Lecture 4

Microstates, Multiplicity of a macrostate

> 29.08.2018

Macrostate and microstates

Example

Combinatorics of flipping N fair coins

Suppose $N=5$

- List the possible configurations of 4 H and 1 T for a set of 5 coins

Combinatorics of H\&T's

List the possible configurations of 4 H and 1 T for a set of 5 coins

THHHH; НТННН; HHTHH; HHHTH; HHHHT $\boldsymbol{\Omega}(\mathbf{1 T})=\mathbf{5}$

- The state of a system of coins with 4 H and 1 T is called a macrostate
- A particular arrangement of 4 H and 1 T is called a microstate
- Number of microstates with 4 H and 1 T is called the multiplicity of that macrostate

$$
\Omega(1 T)=5
$$

How many possible combinations of tails (T) and heads (H) there are?

Combinatorics of H\&T's

List the microstates with 3 H and 2 T for a set of 5 coins

TTHHH; HTTHH; HHTTH; HHHTT;
THTHH; THHTH; THHHT
HTHTH; HTHHT
HHTHT

$$
\Omega(2 T)=\frac{5 \times 4}{2}=\frac{5!}{2!3!}=10
$$

How many possible microstates of H\&T are there for a set of 5 coins?

List the possible configurations of H and T for a set of 5 coins

HHHHH	$\Omega(0 T)=1$
«THHHH»	$\Omega(1 T)=5$
«TTHHH»	$\Omega(2 T)=10$
«TTTHH»	$\Omega(3 T)=10$
«TTTTH»	$\Omega(4 T)=5$
TTTTT	$\Omega(5 T)=1$

$$
\Omega_{t}=\sum_{n=0}^{5} \Omega(n T)=32\left(=2^{5}\right)
$$

Probability of a macrostate

$$
\begin{aligned}
& \mathrm{P}(0 \mathrm{~T})=\Omega_{t}^{-1} \Omega(0 T)=\frac{1}{32} \\
& \mathrm{P}(1 \mathrm{~T})=\Omega_{t}^{-1} \Omega(1 T)=\frac{5}{32} \\
& \mathrm{P}(2 \mathrm{~T})=\Omega_{t}^{-1} \Omega(2 T)=\frac{10}{32} \\
& \mathrm{P}(3 \mathrm{~T})=\Omega_{t}^{-1} \Omega(3 T)=\frac{10}{32} \\
& \mathrm{P}(4 \mathrm{~T})=\Omega_{t}^{-1} \Omega(4 T)=\frac{5}{32} \\
& \mathrm{P}(5 \mathrm{~T})=\Omega_{t}^{-1} \Omega(5 T)=\frac{1}{32}
\end{aligned}
$$

Multiplicity of a macrostate with n tails

Number of microstates with n tails: $\Omega(n)=\frac{N!}{n!(N-n)!}$

Total number of microstates

$$
\sum_{n=0}^{N} \Omega(n)=\sum_{n=0}^{N} \frac{N!}{n!(N-n)!}=2^{N}
$$

Probability of a macrostate with n tails

$$
P(n)=\frac{\Omega(n)}{\sum_{n} \Omega(n)}
$$

Apply this type of combinatorics to

1. Paramagnetic systems
2. Random walks
3. Thermal vibrations in crystals

Two-state paramagnet model

Paramagnetic solid:

- A system of N independent, localised particles with spin $s= \pm 1$ in a constant magnetic field \boldsymbol{B}
- Energy of a single spin $\epsilon=-s \mu B$
- For N spins, we have $N=N_{\downarrow}+N_{\uparrow}$
- Net magnetization

$$
M=\mu \sum_{i=1}^{N} s_{i}=\mu\left(N_{\uparrow}-N_{\downarrow}\right)=\mu\left(N-\mathbf{2} N_{\uparrow}\right)
$$

- Average magnetization

$$
\langle M\rangle=\mu\left(N-2\left\langle N_{\uparrow}\right\rangle\right)
$$

Two-state paramagnet model

- Consider a paramagnet with N spins at zero applied field
- Spins \uparrow or \downarrow have the same energy
- Microstate is a particular configuration of spins \uparrow and \downarrow

