Lecture 15

31.09.2018

Ideal gas in a thermal bath

Equilibrium thermodynamic state

System in contact with a thermal bath:

Partition function $Z(T, V, N)$

- One particle in a thermal bath

$$
Z_{1}(T)=\sum_{\{s\}} e^{-\frac{E(s)}{k T}}, \quad \text { so that } P_{1}(s)=\frac{1}{Z_{1}} e^{-\beta E(s)}, \quad \beta=\frac{1}{k T}
$$

- N-distinguishable, identical and independent classical particles

$$
\begin{gathered}
Z_{N}(T, V)=\sum_{\left\{s_{1}, s_{2} \cdots s_{N}\right\}} e^{-\frac{\boldsymbol{E}_{N}\left(s_{1}, \cdots s_{N}\right)}{\boldsymbol{k} \boldsymbol{T}}} \\
Z_{N}(T, V)=\sum_{\left\{s_{1}, s_{2} \cdots s_{N}\right\}} e^{-\frac{E_{N}\left(s_{1}, \cdots s_{N}\right)}{\boldsymbol{k} \boldsymbol{T}}} \\
Z_{N}(T, V)=\left(\sum_{s_{1}} e^{-\beta E_{1}\left(s_{1}\right)}\right)\left(\sum_{s_{2}} e^{-\beta E_{1}\left(s_{2}\right)}\right) \cdots\left(\sum_{s_{N}} e^{-\beta E_{1}\left(s_{N}\right)}\right) \\
Z_{N}(T, V)=Z_{1}^{N}(T, V)
\end{gathered}
$$

System in contact with a thermal bath: Partition function $Z(T, V, N)$

- One particle in a thermal bath

$$
Z_{1}(T)=\sum_{\{s\}} e^{-\frac{E(s)}{k T}}, \quad \text { so that } P_{1}(s)=\frac{1}{Z_{1}} e^{-\beta E(s)}, \quad \beta=\frac{1}{k T}
$$

- 2-indistinguishable, identical and independent particles in 2 states

$$
\begin{gathered}
Z_{2}=\frac{1}{2} Z_{1}^{2}=\frac{1}{2}\left(e^{-\beta E\left(s_{A}\right)}+e^{-\beta E\left(s_{B}\right)}\right)^{2} \\
Z_{2}=\frac{1}{2} e^{-\beta E\left(s_{A}\right)}+e^{-\beta E\left(s_{A}\right)} e^{-\beta E\left(s_{B}\right)}+\frac{1}{2} e^{-\beta E\left(s_{B}\right)}
\end{gathered}
$$

- Configurations in which the two particles are in the same state are also «double-counted». The probability that two particles are in the same state is very low for dilute ideal gas , so this error is very small.

So, if we know $Z_{1}(T)$, we know the partition function of N independent, identical particles $Z_{N}(T)$

$\ln Z$ and F

- 1- particle

$$
F_{1}(T)=-k T \ln Z_{1}(T)
$$

- N-distinguishable, identical and independent classical particles

$$
F_{N}(T)=-k T \ln Z_{N}(T)=-N k T \ln Z_{1}(T)
$$

- N-indistinguishable, identical and independent classical particles

$$
F_{N}(T)=-k T \ln \frac{Z_{1}^{N}(T)}{N!}={ }_{N \gg 1}-N k T\left[\ln \left(\frac{Z_{1}}{N}\right)-1\right]
$$

One isolated free particle in 1D

- Consider one free quantum particle in a 1D box of «volume» L
- Quantum states are standing waves with wavelengths $\lambda_{n_{x}}=\frac{2 L}{n_{x}}$, with $n_{x}=1,2, \cdots$ is the state number
- Standing waves are superposition of travelling waves in opposite directions with the same momentum in magnitute

$$
p_{x}=\frac{h}{\lambda_{n}}=\frac{h}{2 L} n_{x}
$$

- The energy levels of a free particle in 1D are

$$
\epsilon_{n_{x}}=\frac{p_{x}^{2}}{2 m} \rightarrow \epsilon_{n_{x}}=\frac{h^{2}}{8 m L^{2}} n_{x}^{2} \rightarrow n_{x}\left(\epsilon_{n}\right)=\frac{2 L}{h} \sqrt{2 m \epsilon_{n}}
$$

