Lecture 2

Temperature, Energy, Heat and Work
First principle of thermodynamics
22.08 .2018

Thermodynamic system

What kind of energy is exchanged?!

- Open: Mass and Energy can transfer between the System and the Surrounding
- Closed: Energy can transfer between the System and the Surroundings, but NOT mass
- Isolated: Neither Mass nor Energy can transfer between the System and the Surroundings

The state of a thermodynamic system

Some properties (e.g. P, T) are well-defined only when the system at equilibrium

Thermal Equilibrium (when heat stops flowing)

- Heat flows from the warmer to the cooler object until they are in thermal equilibrium (no heat flow).
- In thermal equilibrium, both bodies have the same temperature

ZERO'th LAW of Thermodynamics
If A and B are in thermal equilibrium, and B and C are in thermal equilibrium, then A and C are thermal equilibrium

Consequence:
B is a thermometer measure the temperature

What is Temperature?

The thing we measure with a thermometer

- Operational definition of temperature T requires:
\checkmark Measuring object: mercury, alchohol, platinum, semiconductors (termistor), liquid He , gas

What is Temperature?

The thing we measure with a thermometer

- Operational definition of temperature T requires:

\checkmark property that depends on T : pressure, electrical resistance $P(T)=$ const.$\times T$
\checkmark reference point: const fixed by the boiling point of $\mathrm{H}_{2} \mathrm{O}$ (calibration)
\checkmark interpolation scheme between reference points

Gas thermometer

$$
P(T)=\frac{P_{\text {boiling } \mathrm{H}_{2} \mathrm{O}}}{T_{\text {boiling } \mathrm{H}_{2} \mathrm{O}}} \times T
$$

- $T_{\text {boiling } \mathrm{H}_{2} \mathrm{O}}=373,15 \mathrm{~K}$

- Absolute ZERO: Kelvin scale

$$
T_{K}=0 K, \quad T_{C}=-273.15^{\circ} C
$$

Conversion between temperature scales

$$
\begin{aligned}
& T_{C}=T_{K}-273.15 \\
& T_{C}=\left(T_{F}-32\right) \times \frac{5}{9} \\
& T_{F}=T_{K} \times \frac{9}{5}-459.67
\end{aligned}
$$

Heat «Q»

«Thermal energy in transit»

- heat flows spontaneously from hot to cold
- Sometime heat flows in the opposite direction - refrigirator
- Heat can flow in and out of a system, but a system cannot «contain a certain quantity of heat»

NOT A STATE VARIABLE, PROCESS VARIABLE

Heat «Q»
«Thermal energy in transit»

Example:

A 1 kW electric heater is switched on for 1 minute. How much heat does it produce?

Heat Capacity

How much heat is needed to raise the T of an object by a small amount $\mathrm{d} T$?

$$
C \equiv \frac{d Q}{d T}, \quad[C]=1 \mathrm{~J} \mathrm{~K}^{-1}
$$

Specific heat capacity: Heat capacity per unit mass, or per unit (molar) volume

$$
c \equiv \frac{1}{m} \frac{d Q}{d T}, \quad[c]=1 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}
$$

Example: Heat Capacity of water

The heat capacity of 0.125 kg of water is measured to $523 \mathrm{JK}^{-1}$ at room temperature. What is the mass-specific heat of water?

$$
c=\frac{523 \mathrm{KJ}^{-1}}{0.125 \mathrm{~kg}}=4.184 \times 10^{3} \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}
$$

The energy to raise 1 gram of water by 1 degree is 4.184 Joules

Example: Heat Capacity of water

The heat capacity of 0.125 kg of water is measured to $523 \mathrm{JK}^{-1}$ at room temperature. What is the mass-specific heat of water?

$$
1 \text { Calorie }=4.184 \mathrm{~J}
$$

A protein bar (100g) can contain about 414 Calories, which is equal to the heat required to raise the temperature of 100 g (0.1 liter) water by 1 degree.

