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Degenerate Fermi gases
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Reminder: Z – the grand partition function
• Probability, when we can exchange particles:

• Sum of all probabilities equals 1, so we have:
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Distribution function - Fermions
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• For fermions: n=0 or n=1.
• The grand partition function:

• Occupancy – probability:

• Fermi-Dirac distribution:

.

Z = 1 + e�(✏�µ)/kT
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e�(✏�µ)/kT
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Distribution function - Bosons
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• For bosons: n=0,1,2 ....
• The grand partition function (µ<e):

• Occupancy – probability:

.
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Bose-Einstein distribution
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Distribution functions - comparison
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• For Boltzmann distribution

• Fermi-Dirac distribution

• Bose-Einstein distribution

.

n̄
Bol

= e(✏�µ)/kT

n̄FD =
1

e(✏�µ)/kT + 1

n̄BE =
1

e(✏�µ)/kT � 1



Let us look closer at the Fermi - gas

• We consider the gas of fermions at a very low temperature.
• What do we mean by low temperature? – The Boltzmann

statistics does not apply. The average volume per particle is much
smaller than the quantum volume:
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Let us look closer at the Fermi - gas
• In metal V/N is ca. (0.2 nm)3, while for an electron in room temperature vQ=(4.3 

nm)3.  Boltzmann statistics does not work!

• Temperature is too low for the Boltzmann statistics to apply: T => 0.

• We neglect other interactions with lattice, atoms, etc.

• Electrons in a metal can be treated as ideal gas. But their concetration far exceeds
concentration of particles in a conventional gas. 

• Electrons are fermions – hence Fermi-Dirac statistics apply: number of particles
ocuppying state s (energy es) is given by:
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Fermi – gas at T=0

• A Step-Function. 
• Here µ is called the Fermi energy:

• Degenerate gas: all states below the Fermi energy occupied; all states above
are free.

• The Fermi energy determined by the total number of electrons in a given 
volume. Intensive quantity...

• How to find the Fermi energy,, total energy, and the pressure of such an 
electron gas?
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Fermi energy of electron gas

• Assume electrons to be free particles in a box of V=L3. (no
interactions with crystal lattice, ions, etc.).
• Treat them as particle in a box! Wavefunctions are sine 

waves depending on a level n:

• Momenum is (for each dimension):
.

Fys2160, 2018 9

Particle in a box

�n =
2L

n

p =
h

�n
=

hn

2L



Fermi energy of electron gas

• The energy is then given by: 

• We are thus filling a part of a sphere in n-space. Each node 
has TWO states (because of different spin). 
• Lower energy – lower indices. 
• Maximum energy related to radius of the Fermi surface.
.
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Fermi energy of electron gas

• How many states are available? Twice (due to spin) the volume
of the Fermi surface (for positive n).

• So the Fermi energy is: 

• But it depends in fact only on the electron density!
• It is the highest energy of all electrons. Average energy is lower

(more than half of eF).
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Total energy of Fermi gas
• We need to sum over all energies

• By switching to integrals and evaluating of the 1/8 sphere:

• We obtain:

• So can use the Fermi energy as indicator of the applicability of Fermi-
Dirac statistics:
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What about the pressure?
• We can use the well known formula (see thermodynamic identity)

• And obtain the degeneracy pressure!

• Which increases with reducing volume.

• Degeneracy pressure keeps the matter from collapsing. It folows from 
the exclusion principle.
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White dwarf star
• White (degenrate) dwarf, - a burn out star, stellar core

remnant composed mostly of electron-degenerate matter. 

• Very dense object: mass is comparable to that of the Sun, 
while its volume is comparable to that of Earth.

• Faint luminosity comes from the emission of stored thermal
energy.

• No fusion. Thermal energy can not counteract the gravitaional
collapse – but the degenerate electron pressure can when the
average distance between electrons is comparable to the
Broglie wavelength!

• What is the physics of such a star (e.g., Sirus B)?
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Sirius A and Sirius B



White dwarf star
• Total energy of the star: E=K+U.
• Let us assume uniform mass distribution, then

potential energy:

• Let us assume electrons to be highly degenerate, and 
nonrelativistic, the total kinetic energy is:

• If 1 electron corresponds to 1 proton + 1 neutron: 
N=M/2mp.

.
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White dwarf star
• By finding the minimum of the total energy, we can find the equilibrium

radius:

• Dwarf star with a larger mass has a smaller equilibrium radius! Higher
mass gives larger gravitational attraction.

• If we choose the mass of the Sun, the radius of the dwarf star would be 
7200 km. A bit more than radius of the Earth. The density would be 
M/V, giving 1.3x 109 kg/m3 (1.3 million times the density of water).

• Effectively we can use T=0, since Fermi temperature is 2.3 x 109 K.
• If the mass of dwarf star is > 3 mass of the sun, it can be relativistic and 

unstable – its radius will tend to go to zero, and  Carbon-oxygen dwarf
can reignite at >1.4 mass of the sun and 1a supernova explosion can
happen. It can end up into neutron star or black hole... Stable dwarf will
turn into red and black dwarf – after radiating its energy.

• Nowadays the critical mass is calculated as 1.4 mass of the Sun.
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Neutron star
• Can form if the dwarf star is too heavy to stabilise

(mass > 3 mass of the Sun).

• Extreme pressures: electrons combine with protons 
to form neutrons.

• White-dwarf is effectively transformed into a gas of
neutrons. The mean separation between the
neutrons gets comparable with their de Broglie
wavelength.

• Degeneracy pressure of the neutrons can halt the
collapse of the star
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Pulsars, 1967, discovered by 
Jocelyn Bell and Antony Hewish

Crab Nebula with Crab pulsar



Neutron star
• We can follow similar procedure as for the dwarf star by 

letting:

• The radius of such a star is:

• So if the star had the mass of the sun, its radius would
be about 10 km!

• Rotating neutron star is called pulsar.

.
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Neutron star
• When relativistic effects are taken into account, it is 

found that there is a critical mass above which a neutron
star cannot be maintained against gravity.

• The critical mass, which is known as the Oppenheimer-
Volkoff limit: 

• But even at lower mass (M = 2 MS), neutron star can
collapse into the black hole.

.
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Pulsars, 1967, discovered by 
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Fermi  gas at T>0
• Most of fermions DO NOT have the thermal energy of ca. kT – most of the

states are already occupied!
• Only electrons close to Fermi energy can jump on unoccupied states above

the Fermi energy.
• The number of states affectedby the increase in T is proportional to number

of affected electrons (NkT) and energy acquired by electron (kT).

• Dimensionless analysis gives the proportiaonality constant:

• And we can now calculate head capacity – since we have temperature...
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The density of states
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• We can rewrite, by changing variables, the energy integral 
for Fermi gas at zero temperature:

• This integral includes number of single states per unit 
energy, which is the density of states:

• Density of states is proportional to volume and does not 
depend on N. It is proportional to the e1/2.

• We can estamate the number of states between two
energies by integrating the density of states.
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The density of states
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• Once we find density of states with quantum mechanics, we
follow the analysis using thermal physics.

• For zero temperature:

• For non-zero temperature, we need to write explicitly the
Fermi-Dirac distribution funciton:

N =

Z ✏F

0
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d✏



Corresponding energy
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• Can be found by letting e into integral:

• For nonzero temperatures, chemical potenetial is slightly shifted
as compared to zero temperature and different from eF.

• This is because of statistics an density of states being larger to 
the right so we could increase the number of electrons
artificially. 

• We want to avoid «creating electrons» in the statistics just by 
increasing temperature.
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