- Multiplicity $\Omega_{1}^{1 D}(U, L)$ is given by the state number corresponding to the fixed energy U (number of microstates with energies $\leq \boldsymbol{U}$)

$$
\Omega_{1}^{1 D}(U, L)=n\left(\epsilon_{n}=U\right) \rightarrow \boldsymbol{\Omega}_{1}^{1 D}(\boldsymbol{U}, \boldsymbol{L})=\frac{\mathbf{2 L}}{\boldsymbol{h}} \sqrt{\mathbf{2 m \boldsymbol { U }}}
$$

(technically it should just be one microstate, but that will lead to inconsistent thermodynamics)

$$
S=k \ln \Omega_{1}^{1 D} \rightarrow \frac{1}{T}=\left(\frac{\partial S}{\partial U}\right)=\frac{k}{2 U} \rightarrow U=\frac{k T}{2}
$$

!! For many particles, counting all the states with energy $\leq \boldsymbol{U}$ is more or less the same as counting the states with energy U, and all is good!

N isolated free particles in 3D

- Consider \mathbf{N} independent and free quantum particles in a 3D box of volume $V=L^{3}$
- The energy levels for each free particle in 3D are
$\epsilon_{n_{i}}=\frac{\overrightarrow{p_{i}} \cdot \overrightarrow{p_{i}}}{2 m}=\frac{h^{2}}{8 m L^{2}}\left(n_{x, i}^{2}+n_{y, i}^{2}+n_{z, i}^{2}\right)$, where $n_{k, i}=0,1,2, \cdots$ is the state number for $\mathrm{k}=$ x, y, z of each particle $i=1, \cdots N$
- Multiplicity $\Omega_{N}^{3 D}$ is the volume of the hyperspehere in the $\mathbf{3 N}$-dimensional «n-space» corresponding to a fixed energy $U=\sum_{i=1}^{N} \epsilon_{n_{i}}$
- Hyper-surface in the «n-space» with equal energy is described by the quadratic form

$$
\sum_{i}^{N} n_{x, i}^{2}+n_{y, i}^{2}+n_{z, i}^{2}=\frac{8 m L^{2} U}{h^{2}}=R_{n}^{2}
$$

- $\boldsymbol{\Omega}_{N}^{3 D}(\boldsymbol{U}, \boldsymbol{V})=\frac{\mathbf{1}}{N!\left(\frac{3 N}{2}-1\right)!} V^{N}\left(\frac{2 \pi m U}{\boldsymbol{h}^{2}}\right)^{\frac{3 N}{2}}$
- $S=k \ln \Omega_{N}^{3 D} \rightarrow \frac{1}{T}=\left(\frac{\partial S}{\partial U}\right)=\frac{3 N k}{2 U} \rightarrow U=\frac{3 N k T}{2}$

One free particle in 1D in a thermal bath

- Given the particle's energy levels in 1D

$$
\epsilon_{n_{x}}=\frac{h^{2}}{8 m L^{2}} n_{x}^{2}, \quad n_{x}=1,2, \cdots
$$

- One-particle partition function

$$
Z_{1}^{1 D}(T)=\sum_{n}^{\infty} e^{-\beta \epsilon_{n}}=\sum_{n}^{\infty} e^{-\beta \frac{h^{2}}{8 m L^{2}} n^{2}}
$$

$Z_{1}^{(1 D)}(T) \approx_{n \gg 1} \int_{0}^{\infty} d n e^{-\beta \frac{h^{2}}{8 m L^{2}} n^{2}}=\frac{1}{2} \int_{-\infty}^{\infty} d n e^{-\beta \frac{h^{2}}{8 m L^{2}} n^{2}}=\frac{\sqrt{\pi}}{2} \sqrt{\frac{8 m L^{2}}{\beta h^{2}}}$

$$
Z_{1}^{(1 D)}(T)=\sqrt{\frac{2 \pi m k T}{h^{2}}} L=\frac{L}{\Lambda(T)}, \quad \Lambda(T)=\sqrt{\frac{h}{2 \pi m k T}} \text { (quantum length) }
$$

