Lecture 18

12.11.2018

Black-body radiation

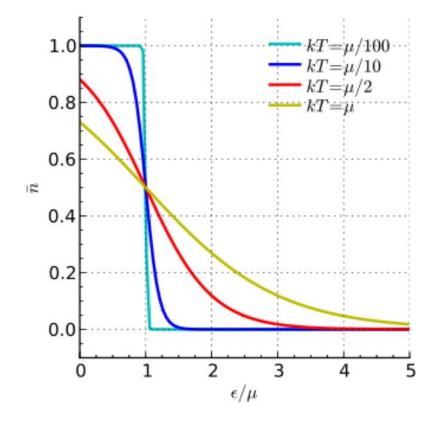
Reminder: application of quantum statistics

Fermi-Dirac distribution:

$$\bar{n}_{FD} = \frac{1}{e^{(\epsilon - \mu)/kT} + 1}$$

The Boltzmann statistics did not apply. The average volume per particle was much smaller than the quantum volume:

$$rac{V}{N} \ll v_Q$$
 where $v_Q = l_Q^3 = \left(rac{h}{\sqrt{2\pi m k T}}
ight)^3$



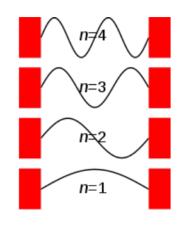
Reminder: application of quantum statistics

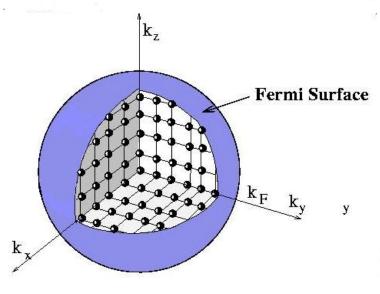
- We applied it to electrons in metal, white dwarfs, neutron stars.
- We found the Fermi energy, pressure, total energy, heat capacity, density of states...

$$\epsilon_F = \frac{h^2}{8m} \left(\frac{3N}{\pi V}\right)^{2/3} \qquad \epsilon_F = \frac{h^2 n_{max}^2}{8mL^2}$$

$$U = \frac{3}{5} N \epsilon_F \qquad C_V = \left(\frac{\partial U}{\partial T}\right)_V = \frac{\pi^2 N k^2 T}{2\epsilon_F}$$

$$P = \frac{2N \epsilon_F}{5V} = \frac{2U}{3V} \qquad g(\epsilon) = \frac{\pi}{2} \left(\frac{8m}{h^2}\right)^{3/2} V \sqrt{2}$$





Reminder: distribution functions - comparison

For Boltzmann distribution

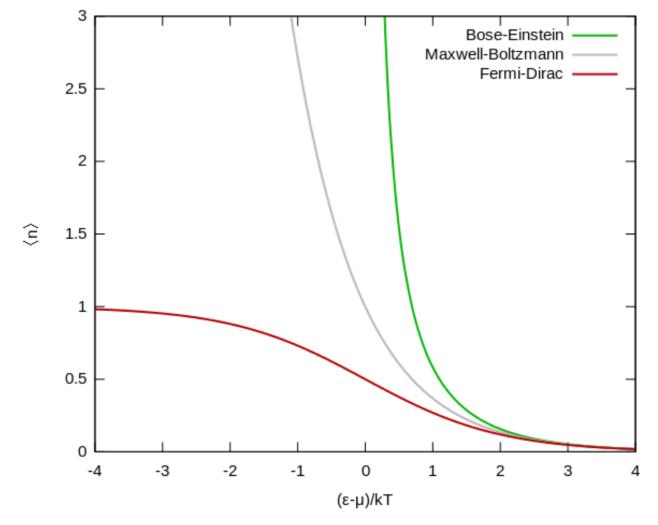
$$\bar{n}_{Bol} = e^{(\epsilon - \mu)/kT}$$