What is the multiplicity of macrostate with N_{\uparrow} out of N spins?

$$
\boldsymbol{\Omega}\left(\mathbf{N}, \mathbf{N}_{\uparrow}\right)=?
$$

What is the multiplicity of macrostate with N_{\uparrow} out of N spins?

$$
\Omega\left(N, N_{\uparrow}\right)=\frac{N!}{N_{\uparrow}!\left(N-N_{\uparrow}\right)!}
$$

Total number of microstates

$$
\sum_{N_{\uparrow}=0}^{N} \Omega\left(N_{\uparrow}\right)=\sum_{n=0}^{N} \frac{N!}{N_{\uparrow}!\left(N-N_{\uparrow}\right)!}=2^{N}
$$

Probability of a macrostate with N_{\uparrow} spins up

$$
P\left(N_{\uparrow}\right)=2^{-N} \Omega\left(N, N_{\uparrow}\right)
$$

Multiplicity of a macrostate in a paramagnetic

Matlab plotting

What is the average number of N_{\uparrow} ?

$$
\left\langle N_{\uparrow}\right\rangle=\sum_{N_{\uparrow}=0}^{N} N_{\uparrow} P\left(N, N_{\uparrow}\right)=2^{-N} \sum_{N_{\uparrow}=0}^{N} N_{\uparrow} \frac{N!}{N_{\uparrow}!\left(N-N_{\uparrow}\right)!}
$$

Use binomial formula $\sum_{N_{1}=0}^{N} \frac{N!}{N_{t}\left(N-N_{t}\right)!} a^{N_{1} b^{N-N_{T}}}=(a+b)^{N}$

$$
\left\langle N_{\uparrow}\right\rangle=2^{-N}\left(\sum_{N_{\uparrow}=0}^{N} N_{\uparrow} \frac{N!}{N_{\uparrow}!\left(N-N_{\uparrow}\right)!} a^{N_{\uparrow}} b^{N-N_{\uparrow}}\right)_{a=b=1}
$$

What is the average number of N_{\uparrow} ?

$$
\begin{aligned}
& \left\langle N_{\uparrow}\right\rangle=2^{-N}\left(\sum_{N_{1}=0}^{N} N_{7} \frac{N!}{N_{!}!\left(N-N_{\uparrow}\right)!} a^{N_{t}} b^{N-N_{7}}\right)_{a=b=1} \\
& \left\langle N_{\uparrow}\right\rangle=2^{-N}\left(a \frac{d}{d a} \sum_{N_{1}=0}^{N} \frac{N!}{N_{!}!\left(N-N_{\uparrow}\right)!} a^{N_{t}} b^{N-N_{7}}\right)_{a=b=1}
\end{aligned}
$$

What is the average number of N_{\uparrow} ?

$$
\left\langle N_{\uparrow}\right\rangle=2^{-N}\left(a \frac{d}{d a} \sum_{N_{\uparrow}=0}^{N} \frac{N!}{N_{\uparrow}!\left(N-N_{\uparrow}\right)!} a^{N_{\uparrow}} b^{N-N_{\uparrow}}\right)_{a=b=1}
$$

$$
\left\langle N_{\uparrow}\right\rangle=\frac{N}{2}
$$

Macrostate with $N_{\uparrow}=\left\langle N_{\uparrow}\right\rangle$ has the largest multiplicity

- $\left\langle N_{\uparrow}\right\rangle=\frac{N}{2}$
- $\langle M\rangle=\mu\left(N-2\left\langle N_{\uparrow}\right\rangle\right)$
- $\langle\boldsymbol{M}\rangle=\mathbf{0}$
- In the absence of an external magnetic field, spins are randomly oriented with a zero net magnetization

1D Random walk

- Random motion of a walker along a line

- Discrete time steps $N=0,1,2 \cdots$ in units of $\Delta t=1$
- Discrete space: lattice index $j=0, \pm 1, \pm 2 \cdots$ with increments $\Delta x=1$
- At each timestep, the walker has probability $p=\frac{1}{2}$ to the right $j \rightarrow j+1$ and probability $q=\frac{1}{2}$ to the left $j \rightarrow j-1$
- What is the probability distribution for R steps to the rightN steps, $P(N, R)$?
- What is the mean displacement $\langle S\rangle$ after N steps?