$\exp \left(-\beta \mathrm{hn}^{2} / 8 \mathrm{~mL}^{2}\right)$

One free particle in 3D in a thermal bath

- Given the energy levels of a free particle in 3D
$\epsilon_{n}=\frac{\vec{p} \cdot \vec{p}}{2 m}=\frac{h^{2}}{8 m L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right), \quad n_{k}=0,1,2, \cdots$ are the state numbers for $\mathrm{k}=x, y, z$

- One-particle partition function

$$
\begin{gathered}
Z_{1}(T, V)=\sum_{n_{x}} \sum_{n_{y}} \sum_{n_{z}} e^{-\beta \epsilon_{n}}=\left(\sum_{n_{x}} e^{-\beta \frac{\boldsymbol{h}^{2}}{8 m L^{2}} n_{x}^{2}}\right)\left(\sum_{n_{y}} e^{-\boldsymbol{\beta} \frac{h^{2}}{8 m L^{2}} n_{y}^{2}}\right)\left(\sum_{n_{z}} e^{-\boldsymbol{\beta} \frac{\boldsymbol{h}^{2}}{8 m L^{2}} n_{z}^{2}}\right) \\
Z_{1}(T, V)=\left(\sum_{n} e^{-\boldsymbol{\beta} \frac{\boldsymbol{h}^{2}}{8 m L^{2}} n^{2}}\right)^{3}=\left(\frac{L}{\Lambda(T)}\right)^{3}=\frac{V}{\Lambda^{3}(T)}
\end{gathered}
$$

Quantum length $\Lambda(T)\left[\right.$ textbook $\left.-l_{Q}\right]$

- One-particle partition function counts the number of quantum volumes that fit into the box of size $L \times L \times L$

$$
Z_{1}(T)=\frac{L^{3}}{\Lambda^{3}(T)}, \quad \Lambda(T)=\sqrt{\frac{h^{2}}{2 \pi m k T}}
$$

- One N_{2} molecule at room temperature $T_{0}=300 \mathrm{~K}$ has $\Lambda\left(T_{0}\right) \approx 2 \times 10^{-2} n m$. So, if the molecule is confined to a box of length $L=1 \mathrm{~cm}$, its partition function would $Z_{1}=\left(\frac{\mathrm{L}}{\Lambda\left(\mathrm{T}_{0}\right)}\right)^{3}=5^{3} \times 10^{24}$!

$\exp \left(-\beta \mathrm{hn}^{2} / 8 \mathrm{~mL}^{2}\right)$

n
- Unless \boldsymbol{T} is close absolute zero or the box size is on atomic scale, the quantum length (proportial to the de Broglie wavelength) of the particle is much smaller than any other lengthscale

Average kinetic energy of one particle in 1D

- One-particle partition function (1D) counts the number of quantum lengths that fit into the box of size L

$$
Z_{1}(T, L)=\frac{L}{\Lambda(T)}, \quad \Lambda(T)=\sqrt{\frac{h^{2}}{2 \pi m k T}}
$$

- Energy of the particle will fluctuation due to thermal fluctuations about an average

$\exp \left(-\beta \mathrm{hn}^{2} / 8 \mathrm{~mL}^{2}\right)$

n

$$
\langle\epsilon\rangle=-\frac{\partial \ln Z_{1}(T, L)}{\partial \beta}=\frac{d}{d \beta} \ln \Lambda(\beta)=\frac{d}{d \beta} \ln \sqrt{\beta}=\frac{1}{2} k T
$$

- Equipartition of energy for one translational degree of freedom

When does the equipartition of energy apply? (revisit)

- Quadratic degrees of freedom $\left(E(q)=c q^{2}\right)$:
translations $E_{\text {kin }}(v)=\frac{1}{2} m v^{2}$
rotations $E_{\text {rot }}(\dot{\theta})=\frac{1}{2} I \dot{\theta}^{2}$
oscillations $H=\frac{1}{2} m v^{2}+\frac{1}{2} m \omega^{2} x^{2}$
- Sufficiently large number of distinct microstates with significant probability (that are thermally accessible) («high temperature limit»): $Z_{1}(T)=\frac{1}{2} \int_{-\infty}^{+\infty} d q e^{-c \beta q^{2}} \sim \sqrt{k T}$