Fermi-Dirac distribution

$$\bar{n}_{FD} = \frac{1}{e^{(\epsilon - \mu)/kT} + 1}$$

• Bose-Einstein distribution

$$\bar{n}_{BE} = \frac{1}{e^{(\epsilon - \mu)/kT} - 1}$$



Reminder: distribution for bosons

- For bosons: n=0,1,2
- The grand partition function ($\mu < \epsilon$):

$$Z = 1 + e^{-(\epsilon - \mu)/kT} + e^{-2(\epsilon - \mu)/kT} + e^{-3(\epsilon - \mu)/kT} + \dots$$

$$= \frac{1}{1 - e^{-(\epsilon - \mu)/kT}}$$

Occupancy – probability:

$$\bar{n} = \sum_{n} n \mathcal{P}(n) = 0 \cdot \mathcal{P}(0) + 1 \cdot \mathcal{P}(1) + 2 \cdot \mathcal{P}(2) \dots$$

$$= \sum_{n} \frac{n}{Z} e^{-n(\epsilon - \mu)/kT} = -\frac{1}{Z} \sum_{s} \frac{\partial}{\partial x} e^{-nx}$$

where we used:

$$x = (\epsilon - \mu)/kT$$

$$= -\frac{1}{Z} \frac{\partial Z}{\partial x}$$

Bose-Einstein distribution

$$\bar{n}_{BE} = \frac{1}{e^{(\epsilon - \mu)/kT} - 1}$$

Let us look at photons - EM radiation

UV Catastrophe! – radiation in a box.

- Classical statistical physics: all harmonic oscillator modes have average energies of kT.
- EM field in a metal box combination of standing waves of different pattern and $f=c/\lambda$. (knots on the box edges).
- Equipartition theorem : energy of each wave is 2 x ½ kT.
- Most of energy will be in a shorter waves where most of modes are.
- The energy should be proportional to f^2 .

UV Catastrophe

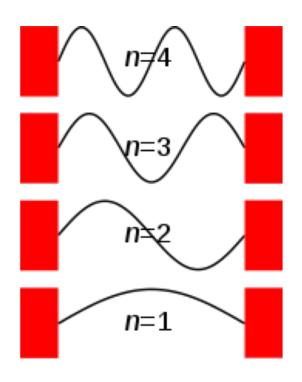
1D box of size *a*, standing waves:

$$a = n\frac{\lambda}{2} \to \lambda = 2an, f = \frac{nc}{2a}$$
 $n \in I$

This corresponds to 1 state, but EM waves have 2 polarizations – two degrees of freedom

Density of states (for each n we have c/2a):

$$n(f)df = \frac{2}{c/2a} = 2\frac{2a}{c}$$



UV Catastrophe

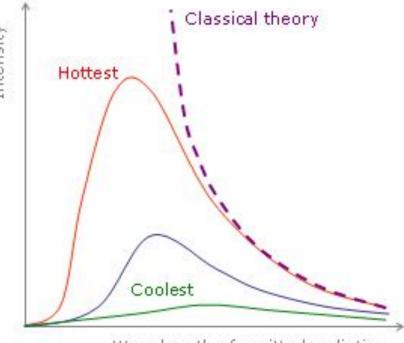
In 3D sphere

$$n(f)df = \left(\frac{2a}{c}\right)^3 \frac{1}{8} 4\pi f^2 2df = \frac{8\pi a^3}{c^3} f^2 df$$

This leads to the Rayleight-Jeans law for black-body emmissivity per volume unit, where each wave carries energy of kT.

$$\rho(f)df = \frac{8\pi kT}{c^3}f^2df$$

And this does not agree with observations at short wavelengths...



