Lecture 15

31.09.2018

Ideal gas in a thermal bath



Equilibrium thermodynamic state

U is fixed

S(U), T,P(V,T)

S,U,T,P V. < >

X ¥

T Uu(r),P(V,T)

Statistical mechanics

Q(U) counts all equally-likely accessible microstates

1
P(S) —= @

Z(T) = Y.. e PFs counts the microstates when they don’t
have the same probability at a given T

1
P(s) = e ~BEs

v S(U)=—k Y P(s)InP(s) =klnQ (U)

-1
Cr-@
ou V,N

vV F=U=TS Isolated system

<\ V

F= —KkTInZ(T) System in a thermal bath

U=y =- (22D,

v §=—k %sP(s)InP(s) = ==
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System in contact with a thermal bath:
Partition function Z(T,V,N)

* One particle in a thermal bath

_E(s) 1
Zl(T) :ze kT ) SO thatpl(S) IZ—B_ﬂE(S), ﬁ:
{s} 1
* N-distinguishable, identical and independent classical particles

En(s1,-'sn)
ZN (T, V) = Z e kT
{s1,52-'sn}
En(s1,°'SN)
ZN (T, V) = Z e kT
{s1,52:-sn}
Zy(T,V) = <z P E1<s1)> (2 e—BEl(Sz)> (2 o—BE1(sn)
S1 52 SN

Zy(T, V) =ZN(T, V)
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System in contact with a thermal bath:
Partition function Z(T,V,N)

* One particle in a thermal bath

_E(s) 1 e 1
ZI(T) = Ze kT ) so that Pl(S) = Z_ e_ﬁ (S), B = —
1

{s}
» 2-indistinguishable, identical and independent particles in 2 states

Z, =172 =1(eBEGH) 4 e—ﬁE(sB))Z [ A B }
Lo O
1 1
Z;=5 e~PBE(sa) 4 =BE(sa) g—BE(sp) 4 > e~BE(sB) |
A B
* Configurations in which the two particles are in the same state are also «double-counted». The probability that two .
particles are in the same state is very low for dilute ideal gas, so this error is very small.

* N-indistinguishable, identical and independent classical particles I A ‘ b

1
Zy(T,V) = Z{(T,V)

So, if we know Z;(T), we know the partition function of N independent, identical particles Zy(T)
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InZ and F

e 1- particle

* N-distinguishable, identical and independent classical particles

Fn(T) = =kT In Zy(T) = =NkT In Z{(T)

* N-indistinguishable, identical and independent classical particles

Zy (T)

Fy(T) = —kTIn——

— NkT [1 (Zl) 1]
=N>1 n N
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One isolated free particle in 1D

Consider one free quantum particle in a 1D box of «volume» L 0 ‘

. . 2L . .
Quantum states are standing waves with wavelengths Anx =— with n,, = 1,2, -+ is the state number
X

Standing waves are superposition of travelling waves in opposite directions with the same momentum in
magnitute

The energy levels of a free particle in 1D are

2 2
__ DPx __h 2 __ 2L
€n, = 50— €n, = gz My = Ny(€n) = —4/2mey

Multiplicity Q1P (U, L) is given by the state number corresponding to the fixed energy U (number of
microstates with energies < U)

1D 1D 2L
0P (U, L) = n(ey = U) > 03°(U, L) = =V2mU

(technically it should just be one microstate, but that will lead to inconsistent thermodynamics)
1 (65) k kT

S=kn0i’ > —=(—|=—-U=
nmrT\eu) T2 ” 2

1! For many particles, counting all the states with energy < U is more or less the same as counting the states with energy
U, and all is good!




N isolated free particles in 3D

 Consider N independent and free quantum particles in a 3D box of volume V = L3

* The energy levels for each free particle in 3D are

_pibi _ _h* 2 2 2 _ : —
=5 = (ny; +nj; +nz;), whereny; = 0,1,2,- is the state number for k =

x,V, z of each particlei = 1,---N

€n,

* Multiplicity QIS;,Dis the volume of the hyperspehere in the 3N-dimensional «n-space»

corresponding to a fixed energy U = Z?’:l €n,

* Hyper-surface in the «n-space» with equal energy is described by the quadratic form

N
8mL*U

2 2 2 _ _ p2
an,i+ny,i+nz,i— 2 = R;

i

3N
. 3D . 1 N 2mrmU\ 2
2y (U'V)_N!(%—l)! v ( h2 )

n:

n,

n,



One free particle in 1D in a thermal bath

* Given the particle’s energy levels in 1D

llz
g =12
* One-particle partition function
0] (0] _ﬁ hz n2
AME Ze"ﬁen = Ze 8mL2 o o
n n
— —
co hz 2 1 o hz 2 2
ZUPN(T) ~ sy j dn e Pemz™ = j dn e Pemiz™ = vm 8'"12‘ exp(-3h n”/8mL?)
0 2)_o 2 Bh
(1D) _ [2mmkr L B
Z;7(T) = =2 L= AT A(T) = Ey——— (quantum length)
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One free particle in 3D in a thermal bath

* Given the energy levels of a free particle in 3D

. 2
e, =P = nZ +n2 +n?), n, =0,1,2,--- are the state numbers fork = x,y, z
n X y k y

2m 8mlL?

* One-particle partition function

Z,(T,V) = Zzz e Bén =

Ny Ny Ny

hz
e ﬂ8mL2 ze Bgmiz™ ze Bgmiz ™
ny

Ny

2 3
Z,(T,V) = (Z e oz ) = (ﬁ)g B A?XT)




Quantum length A(T) [textbook — []

* One-particle partition function counts the number of quantum volumes that fit into
the box of size LXLXL

L’ h?
HD=may AT ekt

« One N, molecule at room temperature Ty = 300K has A(Ty) ~ 2x10~%nm .

exp(-G h n2/8mL2)

So, if the molecule is confined to a box of length L = 1 cm, its partition function

L
A(To)

would Z; = ( )3 = 53 x10%4!

