
Lecture 18
12.11.2018

Black-body radiation
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Reminder: application of quantum statistics
Fermi-Dirac distribution:

The Boltzmann statistics did not apply. The 
average volume per particle was much smaller
than the quantum volume:
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Reminder: application of quantum statistics
• We applied it to electrons in metal, white

dwarfs, neutron stars.
• We found the Fermi energy, pressure, total 

energy, heat capacity, density of states...
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Reminder: distribution functions - comparison

Fys2160, 2018 4

• For Boltzmann distribution

• Fermi-Dirac distribution

• Bose-Einstein distribution
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Reminder: distribution for bosons
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• For bosons: n=0,1,2 ....
• The grand partition function (µ<e):

• Occupancy – probability:

.
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Let us look at photons - EM radiation
UV Catastrophe! – radiation in a box.

• Classical statistical physics: all harmonic oscillator 
modes have average energies of kT. 
• EM field in a metal box – combination of standing

waves of different pattern and f=c/l. (knots on the box
edges).
• Equipartition theorem : energy of each wave is 2 x ½ kT.
• Most of energy will be in a shorter waves – where most 

of modes are.
• The energy should be proportional to f2.
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UV Catastrophe

1D box of size a, standing waves:

This corresponds to 1 state, but EM waves have 2 
polarizations – two degrees of freedom
Density of states (for each n we have c/2a):
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UV Catastrophe
In 3D sphere

This leads to the Rayleight-Jeans law for black-body 
emmissivity per volume unit, where each wave
carries energy of kT.

And this does not agree with observations at short
wavelengths...
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The Planck Distribution
Planck: for a black-body, the mean
energy of EM standing waves is a 
function of frequency.

This contradicts equipartition theorem
(because here the mean energy does not 
depend on f).

The allowed energies are quantized and 
De depends on the frequency.

This makes sense: low frequencies De is 
small and almost continuum and e~kT.
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The Planck Distribution (2)
The partition function for a single oscillator is then:

Average energy:

So if we have energy units of hf, then the average
number of units of energy in the oscillator:
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The Planck Distribution (3)
Consequently Planck Law for the radiated
intensity of black-body is:

Short wavelengths are surpressed
exponentially.

Ultraviolet catastrophe does not occur.
The energies asre quantized.
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Photons
The units of energy (hf in Planck distribution) can be 
though of photons.

Photons are bosons so they follow Bose-Einstein 
distritribution:

Energy for photons is e=hf. But what is µ for photons? 
When comparing with Plancks distribution we should have 
µ=0.
Does it make sense?
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Photons – µ
The chemical potential of photons is zero.

Photons are created/destroyed in any quantity – their number is not 
conserved.
Helmholtz free energy F, must be minimum when T,V are fixed. But N is 
not constrained – if it changes a bit, F should not change:

On the other hand if a photon is absorbed/created by electron, the
equilibrium condition for such a reaction is equivalent to : 

The Bose-Einstein distribution is equivalent to the Planck distribution.
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Photons – total energy
Distribution tells us how many photons
there are in a given mode. But how many
photons / or how much energy are there in 
total in a box? 
Energy:
Allowed wavelengths and momenta:

Photon energies are pc not p2/2m
(relativistic particles).

In 3D we need to consider all directions:
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Photons – total energy (2)
The average energy in the mode is e times occupancy of that mode.

Total energy is from summing over all modes.

And if the number of modes is large, we can go over to integrals (and spherical
coordinates.

Note that now we integrate to infinity...
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Let us change variables:
And express energy per unit volume:

This gives us a spectrum (energy density per unit photon energy):

Which we also derived earlier today:

Peak of the spectrum: emax=2.82kT.  
Temperature determines the spectrum (Wiens displacement law).
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Total energy
Can be relatively easily found from:

We just need to integrate it (non-trival matter), which gives total energy
density:

The average energy of photon ~ kT. Total energy ~NkT. Total energy is thus
~C VkT, where C is a constant (because N ~ V).
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Entropy
As in the case of fermions we can find heat capacity it from:

Which this time gives:

We can also find absolute entrophy by integrating CV over all temperatures:

It can be shown that it is proportional to the total number of photons. 
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Cosmic Background Radiation

• Cosmic microwave background radiation – leftover from 
the early state of the universe.

• The universe was then filled with ionised gas interacting
with EM radiation – temperature was then 3000 K. 

• Expansion of the universe Doppler shifted the
wavelenght. 

• Currently – observed «perfect thermal spectrum» at 
T= 2.7260±0.0013 K.

• Photons energy have a peak at e=2.82 kT=6.6 x 10-4 eV 
(Wiens law) – far infrared (mm wavelengts) – best 
observed from space.

• Total energy: 0.26 MeV/m3. – very small.
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Cosmic Background Explorer (NASA, 1989-93)
Wilkinson Microwave Anisotropy Probe (NASA, 2001-10)

Planck (ESA, 2009-13)



Stefan-Boltzmann law
Tells us about the power emitted per unit area:

where Stefan-Boltzmann constant is:

It can be easily determined by considering radiation
escaping a box.
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Stefan-Boltzmann law (2)
Let us consider an opening of radius A.

The volume colored in Rdq is: 

Energy density is: 

And the total energy in Rdq:

Probability of escaping:

So the total energy escaping: 
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Stefan-Boltzmann law (3)
Finally we need to integrate

over all angles, and obtain:

This depends on the area A, so by dividing we obtain power
per unit area:

To get the Stefan Boltzman law we need to instert U/V:

Applicable to the black-body – perfect emitter / absorber.
But also can be appiled to a body with emissivity/albedo e
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Examples
The Sun

Solar radiation received by the earth PE=1370 W/m2 (solar 
constant) gives luminosity of L=3.9 x 1026 W.  
Here we used that PS=4pR2PE, and that distance to the Sun is 
150 Mkm, A surface of the sun: 6.1 x 1018m2.
Solar surface temperature: 

Thus the maximum of the spectrum is at (Wienn’s law): 
2.82 kT = 1.41 eV (infrared).
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Examples
The Earth
Solar energy absorbed by Earth: PE pR2

Energy emitted by Earth:  4pR2sT4

Energy absorbed = energy emitted:

With the clouds – albedo included: T=255 K.
Finally when we add reflection of emitted
energy: T=303 K (greenhouse effect)
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