Wavelength of emitted radiation

The Planck Distribution

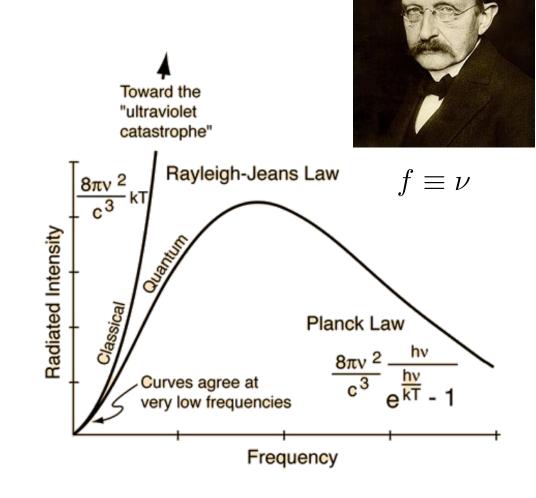
Planck: for a black-body, the mean energy of EM standing waves is a function of frequency.

This contradicts equipartition theorem (because here the mean energy does not depend on f).

The allowed energies are quantized and $\Delta\epsilon$ depends on the frequency.

$$\Delta \epsilon = hf$$

This makes sense: low frequencies $\Delta \epsilon$ is small and almost continuum and $\epsilon^{\sim}kT$.



$$E_n = 0, hf, 2hf, \dots$$

The Planck Distribution (2)

The partition function for a single oscillator is then:

$$Z = 1 + e^{-\beta hf} + e^{-2\beta hf} + \dots$$

Average energy:

$$\bar{E} = -\frac{1}{Z} \frac{\partial Z}{\partial \beta} = \frac{hf}{e^{\beta hf} - 1}$$

So if we have energy units of hf, then the average number of units of energy in the oscillator:

$$\bar{n}_P = \frac{1}{e^{\beta hf} - 1}$$

"ultraviolet catastrophe" Rayleigh-Jeans Law 8πν 2 Radiated Intensity Planck Law Curves agree at very low frequencies Frequency

$$E_n = 0, hf, 2hf, ...$$
 h = 6,63 10⁻³⁴ J s

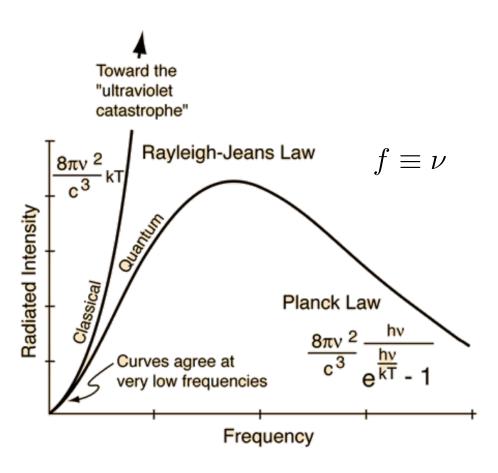
The Planck Distribution (3)

Consequently **Planck Law** for the radiated intensity of black-body is:

$$\rho(f)df = \frac{8\pi f^2}{c^3} \frac{hf}{e^{hf/kT} - 1} df$$

Short wavelengths are surpressed exponentially.

Ultraviolet catastrophe does not occur. The energies asre quantized.



11

Photons

The units of energy (hf in Planck distribution) can be though of photons.

Photons are bosons so they follow Bose-Einstein distritribution:

$$\bar{n}_{BE} = \frac{1}{e^{(\epsilon - \mu)/kT} - 1}$$

Energy for photons is $\varepsilon=hf$. But what is μ for photons? When comparing with Plancks distribution we should have $\mu=0$.

$$\bar{n}_P = \frac{1}{e^{\beta hf} - 1}$$

Does it make sense?

Photons – μ

The chemical potential of photons is zero.

Photons are created/destroyed in any quantity – their number is not conserved.

Helmholtz free energy *F*, must be minimum when *T,V* are fixed. But *N* is not constrained – if it changes a bit, *F* should not change:

On the other hand if a photon is absorbed/created by electron, the equilibrium condition for such a reaction is equivalent to:

$$\left(\frac{\partial F}{\partial N}\right)_{T,V} = 0$$

$$\left(\frac{\partial F}{\partial N}\right)_{T,V} = \mu$$

$$e \longleftrightarrow e + \gamma$$

$$\mu_e = \mu_e + \mu_\gamma$$

The Bose-Einstein distribution is equivalent to the Planck distribution.

