportional to

$$e^{-mv^2/2kT}$$
 The most probable velocity **vector** is 0 in ideal gas!

Translational kinetic energy

• D(v) proportional to:

Number of vectors ${\bf v}$ that correspond to speed ${\bf v}$ is proportional to the area of the sphere: $4\pi v^2$

Note: we can also figure it out from the change of coordinate system to the spherical coordinates:

$$d^3v = dv_x dv_y dv_z \longrightarrow d^3v = v^2 dv d\Omega$$

vs2160, 2018 20

• D(v) can now be written down:

$$\mathcal{D}(v) = C \cdot 4\pi v^2 e^{-mv^2/2kT}$$

We only need to normalize it now; recall that total probability is 1:

$$1 = \int_0^\infty \mathcal{D}(v) dv = 4\pi C \int_0^\infty v^2 e^{-mv^2/2kT} dv$$

And we can get:

$$1 = \int_0^\infty \mathcal{D}(v)dv = 4\pi C \left(\frac{2kT}{m}\right)^{3/2} \int_0^\infty x^2 e^{-x^2} dx$$

Maxwell distribution function

$$D(v) = \left(\frac{m}{2\pi kT}\right)^{3/2} 4\pi v^2 e^{-\frac{mv^2}{2kT}}$$

• Distribution of speeds in an ideal gas...

Partition function for composite systems

Partition function of two noninteracting particles:

$$Z = \sum_{s} e^{-\beta [E_1(s) + E_2(s)]} = \sum_{s} e^{-\beta E_1(s)} e^{-\beta E_2(s)}$$
$$Z_T = \sum_{s} \sum_{s} e^{-\beta E_1(s_1)} e^{-\beta E_2(s_2)}$$

We can distinguish them, so take into account all pairs...

- If we can distinguish them:
- If we can not distinguish them:

$$Z_t = Z_1 Z_2$$

$$Z_t = Z_1 Z_2$$
$$Z_t = \frac{1}{2} Z_1 Z_2$$

Many particles:

- If we can distinguish them:
- If we can not distinguish them:

$$Z_t = Z_1 Z_2 ... Z_N$$

$$Z_t = \frac{1}{N!} Z_1^N$$