Lecture 2

Temperature, Energy, Heat and Work

First principle of thermodynamics

22.08.2018



Thermodynamic system

What kind of energy is exchanged?!

Energy Out
* Open: Mass and Energy can transfer between the

System and the Surrounding
Mass In Mass Out * Closed: Energy can transfer between the System
and the Surroundings, but NOT mass

* Isolated: Neither Mass nor Energy can transfer

System
¢ between the System and the Surroundings

Energy In
Boundary gy
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The state of a thermodynamic system

Well-defined
properties

Some properties (e.g. P, T) are well-defined only when the
system at equilibrium
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Thermal Equilibrium (when heat stops flowing)

Heat flows from the warmer to the cooler object until they are in thermal equilibrium (no heat

flow).

* Inthermal equilibrium, both bodies have the same temperature
A B
-D - WA

If A and B are in thermal equilibrium, and B and C are in thermal equilibrium, then A and C are
thermal equilibrium

A B
(cop) | T BTN

ZERQO’th LAW of Thermodynamics

(M)
3 Celsius (°C)
Consequence: ] Fahrenheit (°F)
_ Kelvin (K)
B is a thermometer measure the temperature
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What is Temperature?

The thing we measure with a thermometer —

 Operational definition of temperature T
requires:

v'"Measuring object: mercury, alchohol, platinum,
semiconductors (termistor), liquid He, gas
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What is Temperature?

The thing we measure with a thermometer

 Operational definition of temperature T requires:

v'property that depends on T: pressure, electrical resistance

P(T) = const. X T

v reference point: const fixed by the boiling point of H,0
(calibration)

v'interpolation scheme between reference points



Gas thermometer
Pboiling H,0

P(T) =

Tboiling H,0

A PRl s
-’ ’/.’ -
— //’,’//” _ _—O—’—b
* Tyoiting H,0 = 373,15 K sl P
| —— :
—273.15 100

e Absolute ZERO: Kelvin scale

Ty = 0K, T, = —273.15°C



Conversion between temperature scales

T, =Ty — 273.15

Water Boils 212 °F 100 °C 373 K

32 °F 0°C 273 K

5
TC — (TF — 32)X 6 Water Freezes

9 -459 °F -273 °C 0K

TF — TKX g _ 45967 Absolute Zero .f"

Fahrenheit Celsius Kelvin
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Heat «Q»

«Thermal energy in transit»
* heat flows spontaneously from hot to cold
 Sometime heat flows in the opposite direction — refrigirator

* Heat can flow in and out of a system, but a system cannot
«contain a certain quantity of heat»

NOT A STATE VARIABLE, PROCESS VARIABLE
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Heat «Q»

«Thermal energy in transit»

Example:

A 1kW electric heater is switched on for 1 minute. How
much heat does it produce?
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Heat Capacity

How much heat is needed to raise the T of an object by a small amount dT ?

_ — —1
c=— [C1=1JK

Specific heat capacity: Heat capacity per unit mass, or per unit (molar) volume

dQ 1y
C — [c] =1]JK tkg™?

1
m



Example: Heat Capacity of water

The heat capacity of 0.125 kg of water is measured to 523 JK~1 at room
temperature. What is the mass-specific heat of water?

-1
c =28 _ 4184 x103J K kg!
0.125 kg

The energy to raise 1 gram of water by 1 degree is 4.184 Joules
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Example: Heat Capacity of water

The heat capacity of 0.125 kg of water is measured to 523 JK ™! at room
temperature. What is the mass-specific heat of water?

1 Calorie = 4.184 ]

A protein bar (100g) can contain about 414 Calories, which is equal to the heat
required to raise the temperature of 100 g (0.1 liter) water by 1 degree.

The heat to raise 100 g of Cu by one degree is
38,5] =9,2 Cal = .02 protein bar
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Heat Capacity depends on circumstances

How much heat is needed to raise the T of an object by a small amount dT by keeping
the volume constant?

C, = (g—g)v, [C,]=1] K1

Specific heat capacity at constant volume: I[socoric heat capacity per unit mass, or per
unit (molar) volume

1 /0
v m(a;%)v, [cy] = 1] K kg™



Heat Capacity under constraint

How much heat is needed to raise the T of an object by a small amount dT by keeping the
pressure constant?

