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Boltzmann statistics
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So far...

• We have worked mainly with the second law of thermodynamics.
• and we often needed to do measurements (enthalpy, entropy) to 

get some results...
• But we want to calculate all thermodynamics quantities from first 

principles and microscopic models.
• We tried to use direct combinatoric models with multiplicity W.
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Boltzmann statistics

• We will introduce the MOST powerful tool in all statistical mechanics
• We want to find the PROBABILITY of a system in any given microstate.
• For an atom microstates would be various energy levels...
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Boltzmann statistics

• We want to find the PROBABILITY 
of a system in any given 
microstate.
• For an atom microstates would

be various energy levels...
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Degenerate energy levels



Atom in contact with reservoir...

• Temperature of reservoir is fixed.
• Any microstate possible, but some are more probable (energy is the

key factor)
• Probability depends on how many possible microstates there are!
• We take two states: E(s1) and E(s2). Probabilities: P(s1) and P(s2).
• Recall: all accessible microstates in isolated system equally possible.
• But what about reservoir???
• Atom + reservoir = isolated system. Together they are in all 

microstates.
Fys2160, 2018 5



Atom in contact with reservoir...

• WR(s1) – Multiplicity of reservoir when atom is in state s1.
• WR(s2) – Multiplicity of reservoir when atom is in state s2.
• They are different. If E(s1)< E(s2), then more energy is left for R.
• But all microstates are equally probable.
• Probability of atom in a given state is proportional to number of

microstates accessible to the reservoir. 
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P(s2)

P(s1)
=

⌦R(s2)

⌦R(s1)



Atom in contact with reservoir...

• We remember that S=k lnW, then we can write:

• So we have probability related to change in the entropy of the
reservoir. Change related to one atom – tiny...
• Thermodynamic identity gives:

• But we can forget about the two last terms:
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P(s2)

P(s1)
=

eSR(s2)/k

eSR(s1)/k
= e[SR(s2)�SR(s1)]/k

dSR =
1

T
(dUR + PdVR � µdNR)

dSR =
1

T
dUR



Atom in contact with reservoir...

• And we get:

• By putting it back to the equation for probability, we get:

• The ratio of probabilities is related to the ratio of exponential factors
related to energy of a microstate and temperature of reservoir! 
• The exponent is called Boltzmann factor

Fys2160, 2018 8

SR(s2)� SR(s1) =
1

T
[UR(s2)� UR(s1)] = � 1

T
[E(s2)� E(s1)]

P(s2)

P(s1)
= e�[E(s2)�E(s1)]/kT =

e�E(s2)/kT

e�E(s1)/kT



Boltzmann factor

• So it follows that the probability is proportional to the Boltzmann
factor:

• The higher the energy
the smaller probability

• The ground state has 
highest probability

Fys2160, 2018 9

e�E(s)/kT

P (s) =
1

Z
e�E(s)/kT



Z – the partition function
• Sum of probabilities is unity

• So Z is a sum of ALL Boltzmann factors!

• Z depends on temperature. It «counts» how many states are accessible
by the atom by weighting them with their probability.
• Z larger at larger T. If we shift everything, Z will reflect that by a constant.
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1 =
X

s

P (s) =
X

s

1

Z
e�E(s)/kT =

1

Z

X

s

e�E(s)/kT

Z =
X

s

e�E(s)/kT



Example: Hydrogen in the solar atmosphere
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Average values
• One way of calculating average Energy

• And another way

• This gives us the general formula

• Which translated into our probability with the
Boltzmann factor and Partition function:
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Ē =
aE1 + bE2 + cE3

a+ b+ c

Ē =
a

a+ b+ c
E1 +

b

a+ b+ c
E2 +

c

a+ b+ c
E3

Ē =

P
s E(s)N(s)

N
=

X

s

E(s)
N(s)

N
=

X

s

E(s)P(s)

Ē =
1

Z

X

s

E(s)e�E(s)/kT



Average value (for any variable X)
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X̄ =
X

s

X(s)P(s) =
1

Z

X

s

X(s)e��E(s)

Here b=1/kT
and X any variable

Note: average values are additive: U = NĒ



Equipartition theorem
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• Applies to systems with energy with quadratic degrees of freedom: 
E(q)=cq2 examples are coordinate or momentum variables.

• My system has now a partition function (just one variable q):

Z =
X

q

e�E(q) =
X

q

e��cq2

Z =
1

�q

X

q

e��cq2�q Z =
1

�q

Z 1

�1
e��cq2dq



Equipartition theorem
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• This is a Gaussian function, which we can integrate

• And this gives us

• If we have explicit formula for Z, we can calculate the average energy... 

Z =
1

�q

1p
�c

Z 1

�1
e

�x

2

dx

Z 1

�1
e

�x

2

dx =
p
⇡

Z =
1

�q

r
⇡

�c
= C��1/2 = C

p
kT

Ē = � 1

Z

@Z

@�
=

1

2
kT



Maxwell distribution for speed
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• From equipartition theorem:
• The  «average» . But what if we need to know exactly how many

particles have speeds in some interval?
• Probability:
• D(v) is the distribution function.
• What does D(v) correspond to?

vrms =

r
3kT

m

P(v · · · v + dv) = D(v)dv



Distribution function
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• D(v) proportional to:

Probability of molecule having velocity v
X
Number of vectors v that correspond to speed v



Distribution function
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• D(v) proportional to:

Probability of molecule having velocity v =>
X
Number of vectors v that correspond to speed v =>



Distribution function
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• D(v) proportional to:

Probability of molecule having velocity v  is proportional to

Translational kinetic energy

The most probable velocity vector is 0 in ideal gas!e�mv2/2kT



Distribution function
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• D(v) proportional to:

Number of vectors v that correspond to speed v 
is proportional to the area of the sphere: 4⇡v2

d3v = v2dvd⌦d3v = dv
x

dv
y

dv
z

Note: we can also figure it out from the change of coordinate system to the spherical coordinates:



Distribution function
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• D(v) can now be written down:

• We only need to normalize it now; recall that total probability is 1:

• And we can get:

D(v) = C · 4⇡v2e�mv2/2kT

1 =

Z 1

0
D(v)dv = 4⇡C

Z 1

0
v2e�mv2/2kT dv

1 =

Z 1

0
D(v)dv = 4⇡C

✓
2kT

m

◆3/2 Z 1

0
x

2
e

�x

2

dx



Maxwell distribution function
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D(v) =
⇣ m

2⇡kT

⌘3/2
4⇡v2e�

mv2

2kT

• Distribution of speeds in an ideal gas...



Partition function for composite systems
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• Partition function of two noninteracting particles:

• If we can distinguish them:
• If we can not distinguish them:

Many particles:
• If we can distinguish them:
• If we can not distinguish them:

Z =
X

s

e��[E1(s)+E2(s)] =
X

s

e��E1(s)e��E2(s)

ZT =
X

s1

X

s2

e��E1(s1)e��E2(s2)

Zt = Z1Z2

Zt =
1

2
Z1Z2

Zt =
1

N !
ZN
1

Zt = Z1Z2...ZN

We can distinguish them, 
so take into account all 
pairs...


