Lecture 3

Ideal gas model
Equipartion of energy

27.08.2018

Ideal gas in a box at equilibrium

Equation of state: $\boldsymbol{P V}=\boldsymbol{n R T}$

Experimental fact

- Pressure $[P]=1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}$
- Volume $[\mathrm{V}]=1$ liter $=10^{-3} \mathrm{~m}^{3}$
- Temperature $[T]=1 \mathrm{~K}$
- Gas constant $R=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

- Number of moles $n=\frac{N}{N_{A}}$
- Avogadro's number $\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23}$ of molecules in 1 mole

Isotherms

$$
P=n R T \frac{1}{V}
$$

P-T diagram: isocores
$P=\frac{n R}{V} T$

Ideal gas: Microscopic (statistical) model

Equation of state: $P V=N k T$

- Number of gas molecules \boldsymbol{N}
- Boltzmann's constant

$$
\mathrm{k}=\frac{R}{N_{A}}=1.381 \times 10^{-23} J K^{-1}
$$

(conversion factor between energy and temperature?)

Ideal gas model: Pressure

Newtonian gas particle:

- $m \frac{d \vec{v}}{d t}=\vec{F}(=0)$
- Independent, identical particles

Q: What is the pressure in the ideal gas model?

Ideal gas model: Pressure

Q: What is the pressure in the ideal gas model?

- pressure is isotropic and the same on all walls

- compute the pressure on the piston

Ideal gas model: Pressure

What is the long-time averaged pressure exerted on the piston by one particle?

- $P=\frac{\bar{F}_{x, p i s t o n}}{A}=-\frac{\bar{F}_{x}}{A}=-\frac{m}{A} \overline{\left(\frac{\Delta v_{x}}{\Delta t}\right)}$

- Time it takes to go round-trip across the box

$$
\Delta t=\frac{2 L}{v_{x}}
$$

- Change in velocity after one perfect collision with the piston

$$
\Delta \mathrm{v}_{x}=v_{x, \text { after }}-v_{x, \text { before }}=-2 v_{x}
$$

Ideal gas model: Pressure

What is the average pressure exerted on the piston by the gas particles?

- $P=-\frac{m}{A} \overline{\left(\frac{\Delta v_{x}}{\Delta t}\right)}=\frac{m \overline{v_{\mathrm{x}}^{2}}}{A L}=\frac{m \overline{v_{\mathrm{x}}^{2}}}{V}$

using
- $\Delta t=\frac{2 L}{v_{x}}$
$\circ \Delta v_{x}=v_{x, \text { after }}-v_{x, \text { before }}=-2 v_{x}$

Ideal gas model: Pressure

What is the average pressure exerted by the gas particles?

Pressure is the long-time average of v_{x}^{2}

$$
P=\frac{m \overline{v_{\mathrm{x}}^{2}}}{V}
$$

Consider ALL N particles at a given time and average over their velocities (ensemble average)

$$
\begin{gathered}
P V=N m\left\langle\mathrm{v}_{\mathrm{x}}^{2}\right\rangle=\frac{N}{3} m\left\langle v^{2}\right\rangle \\
P V=\frac{2 N}{3}\left\langle K_{\text {trans }}\right\rangle, \quad\left\langle K_{\text {trans }}\right\rangle=\frac{1}{2} m\left\langle v^{2}\right\rangle
\end{gathered}
$$

Ideal gas model: Temperature

$$
\begin{gathered}
P V=\frac{2 N}{3}\left\langle K_{\text {trans }}\right\rangle \\
P V=N k T
\end{gathered}
$$

Average kinetic energy of a particle gives a
 measure of the gas temperature

$$
\left\langle K_{\text {trans }}\right\rangle=\frac{3}{2} k T
$$

In 1-D: $\left\langle K_{\text {trans }}\right\rangle=\frac{1}{2} k T$
In d-D: $\left\langle K_{\text {trans }}\right\rangle=\frac{d}{2} k T$

Ideal gas model: Equipartition

Equipartion of energy (theorem):

At equilibrium with temperature T , any quadratic form of the internal energy equal $\frac{1}{2} k T$ per degree of freedom

$$
U=K+U_{\text {potential }}=\frac{f}{2} N k T
$$

What is a degree of freedom?

- Translation $K_{\text {trans }}=\frac{1}{2} m v^{2}$
- Rotation $K_{\text {rot }}=\frac{1}{2} I \omega^{2}$
- Vibration/oscillation $U_{\text {harm }}=-\frac{1}{2} \mathrm{k}(\Delta x)^{2}$

Ideal gas model: Equipartition

Equipartion of energy (theorem):

At equilibrium with temperature T, any quadratic form of the internal energy is $\frac{1}{2} k T$ per degree of freedom

Example:
What is the internal energy of a diatomic gas:

$$
\begin{aligned}
& U=K+U_{\text {potential }} \\
& U=\frac{5}{2} N k T
\end{aligned}
$$

Ideal gas model: Equipartition

Equipartion of energy (theorem):

$$
U=\frac{f}{2} N k T
$$

What are the heat capacities C_{V}, C_{P} ?