1D free particle has $\langle\epsilon\rangle=\frac{1}{2} k T$, in the limit of a continuous spectrum of available energies (so at sufficiently low temperatures and in the quantum world this will not be valid)

Harmonic oscillator has $\frac{\hbar \omega}{e^{\beta \hbar \omega}-1} \rightarrow_{T \rightarrow \infty} k T$

Maxwell-Bolzmann distribution (revisit)

- Equilibrium distribution of particles in a gas between (non-degenerate) energy levels E_{S} at a given T

Probability distribution of a particle between energy levels E_{S}

$$
P(s)=\frac{1}{Z} e^{-E_{S}}
$$

- Equilibrium distribution particles in a gas with speeds between v and $v+d v$ at a given T

Probability that a particles moves with a speed between v and $v+d v$

$$
\begin{gathered}
D^{(1 D)}(v) d v=\left(\frac{m}{2 \pi k T}\right)^{\frac{1}{2}} e^{-\frac{m}{2 k T} v^{2}} 2 d v \\
D^{(3 D)}(v) d v=\left(\frac{m}{2 \pi k T}\right)^{\frac{3}{2}} e^{-\frac{m}{2 k T} v^{2}} 4 \pi v^{2} d v
\end{gathered}
$$

Maxwell-Bolzmann velocity distribution (revisit)

- Probability of a free particle to have a velocity along one direction between v_{x} and $v_{x}+d v_{x}$

$$
P\left(v_{x}\right) \sim e^{-\beta E\left(v_{x}\right)} \sim e^{-\frac{m}{2 k T} v_{x}^{2}}
$$

Using the normalization condition $\int_{-\infty}^{+\infty} d v_{x} P\left(v_{x}\right)=1 \rightarrow \int_{-\infty}^{+\infty} d v_{x} e^{-\frac{m}{2 k T} v_{x}^{2}}=\sqrt{\frac{2 \pi k T}{m}}$

$$
P\left(v_{x}\right)=\sqrt{\frac{m}{2 \pi k T}} e^{-\frac{m}{2 k T} v_{x}^{2}}
$$

- Velocity statistics

$$
\begin{gathered}
\left\langle v_{x}\right\rangle=\int_{-\infty}^{+\infty} d v_{x} v_{x} P\left(v_{x}\right)=0 \\
\left\langle v_{x}^{2}\right\rangle=\int_{-\infty}^{+\infty} d v_{x} v_{x}^{2} P\left(v_{x}\right)=\frac{k T}{m} \\
\langle | v_{x}| \rangle=2 \int_{0}^{+\infty} d v_{x} v_{x} P\left(v_{x}\right)=\sqrt{\frac{2 k T}{\pi m}}
\end{gathered}
$$

Maxwell-Bolzmann velocity distribution (revisit)

Probability of a free particle to have a velocity along one direction between \vec{v}_{x} and $\vec{v}_{x}+d \vec{v}_{x}$

$$
P\left(\vec{v}_{x}\right) d \vec{v}_{x}=\sqrt{\frac{m}{2 \pi k T}} e^{-\frac{m}{2 k T} v_{x}^{2}} d \vec{v}_{x}
$$

Maxwell-Bolzmann velocity distribution (revisit)

Probability density of a free particle to have a speed along one direction between v_{x} and $v_{x}+d v_{x}$

$$
D\left(v_{x}\right)=\left(\text { prob to have a vector } \vec{v}_{x}\right) \times\left(\# \text { of vectors } \vec{v}_{x} \text { with speed } v_{x}\right)
$$

Maxwell-Bolzmann velocity distribution (revisit)

Probability density of a free particle in 3D to have a speed between v and $v+d v \quad\left(v^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)$
$D(v) d v$
$=($ prob to have a vector $\vec{v}) \times(\#$ of vectors \vec{v} with speed $v)$

$$
D(v) d v=\left(\sqrt{\frac{m}{2 \pi k T}}\right)^{3} e^{-\frac{m}{2 k T} v^{2}} \times 4 \pi v^{2} d v
$$

Maxwell-Bolzmann velocity distribution (revisit)

Probability density of a free particle in 3D to have a speed between v and $v+$
$d v \quad\left(v^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)$

$$
D(v)=\left(\sqrt{\frac{m}{2 \pi k T}}\right)^{3} 4 \pi v^{2} e^{-\frac{m}{2 k T} v^{2}}
$$