Cp = (g—g)}), [Cp] = 1] K1

Specific heat capacity at constant pressure: Isobaric heat capacity per unit mass, or per unit
(molar) volume

1

0
Cp = E(z??)v’ [cp] = 1] K kg™t

* specific heat capacity of water at constant pressure at 15°C
cp = 4.184 x103 J K~ 1kg1!



Relaxation 1
to thermal
equilibrium

What is the final temperature at thermal equilibrium?

A: no net heat exchange of the whole system with its environment (isolated system)
6Q4 = —6Qp = CydT, = —CydTp
T,+T
T A B

2
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Work « W »

Another form of «energy in transit»

Mechanical work: exchange of energy resulting in volume expansion of
contraction due to pressure

Chemical work: exchange of energy due to particles entering or leaving the
system

Magnetic work: exchange of energy between the system and its surrounding
resulting in a net magnetization

Wl=1]



Free Gas Expansion

NATURAL IRREVERSIBLE EXPANSION

GAS VACUUM

What changes during this
expansion?




Work: REVERSIBLE Gas contraction

IMAGINE A REVERSIBLE PATH
F=-PAn
5Wext = ﬁ . E

SW,.; = —PAT - dx

Total work done by the gas

(sign convention: W < 0 when the gas does work
hence it looses some of its energy)
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W > 0 compression

W < 0 expansion
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Isothermal Gas expansion

W = —j PdV
V1
Ideal gas: PV=nRT

1. Isothermal path

2 qv
W =—nRT | —
n j .

1

- W= area under the curve

Vs
W = —nRT In—
Vi




|[socoric «gas expansion»

Va
W = —j PdV
1

2. Isocoric path




Isobaric gas expansion

- W= area under the curve




1. Isothermal path

Vs
W = —nRT Iln—
Vi

2. Isocoric +Isobaric path

W=_P0(V2_V1)

WOKS IS PATH-DEPENDENT
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First law of thermodynamics
Conservation of energy

The total change in the internal energy of a system is the sum of heat and
work exchanges with the surrounding

AU=W +(Q
The change in the «stored» energy equal the sum of «energies in transit»

The infinitesimal change in energy

dU = W + 8Q
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Isocoric process: no work

dU = —PdV + §Q - dU = §Q
«Energy capacity»

. _a_Q) _ v
CV_(OT V_dT

Energy needed to raise T by one degree
+ dU = CydT - U = U(T)
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:V2:V0
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Isobaric process

dU = —PdV + 8Q

Cp=C +P(6V) > C
p=Ly T/ » 4

Additional heat to compesate for the work by (gas expansion)

Gass equation of state: PV = nRT

Cp=CV+nR



Reversible gas expansion

dU = —PdV + 8Q —

1. Isothermal path
I'y=T,->Uy;=U;

50 = —6W
path 1 path 1

V2
Q=nRTIn—>0
1
Heat flows into the system (heat is absorbed)
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Reversible gas expansion

dU = —PdV + 6Q —rty
2. Isocoric+isobaric path

5Q = PdV

path 2

path 2

Q=P,(V,—-V;)>0

Heat flows into the system (heat is
absorbed)

Fys2160 2018



Adiabatic Process

6Q =0—-dU =o6W

o AT _ v
vop T Ty

CyInT+nRInV = const.

1
TVCy ~ = const.

Cp
PVCv = const.

PA




Adiabatic expansion

Cp_4
TVCy ~ = const.

L(&)C_v‘l ‘1
T,

Gas cools upon an adiabatic
expansion
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Joule-Thomson expansion

Q=0-dU=dw

Work done on the gas:

0
Wi=—j PldV=P,V,
Vi

Work done by the gas:

Vy
sz_JO Pde=—Pfo
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Joule-Thomson expansion

Q=0->AU=W

Total work

Uf_Ui :PiVi—Pfo

Constant Enthalpy

H=U-+PV

«Entalphy Capacity»

c _<6Q) _<6U) +P<6V> _dH
P—\ar/p —\oT/p oT/)p — dT
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Summary

 Temperature is thermodynamic state variable for a system at thermal equilibrium
* Heat ) and work W are «energies in transit»

* First law of thermodynamics

The change in the internal («stored») energy equal the sum of «energies in transit »
AU =W+ Q

o heat capacity comes in two flavors

_du dH

== Cp ===

Cy dT
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