$$
\begin{gathered}
C_{V}=\frac{d U}{d T}=\frac{f}{2} N k \\
C_{P}=C_{V}+P\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{f+2}{2} N k
\end{gathered}
$$

Mean free-path

Free path between collisions

Number of molecules per unit volume (density):

$$
n_{V}=\frac{N}{V}
$$

Effective collision area: $\sigma=\pi d^{2}$

Effective collision volume:

$$
V_{c}=\bar{v} t \sigma=\pi d^{2} \bar{v} t
$$

Mean free path: $\lambda=\frac{\bar{v} t}{n_{V} V_{c}}$

$$
\lambda=\frac{1}{\pi d^{2} n_{V}}
$$

Mean free path

Gas particles spend most of their time between collisions

Mean free path: $\lambda=\frac{1}{\pi d^{2} n_{V}}$

Average time between collisions:

$$
\begin{aligned}
& \tau=\frac{\lambda}{\bar{v}}, \quad \bar{v} \approx \frac{\sqrt{k T}}{\sqrt{m}} \\
& \tau=\frac{\lambda}{\bar{v}} \approx \frac{1}{\pi d^{2} n_{V}} \frac{\sqrt{m}}{\sqrt{k T}}
\end{aligned}
$$

The mean-free path λ and mean lag time τ dictate the kinetics of the gas
(diffusion and heat conduction properties)

Relaxation to equilibrium by diffusion

Diffusion:

Net transport of energy, momentum or particles through random thermal motion and particle collisions until thermodynamic equilibrium is reached

- At any $T>0 \mathrm{~K}$, particles are in thermal motion
- Collisions between particles -> particle trajectory is a zigzag -- random (diffusive particle)

Particle diffusion: Random walk (RW)

Random walk and diffusion

Fick's first law:

- Diffusive particle drift from high to low concentration $C=\frac{N}{V}$ of particles

$$
J=-D \nabla C
$$

- Diffusivity \boldsymbol{D} : mobility of the diffusing particles

$$
\begin{gathered}
\frac{N}{A \Delta t} \approx D \frac{\Delta\left(N V^{-1}\right)}{\Delta x} \\
\frac{\text { moles }}{m^{2} s}=[D] \frac{\mathrm{moles} \cdot \mathrm{~m}^{-3}}{m} \\
{[D]=\frac{m^{2}}{s}}
\end{gathered}
$$

- $D_{C 0}=0.2 \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}$ in air
- $D_{C 0}=2 \times 10^{-5} \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}$ in water

Flow and dispersion

Molecular dispersion (Diffusion)

Dispersion by flow

Molecular Diffusivity: gas kinetics

- Flux across a surface in a average time interval between collisions τ

$$
\begin{gathered}
J \approx \frac{N}{A \tau}=\frac{N}{A \lambda} \bar{v} \sim c \bar{v} \\
J=-D \frac{d c}{\mathrm{dx}} \approx D \frac{c}{\lambda} \\
D \approx \lambda \bar{v} \\
D \approx \frac{1}{\pi d^{2}} \frac{k T}{P} \times \frac{\sqrt{k T}}{\sqrt{m}} \sim \frac{T^{\frac{3}{2}}}{P}
\end{gathered}
$$

Heat conduction

Fourier's law:
Rate of heat conduction is proportional to the temperature difference

$$
J_{Q}=\frac{Q}{A \Delta t}=-k_{t} \nabla T
$$

- Isocoric heat conduction $Q=\Delta U=C_{V} \Delta T$

$$
\begin{aligned}
\frac{C_{V} \Delta \mathrm{~T}}{A \tau} \approx k_{t} \frac{\Delta T}{\lambda} & \rightarrow k_{t}
\end{aligned}=\frac{C_{V}}{V} \lambda \bar{v}, \quad C_{V}=\frac{f}{2} \frac{P V}{T}
$$

Fick's second law:

 times the cross-section area- Rate of change in the number of particles $=$ net flux

$$
\begin{gathered}
\frac{d N}{d t}=J_{n e t} \times A \\
\frac{d N}{d t}=\left(J_{x}-J_{x+d x}\right) \times A \\
\frac{d(N / A)}{d t}=-\frac{d J_{x}}{d x} d x \\
\frac{\partial \boldsymbol{c}}{\boldsymbol{\partial} \boldsymbol{t}}=\boldsymbol{D} \frac{\boldsymbol{\partial}^{2} \boldsymbol{c}}{\boldsymbol{\partial} \boldsymbol{x}^{2}}
\end{gathered}
$$

Summary

- Equipartition of energy

$$
U=\frac{f}{2} k T, f \text { quadratic degrees of freedom }
$$

- Kinetic properties of gas depend on the mean-free path and mean velocity of the gas particles

$$
D \approx \lambda \bar{v} \sim \frac{T^{\frac{3}{2}}}{P}, \quad k_{t} \approx \frac{C_{V}}{V} \lambda \bar{v} \sim \frac{\sqrt{T}}{P}
$$

