Lecture 16

05.11.2018

Fermi and Bose Distributions

Reminder:

- To derive the Boltzmann factor, we have considered a system which can exchange the energy with the reservoir, but not particles.
- With this assumption, we found the PROBABILITY of a system in any given microstate.
- We had:

Isolated system
$P(s)=\frac{1}{\Omega(U)}$
Ω counts number of equally-
likely states

System in a thermal bath

$$
P(s)=\frac{1}{Z(T)} e^{-\beta E_{s}}
$$

$Z(T)$ counts microstates when they do
not have the same probability at given T

Reminder: Atom in contact with reservoir...

- Temperature of reservoir is fixed.
- Any microstate possible, but some are more probable (energy is the key factor)
- Probability depends on how many possible microstates there are!
- We take two states: $\mathrm{E}\left(\mathrm{s}_{1}\right)$ and $\mathrm{E}\left(\mathrm{s}_{2}\right)$. Probabilities: $\mathrm{P}\left(\mathrm{s}_{1}\right)$ and $\mathrm{P}\left(\mathrm{s}_{2}\right)$.
- Recall: all accessible microstates in isolated system equally possible.
- But what about reservoir???
- Atom + reservoir = isolated system. Together they are in all microstates.

Reminder: Atom in contact with reservoir...

- $\Omega_{\mathrm{R}}\left(\mathrm{s}_{1}\right)$ - Multiplicity of reservoir when atom is in state s_{1}.
- $\Omega_{\mathrm{R}}\left(\mathrm{s}_{2}\right)$ - Multiplicity of reservoir when atom is in state s_{2}.
- They are different. If $E\left(s_{1}\right)<E\left(s_{2}\right)$, then more energy is left for R.
- But all microstates are equally probable.
- Probability of atom in a given state is proportional to number of microstates accessible to the reservoir.

$$
\frac{\mathcal{P}\left(s_{2}\right)}{\mathcal{P}\left(s_{1}\right)}=\frac{\Omega_{R}\left(s_{2}\right)}{\Omega_{R}\left(s_{1}\right)}
$$

Reminder: Atom in contact with reservoir...

- We remember that $S=k \ln \Omega$, then we can write:

$$
\frac{\mathcal{P}\left(s_{2}\right)}{\mathcal{P}\left(s_{1}\right)}=\frac{e^{S_{R}\left(s_{2}\right) / k}}{e^{S_{R}\left(s_{1}\right) / k}}=e^{\left[S_{R}\left(s_{2}\right)-S_{R}\left(s_{1}\right)\right] / k}
$$

- So we have probability related to change in the entropy of the reservoir. Change related to one atom - tiny...
- Thermodynamic identity gives:

$$
d S_{R}=\frac{1}{T}\left(d U_{R}+P d V_{R}-\mu d N_{R}\right)
$$

- But we can forget about the two last terms: $\quad d S_{R}=\frac{1}{T} d U_{R}$

Reminder: Atom in contact with reservoir...

- And we get:

$$
S_{R}\left(s_{2}\right)-S_{R}(s 1)=\frac{1}{T}\left[U_{R}\left(s_{2}\right)-U_{R}\left(s_{1}\right)\right]=-\frac{1}{T}\left[E\left(s_{2}\right)-E\left(s_{1}\right)\right]
$$

- By putting it back to the equation for probability, we get:

$$
\frac{\mathcal{P}\left(s_{2}\right)}{\mathcal{P}\left(s_{1}\right)}=e^{-\left[E\left(s_{2}\right)-E\left(s_{1}\right)\right] / k T}=\frac{e^{-E\left(s_{2}\right) / k T}}{e^{-E\left(s_{1}\right) / k T}}
$$

- The ratio of probabilities is related to the ratio of exponential factors related to energy of a microstate and temperature of reservoir!
- The exponent is called Boltzmann factor

Let us now allow particles to be exchanged

$$
d S_{R}=\frac{1}{T}\left(d U_{R}+P d V_{R}-\mu d N_{R}\right)
$$

We still neglect $P d V$ term, but need to keep the last term...