Photons – total energy

Distribution tells us how many photons there are in a given mode. But how many photons / or how much energy are there in total in a box?

Energy:

Allowed wavelengths and momenta:

Photon energies are pc not $p^2/2m$ (relativistic particles).

In 3D we need to consider all directions:

$$\bar{n}_P = \frac{1}{e^{\beta hf} - 1}$$

$$\lambda = \frac{2L}{n}; \quad p = \frac{hn}{2L}$$

$$\epsilon = pc = \frac{hcn}{2L}$$

$$\epsilon = \sqrt{p_x^2 + p_y^2 + p_z^2} = \frac{hc}{2L}\sqrt{n_x^2 + n_y^2 + n_z^2}$$

$$\epsilon = \frac{hc}{2L} \|\vec{n}\|$$

Photons – total energy (2)

The average energy in the mode is e times occupancy of that mode.

$$\bar{\epsilon} = \epsilon n_P(\epsilon)$$

Total energy is from summing over all modes.

$$U = 2\sum_{n_x, n_y, n_z} \epsilon \bar{n}_P(\epsilon) = \sum_{n_x, n_y, n_z} \frac{hcn}{L} \frac{1}{e^{hcn/2LkT} - 1}$$

And if the number of modes is large, we can go over to integrals (and spherical coordinates.

$$U = \int_0^\infty dn \int_0^{\pi/2} d\theta \int_0^{\pi/2} d\phi n^2 \sin\theta \frac{hcn}{L} \frac{1}{e^{hcn/2LkT} - 1}$$

Note that now we integrate to infinity...

Fys2160, 2018

15

Let us change variables: $\epsilon = hcn/2L_{\mbox{\tiny MM}}$

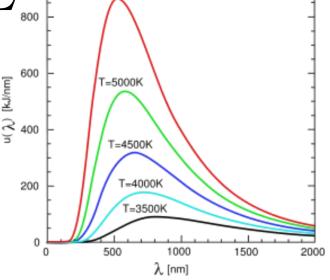
And express energy per unit volume:

$$\frac{U}{V} = \int_0^\infty \frac{8\pi\epsilon^3}{(hc)^3} \frac{1}{e^{\epsilon/kT} - 1} d\epsilon$$

This gives us a spectrum (energy density per unit photon energy):

$$u(\epsilon) = \frac{8\pi}{(hc)^3} \frac{\epsilon^3}{e^{\epsilon/kT} - 1}$$

Which we also derived earlier today:



$$\rho(f)df = \frac{8\pi f^2}{c^3} \frac{hf}{e^{hf/kT} - 1} df$$

Peak of the spectrum: ε_{max} =2.82kT.

Temperature determines the spectrum (Wiens displacement law).

Total energy

Can be relatively easily found from:

$$\frac{U}{V} = \int_0^\infty \frac{8\pi\epsilon^3}{(hc)^3} \frac{1}{e^{\epsilon/kT} - 1} d\epsilon$$

We just need to integrate it (non-trival matter), which gives total energy density:

$$\frac{U}{V} = \frac{8\pi^5 (kT)^4}{15(hc)^3}$$

The average energy of photon $\sim kT$. Total energy $\sim NkT$. Total energy is thus $\sim C \ VkT$, where C is a constant (because $N \sim V$).

Entropy

As in the case of fermions we can find heat capacity it from:

$$C_V = \left(\frac{\partial U}{\partial T}\right)_V$$

Which this time gives:

$$C_V = 4 \frac{8\pi^5 k^4 V}{15(hc)^3} T^3$$

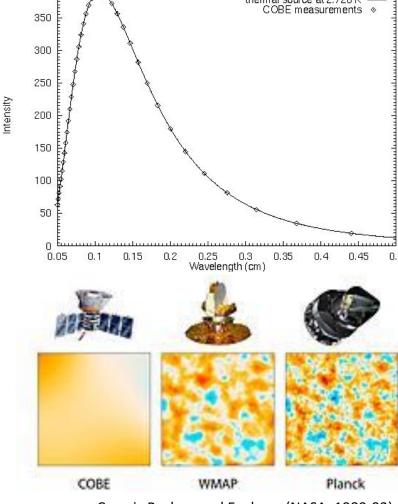
We can also find absolute entrophy by integrating C_V over all temperatures:

$$S(T) = \int_0^T \frac{C_V(T')}{T'} dT' = \frac{32\pi^5}{45} V \left(\frac{kT}{hc}\right)^3 k$$