Speed statistics :

$$
\begin{gathered}
\langle v\rangle=\int_{0}^{+\infty} d v v D(v)=\sqrt{\frac{8 k T}{\pi m}} \\
\left\langle v^{2}\right\rangle=\int_{0}^{+\infty} d v v^{2} D(v)=\frac{3 k T}{m} \\
v_{r m s}=\sqrt{\left\langle v^{2}\right\rangle}=\sqrt{\frac{3 k T}{m}} \\
v_{\max }=\sqrt{\frac{2 k T}{m}} \quad(v \text { for } \max D(v)) \\
v_{\max }<\langle v\rangle<v_{r m s}
\end{gathered}
$$

So the most likely speed is actuallty smaller than the average speed! (Non-Gaussian distribution!)

N -free particles in a thermal bath

- One-particle partition function

$$
Z_{1}(T, V)=\left(\sum_{n} e^{-\beta \frac{\boldsymbol{h}^{2}}{8 m L^{2}} n^{2}}\right)^{3}=\left(\frac{L}{\Lambda(T)}\right)^{3}=\frac{V}{\Lambda^{3}(T)}
$$

- N-particle partition function

$$
Z_{N}(T, V)=\frac{Z_{1}^{N}}{N!}=\frac{1}{N!}\left(\frac{V}{\Lambda^{3}(T)}\right)^{N}
$$

- Helmholtz free energy

$$
\begin{gathered}
F_{N}(T, V)=-k T \ln Z_{N}(T, V)=-N k T\left[\ln \left(\frac{Z_{1}}{N}\right)-1\right] \\
F_{N}(T, V)=-N k T\left[\ln \left(\frac{V}{N \Lambda^{3}(T)}\right)-1\right]
\end{gathered}
$$

N -free particles in a thermal bath

- N-particle partition function

$$
Z_{N}(T, V)=\frac{Z_{1}^{N}}{N!}=\frac{1}{N!}\left(\frac{V}{\Lambda^{3}(T)}\right)^{N}, \quad \Lambda(T)=\sqrt{\frac{h^{2}}{2 \pi m k T}}
$$

- Energy energy

$$
U=-\frac{\partial}{\partial \beta} \ln Z_{N}(T, V)=3 N \frac{d}{d \beta} \ln \Lambda(\beta)=\frac{3 N}{2} \mathrm{kT}
$$

- Entropy

$$
S=\frac{U-F}{T}=\frac{3 N k}{2}+N k+N k\left[\ln \left(\frac{V}{N \Lambda^{3}(T)}\right)\right]=N k\left[\ln \left(\frac{V}{N \Lambda^{3}(T)}\right)+\frac{5}{2}\right]
$$

N -free particles in a thermal bath

- N-particle partition function

$$
Z_{N}(T, V)=\frac{Z_{1}^{N}}{N!}=\frac{1}{N!}\left(\frac{V}{\Lambda^{3}(T)}\right)^{N}, \quad \Lambda(T)=\sqrt{\frac{h^{2}}{2 \pi m k T}}
$$

- Energy energy

$$
U=-\frac{\partial}{\partial \beta} \ln Z_{N}(T, V)=3 N \frac{d}{d \beta} \ln \Lambda(\beta)=\frac{3 \mathrm{~N}}{2} \mathrm{kT}
$$

- Heat capacity

$$
C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V, N}=\frac{3 \mathrm{~N} k}{2}
$$

N -free particles in a thermal bath

- Helmholtz free energy

$$
F_{N}(T, V)=-N k T\left[\ln \left(\frac{V}{N \Lambda^{3}(T)}\right)-1\right]
$$

- Equation of state

$$
P=-\left(\frac{\partial F}{\partial V}\right)_{T, N}=\frac{k T}{V}
$$

- Chemical potential

$$
\begin{aligned}
& \mu(T, V)=\left(\frac{\partial F}{\partial N}\right)_{T, V}=-k T \ln \left(\frac{V}{N \Lambda^{3}(T)}\right) \\
& \mu(T, V)=k T \ln \rho-\frac{3}{2} k T \ln \left(\frac{2 \pi m k T}{h^{2}}\right)
\end{aligned}
$$

