Lecture 5

Large multiplicity limit 03.09.2018

Two-state paramagnet model

- A system of N independent, localised particles with $\operatorname{spin} s= \pm 1$ at finite temperature
- At zero applied magnetic field, each spin can flip due to thermal vibrations with an equal probability
- Number of microstates with N_{\uparrow} up-spins out of N spins (multiplicity of that macrostate)

$$
\Omega\left(N, N_{\uparrow}\right)=\frac{N!}{N_{\uparrow}!\left(N-N_{\uparrow}\right)!}
$$

- Total number of microstates

$$
\sum_{N_{\uparrow}=0}^{N} \Omega\left(N_{\uparrow}\right)=\sum_{n=0}^{N} \frac{N!}{N_{\uparrow}!\left(N-N_{\uparrow}\right)!}=2^{N}
$$

- Probability of a macrostate with N_{\uparrow} spins up

$$
P\left(N_{\uparrow}\right)=2^{-N} \Omega\left(N, N_{\uparrow}\right)
$$

Einstein crystal

- Collection of independent and identical quantum harmonic oscillators
- Each quantum oscillator has a discrete spectrum of energy levels, $n=0,1,2 \ldots$

$$
\epsilon_{n}=\left(n+\frac{1}{2}\right) \hbar \omega
$$

- Energy of N independent oscillators

$$
U_{N}=\sum_{i=1}^{N} \epsilon_{n_{i}}=\sum_{i=1}^{N} n_{i} \hbar \omega+\frac{N}{2} \hbar \omega
$$

Energy units for \mathbf{N} quantum harmonic oscillators at frequency $\boldsymbol{\omega}$

$$
\mathrm{q}=\frac{U_{N}-\frac{N}{2} \hbar \omega}{\hbar \omega}=\sum_{i=1}^{N} n_{i}
$$

Multiplicity $\Omega(q, N)$ of a macrostate with N oscillators and q units of energy distributed between them
 \boldsymbol{q} energy units $\sim \boldsymbol{q}$ identical balls
 N oscillators $\sim \mathbf{N}$ identical boxes

Number of ways of distributing q balls between N boxed is the same as the number of combinations with q balls and ($\mathrm{N}-1$)-walls between the lined up boxes

Number of ways of combining ($N-1$)-walls and q balls

$$
\Omega(q, N)=\frac{(N-\mathbf{1}+q)!}{q!(N-1)!}
$$

Stirling's approximation for N ! when $N \gg 1$

Let's look at

$$
\begin{gathered}
\ln N!=\ln [N \cdot(N-1) \cdot(N-2) \cdots 2 \cdot 1] \\
\ln N!=\sum_{n=1}^{N} \ln n
\end{gathered}
$$

When $N \rightarrow \infty$, we can replace the sum by an integral

$$
\begin{aligned}
& \ln N!=\sum_{n=1}^{N} \ln n \approx \int_{0}^{N} d n \ln n \\
& \int_{0}^{N} d n \frac{d n}{d n} \ln n=\left.n \ln n\right|_{0} ^{N}-\int_{0}^{N} d n n \frac{d \ln n}{\mathrm{dn}} \\
& \quad=N \ln N-N
\end{aligned}
$$