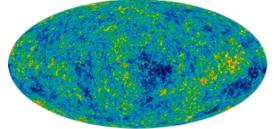
It can be shown that it is proportional to the total number of photons.

Cosmic Background Radiation

- Cosmic microwave background radiation leftover from the early state of the universe.
- The universe was then filled with ionised gas interacting with EM radiation temperature was then 3000 K.
- Expansion of the universe Doppler shifted the wavelenght.
- Currently observed «perfect thermal spectrum» at T= 2.7260±0.0013 K.
- Photons energy have a peak at ε =2.82 kT=6.6 x 10⁻⁴ eV (Wiens law) far infrared (mm wavelengts) best observed from space.
- Total energy: 0.26 MeV/m³. very small.



Cosmic Background Explorer (NASA, 1989-93)
Wilkinson Microwave Anisotropy Probe (NASA, 2001-10)
Planck (ESA, 2009-13)



Stefan-Boltzmann law

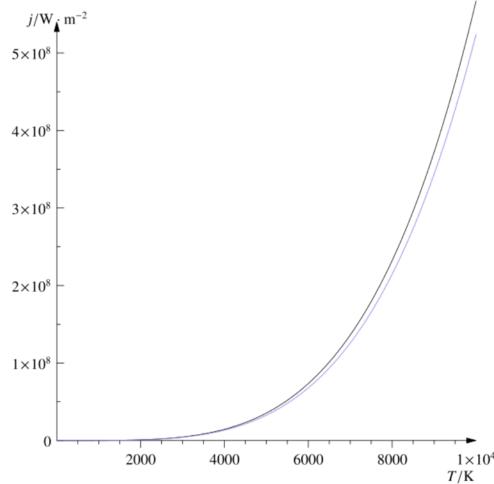
Tells us about the power emitted per unit area:

$$P_{esc} = \sigma T^4$$

where Stefan-Boltzmann constant is:

$$\sigma = \frac{2\pi^5 k^4}{15c^2 h^3} = 5.670373 \times 10^{-8} \,\mathrm{W} \,\mathrm{m}^{-2} \mathrm{K}^{-4}$$

It can be easily determined by considering radiation escaping a box.



Stefan-Boltzmann law (2)

Let us consider an opening of radius A.

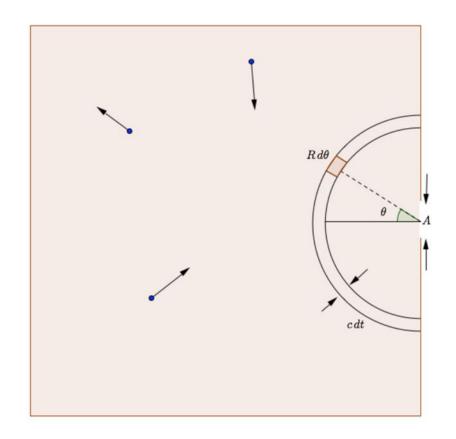
The volume colored in $Rd\theta$ is: $Rd\theta \times R\sin\theta d\phi \times cdt$

Energy density is: $\frac{U}{V} = \frac{8\pi^{\circ}(\kappa_{\rm B}T)^{\circ}}{15(hc)^{3}}$

And the total energy in $Rd\theta$: $\frac{U}{V}cdtR^2\sin\theta d\theta d\phi$

Probability of escaping: $\frac{Acos\theta}{4\pi R^2}$

So the total energy escaping: $\frac{Acos\theta}{4\pi} \frac{U}{V} cdt \sin\theta d\theta d\phi$