Let us now allow particles to be exchanged

$$
d S_{R}=\frac{1}{T}\left(d U_{R}+P d V_{R}-\mu d N_{R}\right)
$$

We still neglect $P d V$ term, but need to keep the last term...
 When considering a small system we will get minus sign :

$$
S_{R}\left(s_{2}\right)-S_{R}(s 1)=-\frac{1}{T}\left[E\left(s_{2}\right)-E\left(s_{1}\right)-\mu N\left(s_{2}\right)+\mu N\left(s_{1}\right)\right]
$$

And we end up with the ratio of nrobabilities.

$$
\frac{\mathcal{P}\left(s_{2}\right)}{\mathcal{P}\left(s_{1}\right)}=\frac{e^{-\left[E\left(s_{2}\right)-\mu N\left(s_{2}\right)\right] / k T}}{e^{-\left[E\left(s_{1}\right)-\mu N\left(s_{1}\right)\right] / k T}}
$$

Z - the grand partition function (Gibbs sum)

- Again - if we want to have the absolute probability we need to find the proportionality constant Z.

$$
P(s)=\frac{1}{Z} e^{-[E(s)-\mu N(s)] / k T}
$$

- Sum of all probabilities equals 1 , so we have:

$$
Z=\sum_{s} e^{-[E(s)-\mu N(s)] / k T}
$$

- If the are more types of particles in the system - we need to have a sum over species as well in the Gibbs factor:

$$
\text { Gibbs factor }=e^{-\left[E(s)-\mu_{A} N_{A}(s)-\mu_{B} N_{B}(s)\right] / k T}
$$

Example: Oxygen in blood

- Each red cell (hemglobin molecule) can carry up to 4 oxygen atoms - 4 adsorption sites with Fe^{2+}.

- Let us consider 1 site only, for simplicity.
- If there is only O^{2} that can take the site, we have two states: unoccupied (energy 0) and occupied ($\varepsilon=-0.7 \mathrm{eV}$).
- Grant partition function: $Z=1+e^{-[\epsilon-\mu] / k T}$
- What is the chemical potential for the lungs?

Example: Oxygen in blood

- Recall from last week that:

$$
\mu(T, V)=\left(\frac{\partial F}{\partial N}\right)_{T, V}=-k T \ln \left(\frac{V Z}{N v_{Q}}\right)
$$

- So we have:

$$
\mu \approx-0.6 \mathrm{eV}
$$

- For the body temperature 310 K we gett the value of gibbs factor:

$$
e^{-[\epsilon-\mu] / k T}=40
$$

- Finally we get the probability of the site being occupied by oxygen:

$$
\mathcal{P}=\frac{40}{40+1}=98 \%
$$

Example: Oxygen in blood

- But what if we have a CO - carbon monoxide present?
- The grand partition function is then (' corresponds to CO):

$$
Z=1+e^{-[\epsilon-\mu] / k T}+e^{-\left[\epsilon^{\prime}-\mu^{\prime}\right] / k T}
$$

- $C O$ is less abundand. If it is less by a factor of 100 . Then we have:

$$
\mu^{\prime} \approx-0.72 \mathrm{eV}
$$

- But it more tightly bound than oxygen:
$\epsilon^{\prime} \approx-0.85 \mathrm{eV}$
- For the body temperature 310 K we gett the value of gibbs factor:

$$
e^{-\left[\epsilon^{\prime}-\mu^{\prime}\right] / k T}=120
$$

- Probability of the site being occupied by oxygen is much lower: $\mathcal{P}=\frac{40}{40+1+120}=25 \%$

Example: Saha equation

- How much can a gas be ionisied if it is in thermal equilibrium?
- Neglect spin and exicted states. Consider a system with single hydrogen atom/ion, which has two possible states:

Unocuppied (no electron present - ionised):
$\mathrm{E}=0, \mathrm{~N}=0$, Gibbs factor: $e^{0}=1$
Occupied (electron present - neutral atom):
$\mathrm{E}=-\mathrm{I}, \mathrm{N}=1$, Gibbs factor: $e^{-(-I-\mu) / k T}$

Example: Saha equation

- Ratio of probabilities euqals the ratio of pressures of ionised and neutral states.

$$
\frac{P_{i}}{P_{n}}=\frac{\mathcal{P}_{i}}{\mathcal{P}_{n}}=\frac{1}{e^{-(-I-\mu) / k T}}=\frac{e^{-I / k T}}{e^{\mu / k T}}
$$

Example: Saha equation

- Chemical potential for electrons (treated as ideal gas):

$$
\mu=-k T \ln \left(\frac{V Z}{N v_{Q}}\right)=-k T \ln \left(\frac{k T}{P_{e} v_{Q}}\right)
$$

- This gives us Saha equation, where $/$ is the ionisation potential:

$$
\frac{P_{i}}{P_{n}}=\frac{k T}{P_{e} v_{Q}} e^{-I / k T}=\frac{1}{n_{e}}\left(\frac{2 \pi k T m}{h^{3}}\right)^{3 / 2} e^{-I / k T}
$$

- Surface of the Sun - less than 1 in 10000 atoms are ionised...