$\ln N!\approx N \ln N-N$

$$
N!\approx N^{N} e^{-N}=\left(\frac{N}{e}\right)^{N}
$$

Stirling's approximation for N ! when $N \gg 1$

Improved approximation from the Gamma function

$$
n!=\Gamma(n+1)=\int_{0}^{\infty} d x x^{n} e^{-x}
$$

$x^{n} e^{-x}=e^{n \ln x-x}$

- $n \ln x-x=_{(y=x-n)} n \ln (y+n)-y-n$

$$
=n \ln n-n+n \ln \left(1+\frac{y}{n}\right)-y
$$

- $\quad \ln \left(1+\frac{y}{n}\right) \approx \frac{y}{n}-\frac{1}{2}\left(\frac{y}{n}\right)^{2}$
$n \ln x-x \approx n \ln n-n+y-\frac{y^{2}}{2 n}-y=n \ln n-n-\frac{y^{2}}{2 n}$
$x^{n} e^{-x} \approx e^{n \ln n-n-\frac{y^{2}}{2 n}}=n^{n} e^{-n} e^{-\frac{y^{2}}{2 n}}=n^{n} e^{-n} e^{-\frac{(x-n)^{2}}{2 n}}$
$n!\approx n^{n} e^{-n} \int_{0}^{\infty} d x e^{-\frac{(x-n)^{2}}{2 n}} \approx n^{n} e^{-n} \int_{-\infty}^{\infty} d x e^{-\frac{(x-n)^{2}}{2 n}}=n^{n} e^{-n \sqrt{2 \pi n}}$

$$
N!\approx N^{N} e^{-N} \sqrt{2 \pi N}
$$

n
$\ln N!\approx N \ln N-N+\ln (2 \pi N) \approx N \ln N-N$, since $N \gg \ln N$ for $N \rightarrow \infty$

Large N Paramagnet

$$
\Omega\left(N, N_{\uparrow}\right)=\frac{N!}{N_{\uparrow}!\left(N-N_{\uparrow}\right)!}
$$

With

$$
N!\approx N^{N} e^{-N} \sqrt{2 \pi N}
$$

Find $\Omega_{\max }: \quad N_{\uparrow}=\frac{N}{2}, \quad N_{\downarrow}=\frac{N}{2}$

$$
\begin{gathered}
\Omega_{\max } \approx \frac{N^{N} e^{-N} \sqrt{2 \pi N}}{\left(\left(\frac{N}{2}\right)^{\frac{N}{2}} e^{-\frac{N}{2}} \sqrt{2 \pi \frac{N}{2}}\right)^{2}} \\
\Omega_{\max } \approx \frac{N^{N} e^{-N} \sqrt{2 \pi N}}{\left(\frac{N}{2}\right)^{\frac{N}{2}} e^{-\frac{N}{2}}\left(2 \pi \frac{N}{2}\right)} \rightarrow \Omega_{\max } \approx 2^{N} \sqrt{\frac{2}{\pi N}}
\end{gathered}
$$

Large N Paramagnet

$$
\Omega\left(N, N_{\uparrow}\right)=\frac{N!}{N_{\uparrow}!\left(N-N_{\uparrow}\right)!}
$$

Find the multiplicity of a macrostate for large N using $N!\approx N^{N} e^{-N}$

$$
\begin{gathered}
\ln \Omega=N \ln N-N-N_{\uparrow} \ln N_{\uparrow}+N_{\uparrow}-\left(N-N_{\uparrow}\right) \ln \left(N-N_{\uparrow}\right)+\left(N-N_{\uparrow}\right) \\
\ln \Omega=N \ln N-N_{\uparrow} \ln N_{\uparrow}-\left(N-N_{\uparrow}\right) \ln \left(N-N_{\uparrow}\right)
\end{gathered}
$$

Boltzmann entropy

$$
S=k \ln \Omega
$$

For a paramagnet

$$
S=k\left[N \ln N-N_{\uparrow} \ln N_{\uparrow}-\left(N-N_{\uparrow}\right) \ln \left(N-N_{\uparrow}\right)\right]
$$

Large N Paramagnet
 $$
\Omega\left(N, N_{\uparrow}\right)=\frac{N!}{N_{\uparrow}!\left(N-N_{\uparrow}\right)!}
$$
 With

$$
N!\approx N^{N} e^{-N}
$$

Find the multiplicity of a macrostate around the one with maximum multiplicity
Small deviation away from the state with $\Omega_{\text {max }}: \quad N_{\uparrow}=\frac{N}{2}+x, N_{\downarrow}=\frac{N}{2}-x$, for $x \ll N$