Stefan-Boltzmann law (3)

Finally we need to integrate

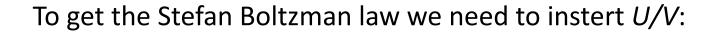
$$\frac{A\cos\theta}{4\pi} \frac{U}{V} cdt \sin\theta d\theta d\phi$$

over all angles, and obtain:

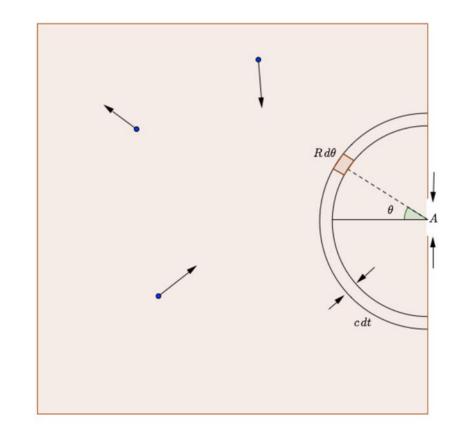
$$E_{tot} = \frac{A}{4} \frac{U}{V} c dt$$

This depends on the area A, so by dividing we obtain power per unit area:

$$P_{esc} = \frac{c}{4} \frac{U}{V} c$$



Applicable to the black-body – perfect emitter / absorber. But also can be applied to a body with emissivity/albedo *e*



$$\frac{U}{V} = \frac{8\pi^5 (k_{\rm B}T)^4}{15(hc)^3},$$

$$P_{esc} = \sigma e T^4$$

Examples

The Sun

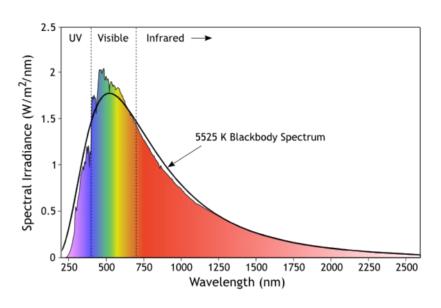
Solar radiation received by the earth $P_E=1370 \text{ W/m}^2$ (solar constant) gives luminosity of $L=3.9 \times 10^{26} \text{ W}$.

Here we used that $P_S=4\pi R^2 P_E$, and that distance to the Sun is 150 Mkm, A surface of the sun: 6.1 x 10^{18} m².

Solar surface temperature:

$$T = \left(\frac{L}{\sigma A}\right)^{1/4} = \left(\frac{3 \times 10^{26}}{\sigma 6.1 \times 10^{18}}\right)^{1/4} = 5800K$$

Thus the maximum of the spectrum is at (Wienn's law): 2.82 kT = 1.41 eV (infrared).



Examples

The Earth

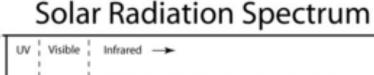
Solar energy absorbed by Earth: $P_F \pi R^2$ Energy emitted by Earth: $4\pi R^2 \sigma T^4$

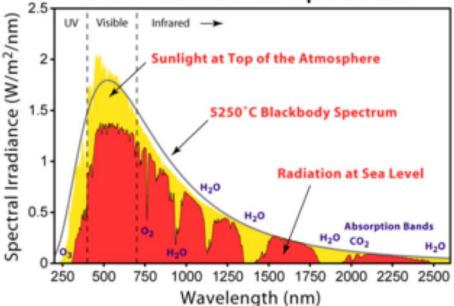
Energy absorbed = energy emitted:

$$T = \left(\frac{1370 \text{W/m}^2}{4 \cdot 5.67 \times 6.1 \times 10^{-8} \text{W/m}^2}\right)^{1/4} = 279K$$

With the clouds – albedo included: T=255 K.

Finally when we add reflection of emitted energy: T=303 K (greenhouse effect)





EARTH'S ENERGY BUDGET