The heat to raise 100 g of Cu by one degree is

$$
38,5 \mathrm{~J}=9,2 \mathrm{Cal} \approx .02 \text { protein bar }
$$

Heat Capacity depends on circumstances

How much heat is needed to raise the T of an object by a small amount $\mathrm{d} T$ by keeping the volume constant?

$$
C_{V} \equiv\left(\frac{\partial Q}{\partial T}\right)_{V}, \quad\left[C_{V}\right]=1 \mathrm{~J} \mathrm{~K}^{-1}
$$

Specific heat capacity at constant volume: Isocoric heat capacity per unit mass, or per unit (molar) volume

$$
c_{V} \equiv \frac{1}{m}\left(\frac{\partial Q}{\partial T}\right)_{V}, \quad\left[c_{V}\right]=1 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}
$$

Heat Capacity under constraint

How much heat is needed to raise the T of an object by a small amount d Tby keeping the pressure constant?

$$
C_{P} \equiv\left(\frac{\partial Q}{\partial T}\right)_{P}, \quad\left[C_{P}\right]=1 \mathrm{~J} \mathrm{~K}^{-1}
$$

Specific heat capacity at constant pressure: Isobaric heat capacity per unit mass, or per unit (molar) volume

$$
c_{P} \equiv \frac{1}{m}\left(\frac{\partial Q}{\partial T}\right)_{V}, \quad\left[c_{P}\right]=1 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}
$$

- specific heat capacity of water at constant pressure at $15^{\circ} \mathrm{C}$

$$
c_{P}=4.184 \times 10^{3} J^{-1} \mathrm{~kg}^{-1}
$$

Relaxation to thermal equilibrium

What is the final temperature at thermal equilibrium?

A: no net heat exchange of the whole system with its environment (isolated system)

$$
\begin{gathered}
\delta Q_{A}=-\delta Q_{B} \rightarrow C_{V} d T_{A}=-C_{V} d T_{B} \\
T=\frac{T_{A}+T_{B}}{2}
\end{gathered}
$$

Work «W»

Another form of «energy in transit»

Mechanical work: exchange of energy resulting in volume expansion of contraction due to pressure

Chemical work: exchange of energy due to particles entering or leaving the system

Magnetic work: exchange of energy between the system and its surrounding resulting in a net magnetization

$$
[W]=1 \mathrm{~J}
$$

Free Gas Expansion

NATURAL IRREVERSIBLE EXPANSION

What changes during this expansion?

Work: REVERSIBLE Gas contraction

IMAGINE A REVERSIBLE PATH

$$
\begin{gathered}
\vec{F}=-P A \vec{n} \\
\delta W_{\text {ext }}=\vec{F} \cdot \overrightarrow{d x} \\
\delta W_{\text {ext }}=-P A \vec{n} \cdot \overrightarrow{d x}
\end{gathered}
$$

Total work done by the gas

$$
W=-\int_{V_{1}}^{V_{2}} P d V
$$

(sign convention: $W<0$ when the gas does work hence it looses some of its energy)

$$
\begin{aligned}
& W>0 \text { compression } \\
& W<0 \text { expansion }
\end{aligned}
$$

Isothermal Gas expansion

$$
W=-\int_{V_{1}}^{V_{2}} P d V
$$

Ideal gas: $\mathrm{PV}=\mathrm{nRT}$

1. Isothermal path

$$
\begin{gathered}
W=-n R T \int_{V_{1}}^{V_{2}} \frac{d V}{V} \\
W=-n R T \ln \frac{V_{2}}{V_{1}}
\end{gathered}
$$

Isocoric «gas expansion»

$$
W=-\int_{V_{1}}^{V_{2}} P d V
$$

2. Isocoric path

$$
\begin{gathered}
V=V_{0} \\
W=-\int_{V_{0}}^{V_{0}} P d V \\
W=0
\end{gathered}
$$

$$
V_{1}=V_{2}=V_{0}
$$

Isobaric gas expansion

$$
W=-\int_{V_{1}}^{V_{2}} P d V
$$

3. Isobaric path

$$
\begin{gathered}
P=P_{0} \\
W=-P_{0} \int_{V_{1}}^{V_{2}} d V \\
W=-P_{0}\left(V_{2}-V_{1}\right)
\end{gathered}
$$