$$
\begin{gathered}
\ln \Omega=N \ln N-\left(\frac{N}{2}+x\right) \ln \left(\frac{N}{2}+x\right)-\left(\frac{N}{2}-x\right) \ln \left(\frac{N}{2}-x\right) \\
\ln \Omega=N \ln N-\left(\frac{N}{2}+x\right) \ln \left(\frac{N}{2}\right)-\left(\frac{N}{2}+x\right) \ln \left(1+\frac{2 x}{N}\right)-\left(\frac{N}{2}-x\right) \ln \left(\frac{N}{2}\right)-\left(\frac{N}{2}-x\right) \ln \left(1-\frac{2 x}{N}\right)
\end{gathered}
$$

use $\ln (1+y) \approx y-\frac{1}{2} y^{2}$

$$
\ln \Omega \approx N \ln N-N \ln \left(\frac{N}{2}\right)-\left(\frac{N}{2}+x\right)\left(\frac{2 x}{N}-\frac{1}{2}\left(\frac{2 x}{N}\right)^{2}\right)-\left(\frac{N}{2}-x\right)\left(-\frac{2 x}{N}-\frac{1}{2}\left(\frac{2 x}{N}\right)^{2}\right)
$$

Keep the lowest order terms on x

$$
\begin{gathered}
\ln \Omega \approx N \ln 2+\frac{N}{2}\left(\frac{2 x}{N}\right)^{2}-\frac{2 x^{2}}{N}-\frac{2 x^{2}}{N}=N \ln 2-\frac{2 x^{2}}{N} \rightarrow \Omega \approx 2^{N} e^{-\frac{2 x^{2}}{N}} \\
\Omega\left(N, N_{\uparrow}\right) \approx 2^{N} e^{-\frac{\left(N_{\uparrow}-\frac{N}{2}\right)^{2}}{\frac{N}{2}}}
\end{gathered}
$$

Large N Paramagnet

$$
\Omega\left(N, N_{\uparrow}\right)=\frac{N!}{N_{\uparrow}!\left(N-N_{\uparrow}\right)!}
$$

With

$$
N!\approx N^{N} e^{-N}
$$

Multiplicity of a macrostate around the one with maximum multiplicity
Small deviation away from the state with $\Omega_{\max }: \quad N_{\uparrow}=\frac{N}{2}+x, N_{\downarrow}=\frac{N}{2}-x$, for $x \ll N$

$$
\Omega(\mathrm{N}, \mathrm{x}) \approx 2^{N} e^{-\frac{2 x^{2}}{N}} \rightarrow \text { the probability is } P(x) \sim e^{-\frac{2 x^{2}}{N}}
$$

Using the normalization condition

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} d x P(x)=\int_{-\infty}^{+\infty} d x e^{-\frac{2 x^{2}}{N}}=\sqrt{\frac{N \pi}{2}} \\
& \Omega\left(N, N_{\uparrow}\right) \approx 2^{N} e^{-\frac{\left(N_{\uparrow}-\frac{N}{2}\right)^{2}}{\frac{N}{2}}} \sqrt{\frac{2}{N \pi}} \rightarrow \mathrm{P}\left(N, N_{\uparrow}\right) \approx e^{-\frac{\left(N_{\uparrow}-\frac{N}{2}\right)^{2}}{\frac{N}{2}}} \sqrt{\frac{2}{N \pi}}
\end{aligned}
$$

Large N Paramagnet

The probability around the peak $x=N_{\uparrow}-\frac{N}{2}$

$$
P(x) \approx \sqrt{\frac{2}{N \pi}} e^{-\frac{2 x^{2}}{N}}
$$

$P(x)$ falls of to $1 / e$ of its peak when $2 x^{2}=N \rightarrow x=\sqrt{\frac{N}{2}}$
Full width of $P(x)$ around the peak $\sigma=2 \sqrt{N / 2}=\sqrt{2 N}$

Large N Paramagnet

The probability around the peak $x=N_{\uparrow}-\frac{N}{2}$
$P(x) \approx \sqrt{\frac{2}{N \pi}} e^{-\frac{2 x^{2}}{N}}$
Full width of $P(x): \sigma=2 \sqrt{N / 2}=\sqrt{2 N}$
Fluctuations $\frac{\sigma}{\left\langle N_{\uparrow}\right\rangle}=\frac{\sqrt{2 N}}{N / 2} \approx \frac{1}{\sqrt{N}} \rightarrow \mathbf{0}$

