Lecture 13

03.10.2018

Boltzmann statistics



So far...

* We have worked mainly with the second law of thermodynamics.

* and we often needed to do measurements (enthalpy, entropy) to
get some results...

* But we want to calculate all thermodynamics quantities from first
principles and microscopic models.

* We tried to use direct combinatoric models with multiplicity €2.



Boltzmann statistics

* We will introduce the MOST powerful tool in all statistical mechanics
* We want to find the PROBABILITY of a system in any given microstate.
* For an atom microstates would be various energy levels...
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Energy Levels of Hydrogen (n=1-4)
Shells K (n=1.violet), L (n=2.blue), M (n=3.green) and N (n=4.red)
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Atom in contact with reservaoir...

* Temperature of reservoir is fixed.

* Any microstate possible, but some are more probable (energy is the
key factor)

* Probability depends on how many possible microstates there are!

* We take two states: E(s;) and E(s,). Probabilities: P(s;) and P(s,).

* Recall: all accessible microstates in isolated system equally possible.
* But what about reservoir???

 Atom + reservoir = isolated system. Together they are in all
microstates.



Atom in contact with reservaoir...

* (c(s;) — Multiplicity of reservoir when atom is in state s;.

* Qc(s,) — Multiplicity of reservoir when atom is in state s,.

* They are different. If E(s,)< E(s,), then more energy is left for R.
e But all microstates are equally probable.

* Probability of atom in a given state is proportional to number of
microstates accessible to the reservoir.
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Atom in contact with reservaoir...

* We remember that S=k InQ2, then we can write:

S S92 k
P(s2) e r(s2)/ _ [Sr(s2)—Sn(s1)]/k
7)(81) QSR(Sl)/k

* So we have probability related to change in the entropy of the
reservoir. Change related to one atom —tiny...

* Thermodynamic identity gives:

1
dSg = ?(dUR + PdVyz — udNRg)

* But we can forget about the two last terms: dSp = %dUR



Atom in contact with reservaoir...

* And we get:

Si(s2) ~ Sp(s1) = [Un(s2) ~ Un(s1)] = 5 [E(s2) — E(s1)]

* By putting it back to the equation for probability, we get:

P(s2) _ o~ [B(s2)—E(s1)]/kT _ e~ Pls2)/RT

P(s1) o—E(s1)/kT

* The ratio of probabilities is related to the ratio of exponential factors
related to energy of a microstate and temperature of reservoir!

* The exponent is called Boltzmann factor



Boltzmann factor ¢~ £(8)/kT

* So it follows that the probability is proportional to the Boltzmann
factor:

1
P(s) = _e—E(S)/k‘T
(5) = P
* The higher the energy
the smaller probability

* The ground state has
highest probability
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Z —the partition function

e Sum of probabilities is unity

1 < 1 B(s '
1_ZP ZZ E()/kT:EZG E(s)/kT

S Y P— /

e SoZis a sum of ALL Boltzmann factors!
7 — ZB—E(S)/kT
S

e Z depends on temperature. It «counts» how many states are accessible
by the atom by weighting them with their probability.

e Z larger at larger T. If we shift everything, Z will reflect that by a constant.



Example: Hydrogen in the solar atmosphere
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Average values

_ E,+bF E
* One way of calculating average Energy £/ = ALy + 04 F €l
a+b+c

*Andanotherway p_ ¢ p o b o ¢ o
a+b+c a+b+c a+b+c

* This gives us the general formula

EZE ZE (5) ZE

* Which translated into our probablllty W|th the
Boltzmann factor and Partition function:

__ 1 —FE(s)/kT
E = 7 ZS:E(S)G



Average value (for any variable X)

X =Y X(s)P(s) = 5 3 X(s)e PO

Here f=1/kT
and X any variable

Note: average values are additive: U = N E



Equipartition theorem

* Applies to systems with energy with quadratic degrees of freedom:
E(g)=cqg? examples are coordinate or momentum variables.

7 = Z PE@) Z o—Bea”
q

q
* My system has now a partition function (just one variable q):
7 — i ZG_BCQ2AQ _— 7 — L /OO 6—ch2dq
Aq Aq J_

q



Equipartition theorem

* This is a Gaussian function, which we can integrate / e dv = /7

1 1 > >
Z = / e ¥ dx /
Agv/Be J_ o
* And this gives us
1
7 = L —CpV? = CVET

* If we have explicit formula for Z, we can calculate the average energy...
_ 1 07 1
E = = —kT

Z 0B 2



Maxwell distribution for speed

| N 3kT
* From equipartition theorem:  Vrms = \/ ==

* The «average» . But what if we need to know exactly how many
particles have speeds in some interval?
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» Probability: P(v---v+dv) =D(v)dv |~ B
* D(v) is the distribution function. |
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Distribution function

* D(v) proportional to:

Probability of molecule having velocity v
X
Number of vectors v that correspond to speed v



Distribution function

* D(v) proportional to:

2
. : : — 2KT
Probability of molecule having velocity v=> € mu”/2k
X

Number of vectors v that correspond to speed v =>



Distribution function

* D(v) proportional to:

Probability of molecule having velocity v is proportional to

—muv? /2kT

6 The most probable velocity vector is O in ideal gas!

/

Translational kinetic energy



Distribution function

* D(v) proportional to:

Number of vectors v that correspond to speed v
: : 2
is proportional to the area of the sphere: 4dmv

Note: we can also figure it out from the change of coordinate system to the spherical coordinates:

‘v d°v = dvydv,dv, = d>v = v2dvdQ)



Distribution function

* D(v) can now be written down:

2
D(v) = C - dgv2e—mv /2FT
* We only need to normalize it now; recall that total probability is 1:

1:/ D(v)dv:47TC/ p2e ™MV /2KT gy
0 0

* And we can get:

2T\ 3/? )
1—/ D(v v—47TC’< ) / r’e " dx
m 0



Maxwell distribution function

3/2 2
D(v) = <2:11T> ATv=e” ZRT

c 2KT

. . . . . )

* Distribution of speeds in an ideal gas... |5 ' I V
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Partition function for composite systems

 Partition function of two noninteracting particles:

[ = Z e_B[El(SHE?(S)] — Z 6_551(5)6—5‘52(5) We can distinguish them,
so take into account all

Zr :SZ Z 6—5E1(81)6—58E2(82) pairs...
S1 S2
* If we can distinguish them: Ly = %122
* If we can not distinguish them: L = §Z122
Many particles:
* If we can distinguish them: Ly = L1 do. LN
* If we can not distinguish them: 7, = LZN