Bosons vs. Fermions

- Gibbs factor applicable to quantum statistics...
- Many identical particles want to occupy single particle state.
- We had for indistinguishable, noninteracting particles: $Z=\frac{1}{N!} Z_{1}^{N}$
- But this breaks down - particles can have the same states...
- Particles distinguishable: 25 states
- Particles indistinguishable: 25/2 states ? But Z must be integer.
- In fact we have 15 states: 10 where particles are in different states (20 if particles are distinguishable), and 5 when they occupy the same state.

Bosons vs. Fermions

- Bosons: particles can occupy the same state (can share the state).
- Photons, pions, helium-4 atoms etc.
- Fermions: particles can NOT share a state with another particle of the same type.
- Electrons, protons, neutrons, neutrinos, helium-3 atoms etc.
- Bosons are social
- Fermions are antisocial

- Bosons -> integer spin
- Fermions -> half-integer spin

Bosons vs. Fermions

- If $Z_{1} \gg N$; the number of available single particle states is much greater than the number of particles, boson-fermion differences are not crucial
- Ideal gas: single particle partition function is: $\quad Z_{1}=\frac{V Z_{i n t}}{v_{Q}}$
- Where the quantum volume is ca. the cube of de Broglie wavelength.

$$
v_{Q}=l_{Q}^{3}=\left(\frac{h}{\sqrt{2 \pi m k T}}\right)^{3}
$$

- Then the condition $Z_{1} \gg N$ for many particles $Z=Z^{N} / N$! is $V / N \gg v_{0}$. So the average distance must be greater than de Broglie length.
- But the condition broken in very dense or very cold environments (e.g., neutron star, liquid heliumb)

Distribution function

- Let us now take a system where $Z_{1} \gg N$ is not fulfilled - we need to use Gibbs factors instead of the Boltzmann factor.
- Consider a system of 1 single-particle state. System consists of a spatial wavefunction.
- Particle in a box: system and reservoir have the same physical space. Only one wavefunction is the system (particle).
- Probability of a state being occupied by n particles is:
. $\mathcal{P}(n)=\frac{1}{Z} e^{-(n \epsilon-\mu n) / k T}=\frac{1}{Z} e^{-n(\epsilon-\mu) / k T}$

Particle in a box

Distribution function - Fermions

- For fermions: $\mathrm{n}=0$ or $\mathrm{n}=1$.
- The grand partition function:

$$
Z=1+e^{-(\epsilon-\mu) / k T}
$$

- Occupancy - probability:

$$
\bar{n}=\sum_{n} n \mathcal{P}(n)=0 \cdot \mathcal{P}(0)+1 \cdot \mathcal{P}(1)=\frac{e^{-(\epsilon-\mu) / k T}}{1+e^{-(\epsilon-\mu) / k T}}
$$

- Fermi-Dirac distribution:

$$
\bar{n}_{F D}=\frac{1}{e^{(\epsilon-\mu) / k T}+1}
$$

Distribution function - Bosons

- For bosons: $\mathrm{n}=0,1,2$....
- The grand partition function ($\mu<\varepsilon$):
$Z=1+e^{-(\epsilon-\mu) / k T}+e^{-2(\epsilon-\mu) / k T}+e^{-3(\epsilon-\mu) / k T}+\ldots$

$$
=\frac{1}{1-e^{-(\epsilon-\mu) / k T}}
$$

Bose-Einstein distribution

- Occupancy - probability:

$$
\bar{n}=\sum_{n} n \mathcal{P}(n)=0 \cdot \mathcal{P}(0)+1 \cdot \mathcal{P}(1)+2 \cdot \mathcal{P}(2) \ldots
$$

$$
\bar{n}_{B E}=\frac{1}{e^{(\epsilon-\mu) / k T}-1}
$$

where we used:

$$
x=(\epsilon-\mu) / k T
$$

$$
\mathrm{Fyss2260,2018}=-\frac{1}{Z} \frac{\partial Z}{\partial x}
$$

Distribution functions - comparison

- For Boltzmann distribution

$$
\bar{n}_{B o l}=e^{(\epsilon-\mu) / k T}
$$

- Fermi-Dirac distribution

$$
\bar{n}_{F D}=\frac{1}{e^{(\epsilon-\mu) / k T}+1}
$$

- Bose-Einstein distribution