Einstein crystal: «low T» limit

$$
\Omega(q, N)=\frac{(N-1+q)!}{q!(N-1)!} \approx \frac{(N+q)!}{q!N!}, \quad N, q \gg 1
$$

Assume $q \ll N$ and $\ln n!=n \ln n-n$:

$$
\begin{gathered}
\ln \Omega=(N+q) \ln (N+q)-(N+q)-q \ln q+q-N \ln N+N \\
\ln \Omega=(N+q) \ln N\left(1+\frac{q}{N}\right)-q \ln q-N \ln N \\
\ln \Omega=q \ln \frac{N}{q}+(N+q) \ln \left(1+\frac{q}{N}\right) \\
\ln \Omega \approx q \ln \frac{N}{q}+(N+q) \frac{q}{N} \\
\ln \Omega \approx q \ln \frac{N}{q}+q+\frac{q^{2}}{N} \approx \ln \left(\frac{N e}{q}\right)^{q}
\end{gathered}
$$

$\Omega_{\text {low } T}(q, N) \approx\left(\frac{N e}{q}\right)^{q}, \quad$ for $q \ll N$
Similarly,
$\Omega_{\text {high } T}(q, N) \approx\left(\frac{q e}{N}\right)^{N}, \quad$ for $N \ll \boldsymbol{q}$

Two large Einstein crystals: «high T» limit

$$
\Omega_{t}=\Omega_{\mathrm{A}} \cdot \Omega_{\mathrm{B}} \approx \frac{\left(N_{A}+q_{A}\right)!}{q_{A}!N_{A}!} \cdot \frac{\left(N_{B}+q_{B}\right)!}{q_{B}!N_{B}!}, \quad \text { for } N_{A}, q_{A}, N_{B}, q_{B} \gg 1
$$

Assume $q \gg N$ and $N_{A}=N_{B}=N, q_{A}+q_{B}=q$:

$$
\Omega_{t} \approx\left(\frac{q_{A} e}{N}\right)^{N}\left(\frac{q_{B} e}{N}\right)^{N}=\left(\frac{e}{N}\right)^{2 N}\left(q_{A} q_{B}\right)^{N}
$$

$\boldsymbol{\Omega}_{\mathbf{t}}$ is maximum when $q_{A}=q_{B}=\frac{q}{2}$

$$
\Omega_{\mathrm{t}}^{\max }=\left(\frac{e q}{2 N}\right)^{2 N}
$$

Two large Einstein crystals: «high T» limit

$$
\boldsymbol{\Omega}_{\boldsymbol{t}}=\boldsymbol{\Omega}_{\mathbf{A}} \cdot \boldsymbol{\Omega}_{\mathbf{B}} \approx\left(\frac{\boldsymbol{e}}{\boldsymbol{N}}\right)^{2 N}\left(\boldsymbol{q}_{A} \boldsymbol{q}_{\boldsymbol{B}}\right)^{N}, \quad \text { for } q \gg N N_{A}=N_{B}=N, q_{A}+q_{B}=q
$$

Expand around the peak: $q_{A}=\frac{q}{2}+x, \quad q_{B}=\frac{q}{2}-x$

$$
\Omega_{t} \approx\left(\frac{e}{N}\right)^{2 N}\left[\left(\frac{q}{2}\right)^{2}-x^{2}\right]^{N}
$$

$$
\begin{gathered}
\ln \Omega_{t} \approx 2 N \ln \frac{e}{N}+N \ln \left[\left(\frac{q}{2}\right)^{2}-x^{2}\right]=2 N \ln \frac{e}{N}+2 N \ln \frac{q}{2}+N \ln \left[1-\left(\frac{2 x}{q}\right)^{2}\right] \\
\ln \Omega_{t} \approx \ln \left(\frac{e q}{2 N}\right)^{2 N}-N\left(\frac{2 x}{q}\right)^{2}=\ln \Omega_{t}^{\max }-N\left(\frac{2 x}{q}\right)^{2} \\
\Omega_{\mathrm{t}}=\Omega_{\mathrm{t}}^{\max } \cdot \boldsymbol{e}^{-N(2 x / q)^{2}} \\
\Omega_{\mathrm{t}}\left(\boldsymbol{q}_{A}\right)=\Omega_{\mathrm{t}}^{\max } \cdot e^{-\frac{4 N}{q^{2}}\left(q_{A}-\frac{q}{2}\right)^{2}}, \quad \Omega_{\mathrm{t}}^{\max }=\left(\frac{e q}{2 N}\right)^{2 N}
\end{gathered}
$$