1D Random Walk

$q=\frac{1}{2}$

1D Random Walk

1D Random walk

After N steps, we have R steps to the right and L steps to the right
$R+L=N, \quad S=R-L$ (net displacement)

- Number of configurations in which we have R right steps out of N steps

$$
\Omega(N, R)=\frac{N!}{R!(N-R)!}
$$

- Probability for R steps to the right out of N steps

$$
P(N, R)=\Omega(N, R)\left(\frac{1}{2}\right)^{R}\left(\frac{1}{2}\right)^{N-R}=2^{-N} \frac{N!}{R!(N-R)!}
$$

1D Random walk

- Probability for R steps to the right out of N steps

$$
P(N, R)=2^{-N} \frac{N!}{R!(N-R)!}
$$

- Normalization condition: probability for N steps

$$
\sum_{R=0}^{N} P(N, R)=2^{-N} \sum_{R=0}^{N} \frac{N!}{R!(N-R)!}=1
$$

Average number of steps to the right $q=\frac{1}{2}$
$\langle R\rangle=\sum_{R=0}^{N} R P(N, R)=\left(\sum_{R=0}^{N} \frac{N!}{R!(N-R)!} R p^{R} q^{N-R}\right)_{p=q=\frac{1}{2}}$
$R p^{R} \equiv p \frac{d}{d p} p^{R}$
$\langle R\rangle=\left(p \frac{d}{d p} \sum_{R=1}^{N} \frac{N!}{R!(N-R)!} p^{R} q^{N-R}\right)_{p=q=\frac{1}{2}}=\left(p \frac{d}{d p}(p+q)^{N}\right)_{p=q=\frac{1}{2}}$
$\langle R\rangle=\frac{N}{2}$

Average displacement from the origin

$$
\begin{gathered}
\langle R\rangle=\frac{N}{2} \\
\langle S\rangle=\langle R\rangle-(N-\langle R\rangle)=2\langle R\rangle-N \\
\langle S\rangle=0
\end{gathered}
$$

Thermal vibrations in solids: Einstein crystal

- Collection of identical harmonic oscillators

Classical Harmonic Oscillator

- Each atom in 3D has 3 onedimensional harmonic oscillators
- Classical harmonic oscillator
- $U_{1}=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2}\left(x-x_{0}\right)^{2}$
- Frequency $\omega=\sqrt{\frac{\kappa}{m}}$

$$
U=\frac{p^{2}}{2 m}+\frac{1}{2} \kappa x^{2}
$$

Einstein crystal

One quantum harmonic oscillator
$\widehat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} \kappa \hat{x}^{2}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2}$
Quantized energy levels $\epsilon=\left(n+\frac{1}{2}\right) \hbar \omega$

Energy level relative to the ground state

$$
\Delta \epsilon=n \hbar \omega
$$

Total energy of N harmonic oscillators

$$
U_{N}=\sum_{i=1}^{N} \epsilon_{i}=\sum_{i=1}^{N} n_{i} \hbar \omega+\frac{N}{2} \hbar \omega
$$

Energy units for \mathbf{N} quantum harmonic oscillators at frequency $\boldsymbol{\omega}$

$$
\mathrm{q}=\frac{U_{N}-\frac{N}{2} \hbar \omega}{\hbar \omega}
$$

Find multiplicity $\Omega(q, N)$ of a macrostate with N oscillators and q units of energy distributed between them

$$
\begin{aligned}
& q=1, \quad N=4 \\
& \Omega(1,4)=4
\end{aligned}
$$

Find multiplicity $\Omega(q, N)$ of a macrostate with N oscillators and q units of energy distributed between them

1 oscillators has 2 energy quanta, and 3 oscillators are in the ground state

$$
q=2, \quad N=4
$$

$\Omega(2,4)=$?