* Unless T is close absolute zero or the box size is on atomic scale, the quantum
length (proportial to the de Broglie wavelength) of the particle is much smaller
than any other lengthscale

e Classical limit
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Average kinetic energy of one particle in 1D

* One-particle partition function (1D) counts the number of quantum lengths that fit
into the box of size L

exp(-G h n2/8mL2)

L
Zl(Tr L) — mr A(T) —

* Energy of the particle will fluctuation due to thermal fluctuations about an average

dlnZy(T,L) d _d 1
T = B lnA(B)—dB ln\/ﬁ—sz

(€) = —

* Equipartition of energy for one translational degree of freedom
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When does the equipartition of energy apply? (revisit)

* Quadratic degrees of freedom (E(q) = cq?):

translations Ey;, (v) = %mv2
rotations Ey,:(0) = 2192

_— 1 1
oscillations H = Emv2 +Emw2x2

» Sufficiently large number of distinct microstates with significant probability (that are thermally accessible)

(«high temperature limit»): Z{(T) = %fj;o dq e~Ba* kT

Q 1D free particle has(€) = % KT, in the limit of a continuous spectrum of available energies (so at sufficiently low temperatures

and in the quantum world this will not be valid)

. . hw
L Harmonic oscillator has .

“Fho ] ~T-o kT



Maxwell-Bolzmann distribution (revisit)

e Equilibrium distribution of particles in a gas between (non-degenerate) energy levels E¢ at a given T

Probability distribution of a particle between energy levels E
1
P(s) == e ks
() =7

Equilibrium distribution particles in a gas with speeds between v and v + dv ata given T

Probability that a particles moves with a speed between v and v + dv

N =

m __m
D(lD) (‘U )dv = (m) e 2kr v22 dv
3 m
7 _. m -
) e 2kTV 4mvidv

m

D@D (p)dv = (anT

P(s)




Maxwell-Bolzmann velocity distribution (revisit)

* Probability of a free particle to have a velocity along one direction between v, and v, + dv,

m .2
P(vx) ~ e_ﬁE(vx) ~ e_mvx

2nkT

-2
Using the normalization condition fjozo dv, P(vy) =1- fjozo dv, e 2T X =

mo _m
P = | omer @ e

(vg) = j v v, o) = 0

* \Velocity statistics

kT

m

+oo 2kT
(lvxl) =:2.[) dv, vy P(vy) = m

+00
(v2) = j dvy v2 P(v,) =



Maxwell-Bolzmann velocity distribution (revisit)

Probability of a free particle to have a velocity along one direction between v, and v, + dv,

- - m —ﬂvpzc -
P(v,)dv, = kT ¢ 2kT "* d v,

P(velocity)

velocity
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Maxwell-Bolzmann velocity distribution (revisit)

Probability density of a free particle to have a speed along one direction between v, and v, + dv,

D(v,) = (prob to have a vector v,)X(# of vectors v, with speed v,.)

D(vx)

| 1 —

speed vV,
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Maxwell-Bolzmann velocity distribution (revisit)

Probability density of a free particle in 3D to have a speed between v

andv+dv  (v? =vi+v)+v7)

D(v)dv
= (prob to have a vector V)X(# of vectors v with speed v)

m 3 M .2
D(v)dv=< /ﬁ> e  Z2kTV X4mv?dv I
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Maxwell-Bolzmann velocity distribution (revisit)

Probability density of a free particle in 3D to have a speed between v and v +

dv  (v? =vg+v)+v5)

pe) = ([T moe=sr
V)= 27TkT Tv-e

Speed statistics : (v) = f0+°° dvv D) = %
T 3kT
(v?) = j dvv? D(v) = —
0 m
3kT
Urms= (v2) = |—
m
Vmax = % (v formaxD(v))

So the most likely speed is actuallty smaller than the average speed! (Non-Gaussian

distribution!)

0.5

0.4

0.3

D(v)

0.2

0.1

rms

v/v
max

Fys2160, 2018 18



N-free particles in a thermal bath

* One-particle partition function

2,(T,V) = (Z e'ﬁﬁnz)g = (ﬁf - A3L<T)

* N-particle partition function

N

zy o1 74
a0 =5 = ()

* Helmholtz free energy

Fy(T,V) = —kT In Zy(T, V) = —NKT [ln (%) - 1]

Fy(T,V) = —NKT lln (N AZ (T)) _ 1]



N-free particles in a thermal bath

* N-particle partition function
Z(TV)—ZIlv—l( d )N ATy = |
L T TRV ET¢ 5 YA ~ |2mmkT

U=-2 10z, TV) = 385 mA) = Nkt
=g in{ILV)=3NGg InAp) =~

* Energy energy

* Entropy

S = - ; - = Sl:k T Nk + Nk ll" (NAI?’/(T)> ] = Nk [l" (NA:(T)> * ;]




N-free particles in a thermal bath

* N-particle partition function
z TV)—ZIlv—l( d )N ATy = |
VI =yr=n Bm) = (Zmmkr

U=-2 10z, TV) = 385 mA) = Nkt
=g in{ILV)=3NGg InAp) =~

* Energy energy

* Heat capacity



N-free particles in a thermal bath

* Helmholtz free energy

Fy(T,V) = —NKT [ln ( — (T)) _ 1]

* Equation of state

e Chemical potential

wIT.V) = (%)Ty = —kT'ln (NAZ(T)>

2mmkT
W)

3
u(T,v) = lenp—Elen (