1. Isothermal path

$$
W=-n R T \ln \frac{V_{2}}{V_{1}}
$$

2. Isocoric +Isobaric path

$$
W=-P_{0}\left(V_{2}-V_{1}\right)
$$

WOKS IS PATH-DEPENDENT

First law of thermodynamics Conservation of energy

The total change in the internal energy of a system is the sum of heat and work exchanges with the surrounding

$$
\Delta U=W+Q
$$

The change in the «stored» energy equal the sum of «energies in transit»

The infinitesimal change in energy

$$
d U=\delta W+\delta Q
$$

Isocoric process: no work

$$
d U=-P d V+\delta Q \rightarrow d U=\delta Q
$$

«Energy capacity»

- $C_{V}=\left(\frac{\partial Q}{\partial T}\right)_{V}=\frac{d U}{d T}$

Energy needed to raise T by one degree
$\cdot d U=C_{V} d T \rightarrow U=U(T)$

Isobaric process

$$
\begin{gathered}
d U=-P d V+\delta Q \\
\mathrm{C}_{\mathrm{V}} d T=-P d V+C_{P} d T \\
\mathrm{C}_{P}=C_{V}+P\left(\frac{\partial V}{\partial T}\right)_{P}>C_{V}
\end{gathered}
$$

Additional heat to compesate for the work by (gas expansion)
Gass equation of state: $P V=n R T$

$$
\mathrm{C}_{P}=C_{V}+n R
$$

Reversible gas expansion

$$
d U=-P d V+\delta Q
$$

1. Isothermal path

$$
\begin{gathered}
\boldsymbol{T}_{\mathbf{1}}=\boldsymbol{T}_{\mathbf{2}} \rightarrow \boldsymbol{U}_{\mathbf{1}}=\boldsymbol{U}_{\mathbf{2}} \\
\left.\delta \boldsymbol{Q}\right|_{\text {path } 1}=-\left.\delta W\right|_{\text {path 1 }} \\
Q=n R T \ln \frac{V_{2}}{V_{1}}>0
\end{gathered}
$$

Heat flows into the system (heat is absorbed)

Reversible gas expansion

$$
d U=-P d V+\delta Q
$$

2. Isocoric+Isobaric path

$$
\begin{gathered}
\left.\delta Q\right|_{p a t h 2}=\left.P d V\right|_{p a t h 2} \\
Q=P_{2}\left(V_{2}-V_{1}\right)>0
\end{gathered}
$$

Heat flows into the system (heat is absorbed)

Adiabatic Process

$$
\begin{gathered}
\delta Q=0 \rightarrow d U=\delta W \\
C_{V} d T=-P d V \\
C_{V} \frac{d T}{T}=-n R \frac{d V}{V}
\end{gathered}
$$

$C_{V} \ln T+n R \ln V=c o n s t$.

$$
\begin{gathered}
T V^{\frac{C_{P}}{C_{V}}-1}=\text { const } . \\
P^{\frac{C_{P}}{C_{V}}}=\text { const. }
\end{gathered}
$$

Adiabatic expansion

$T V^{\frac{C_{P}}{C_{V}}-1}=$ const.

$$
\frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{\frac{c_{p}}{C_{V}}-1}<1
$$

Gas cools upon an adiabatic expansion

Joule-Thomson expansion

$$
Q=0 \rightarrow d U=d W
$$

Work done on the gas:

$$
W_{i}=-\int_{V_{i}}^{0} P_{i} d V=P_{i} V_{i}
$$

Work done by the gas:

$$
W_{f}=-\int_{0}^{V_{f}} P_{f} d V=-P_{f} V_{f}
$$

Joule-Thomson expansion

$$
Q=\mathbf{0} \rightarrow \Delta U=W
$$

Total work

$$
W=P_{i} V_{i}-P_{f} V_{f}
$$

$$
U_{f}-U_{i}=P_{i} V_{i}-P_{f} V_{f}
$$

«Entalphy Capacity»
Constant Enthalpy

$$
H=U+P V
$$

Summary

- Temperature is thermodynamic state variable for a system at thermal equilibrium
- Heat Q and work W are «energies in transit»
- First law of thermodynamics

The change in the internal («stored») energy equal the sum of «energies in transit »

$$
\Delta U=W+Q
$$

- heat capacity comes in two flavors

$$
C_{V}=\frac{d U}{d T} \quad C_{P}=\frac{d H}{d T}
$$