Two large Einstein crystals: «high T» limit

$$
\begin{gathered}
\boldsymbol{\Omega}_{\boldsymbol{t}}=\boldsymbol{\Omega}_{\mathbf{A}} \cdot \boldsymbol{\Omega}_{\mathbf{B}} \approx\left(\frac{\boldsymbol{e}}{\boldsymbol{N}}\right)^{2 \boldsymbol{N}}\left(\boldsymbol{q}_{\boldsymbol{A}} \boldsymbol{q}_{\boldsymbol{B}}\right)^{\boldsymbol{N}}, \\
\text { for } q \gg N N_{A}=N_{B}=N, q_{A}+q_{B}=q
\end{gathered}
$$

Expand around the peak: $q_{A}=\frac{q}{2}+x, \quad q_{B}=\frac{q}{2}-x$

$$
\Omega_{\mathrm{t}}=\Omega_{\mathrm{t}}^{\max } \cdot e^{-N\left(\frac{2 x}{q}\right)^{2}}, \Omega_{\mathrm{t}}^{\max }=\left(\frac{e q}{2 N}\right)^{2 N}
$$

Ω_{t} falls off to $1 / e$ of its maximum when

$$
N\left(\frac{2 x}{q}\right)^{2}=1 \rightarrow x=\frac{q}{2 \sqrt{N}} \rightarrow \sigma=\frac{q}{\sqrt{N}}
$$

Fluctuations around the mean

$$
\frac{\sigma}{\langle q\rangle}=\frac{q / \sqrt{N}}{q / 2} \approx \frac{1}{\sqrt{N}} \rightarrow 0
$$

Two large Einstein crystals: «high T» limit

$$
\Omega_{t}=\Omega_{\mathrm{A}} \cdot \Omega_{\mathrm{B}} \approx\left(\frac{e}{N}\right)^{2 N}\left(q_{A} q_{B}\right)^{N}
$$

$$
\text { for } q \gg N N_{A}=N_{B}=N, q_{A}+q_{B}=q
$$

Expand around the peak: $q_{A}=\frac{q}{2}+x, \quad q_{B}=\frac{q}{2}-x$

$$
\Omega_{\mathrm{t}}=\Omega_{\mathrm{t}}^{\max } \cdot e^{-N\left(\frac{2 x}{q}\right)^{2}}, \Omega_{\mathrm{t}}^{\max }=\left(\frac{e q}{2 N}\right)^{2 N}
$$

$$
\int_{+\infty}^{-\infty} d x e^{-\frac{4 N}{q^{2}} x^{2}}=\frac{q}{2} \sqrt{\frac{\pi}{N}}
$$

Probability of having q_{A} energy units

$$
P\left(q_{A}\right)=\frac{\mathbf{2}}{\boldsymbol{q}} \sqrt{\frac{N}{\boldsymbol{\pi}}} e^{-\frac{4 N}{q^{2}}\left(q_{A}-\frac{q}{2}\right)^{2}}
$$

Take home---

- Stirling approximation for large systems $N!\approx N^{N} e^{-N} \sqrt{2 \pi N}$, for $N \gg 1$

- Paramagnets: Multiplicity near its maximum

- Interacting Einstein crystals: Multiplicity near its maximum

$$
\Omega_{\mathrm{t}}\left(q_{A}\right) \approx \Omega_{t, \max } e^{-\frac{4 N}{q^{2}}\left(q_{A}-\frac{q}{2}\right)^{2}}
$$

- In the thermodynamic limit $N \rightarrow \infty$, any random fluctuation away from the most likely states is extremely unlikely