$\Omega(2,4)=10$

2 oscillators have 1 energy quanta each, and 2 oscillators are in the ground state

Find multiplicity $\Omega(q, N)$ of a macrostate with N oscillators and q units of energy distributed between them

$\Omega(3,4)=$?

$\Omega(3,4)=20$

3 oscillators are in an excited state, and the 4th is in the ground state

1 oscillators has 2 energy quanta, 1 oscillator has 1 energy quanta and 2 oscillators are in the ground state

1 oscillators has 3 energy quanta, and 3 oscillators are in the ground state

Find multiplicity $\Omega(q, N)$ of a macrostate with N oscillators and q units of energy distributed between them

q energy units $\sim q$ identical balls
N oscillators $\sim \mathrm{N}$ identical boxes

Number of ways of distributing q balls between N boxed is the same as the number of combinations with q balls and ($\mathrm{N}-1$)-walls between the lined up boxes

Number of ways of combining ($N-1$)-walls and q balls

$$
\Omega(q, N)=\frac{(N-1+q)!}{q!(N-1)!}
$$

Weakly-coupled Einstein crystals

$$
\begin{aligned}
& \Omega_{\mathrm{A}}\left(q_{A}, N_{A}\right)=\frac{\left(N_{A}-1+q_{A}\right)!}{q_{A}!\left(N_{A}-1\right)!} \\
& \Omega\left(q_{B}, N_{B}\right)=\frac{\left(N_{B}-1+q_{B}\right)!}{q_{B}!\left(N_{B}-1\right)!}
\end{aligned}
$$

Composite system:

$$
q=q_{A}+q_{B}, \quad N=N_{A}+N_{B}
$$

Multiplicity of a macrostate of the composite systems

$$
\Omega_{\mathrm{t}}=\Omega_{A}\left(q_{A}, N_{A}\right) \cdot \Omega_{B}\left(q_{B}, N_{B}\right)
$$

Weakly-coupled Einstein crystals

Multiplicity of a macrostate with q_{A} and $q_{B}=q-q_{A}$ for two coupled Einstein solids

$$
\begin{gathered}
\boldsymbol{\Omega}_{\mathrm{t}}\left(\mathbf{q}_{\mathrm{A}}, \mathbf{q}, \mathbf{N}\right) \\
=\boldsymbol{\Omega}_{A}\left(\boldsymbol{q}_{A}, \boldsymbol{N}_{A}\right) \cdot \boldsymbol{\Omega}_{B}\left(\boldsymbol{q}_{B}, \boldsymbol{N}_{B}\right)
\end{gathered}
$$

What the macrostate with the maximum multiplicity?

Matlab tests..

Weakly-coupled Einstein crystals

Multiplicity of a macrostate with q_{A} and $q_{B}=q-q_{A}$ for two coupled Einstein solids

$$
\begin{gathered}
\boldsymbol{\Omega}_{\mathrm{t}}\left(\mathbf{q}_{\mathrm{A}}, \mathbf{q}, \mathbf{N}\right) \\
=\boldsymbol{\Omega}_{A}\left(\boldsymbol{q}_{A}, \boldsymbol{N}_{A}\right) \cdot \boldsymbol{\Omega}_{B}\left(\boldsymbol{q}_{B}, \boldsymbol{N}_{\boldsymbol{B}}\right)
\end{gathered}
$$

What the macrostate with the maximum multiplicity?

Take home---

- Multiplicity in two-state systems (paramagnets, random walk)

$$
\Omega(n, N)=\frac{N!}{n!(N-n)!}
$$

has a maximum peaked around the average value $\langle n\rangle$

- Multiplicity in Einstein crystal by analogy with q «identical balls» (energy units) and N «identical bins» (oscillators)

$$
\Omega(q, N)=\frac{(N-1+q)!}{(N-1)!q!}
$$

- Multiplicity of two-coupled Einstein crystal

$$
\Omega_{\mathrm{t}}=\Omega_{A} \cdot \Omega_{B}
$$

has also a maximum around the average value

- Macrostates with maximum multiplicity are the most likely and they correspond to the average values

