Lecture 6

Multiplicity of the ideal gas
05.09.2018

Two-state systems: Recap

- Paramagnets:

Multiplicity of a macrostate with N_{\uparrow} out of N spins

$$
\Omega\left(N, N_{\uparrow}\right)=\frac{N!}{N_{\uparrow}!\left(N-N_{\uparrow}\right)!} \approx_{N \gg 1} \frac{N^{N}}{N_{\uparrow}^{N_{\uparrow}}\left(N-N_{\uparrow}\right)^{N-N_{\uparrow}}}
$$

Macrostate with maximum multiplicity is $\Omega_{\max }(N)=\Omega(N, N / 2) \approx 2^{N}$ and is the most likely state (largest probability)

Macrostates away from the most likely one have a probability that falls of very rapidly (Gaussian tai)

$$
\Omega\left(N, N_{\uparrow}\right) \approx \Omega_{\max } e^{-\frac{\left(N_{\uparrow}-\frac{N}{2}\right)^{2}}{\frac{N}{2}}} \rightarrow_{N \rightarrow \infty} \Omega_{\max } \delta\left(N_{\uparrow}-\frac{N}{2}\right)
$$

Two-state systems: Recap

- Einstein crystal

Multiplicity of a macrostate with q units of energy distributed among N identical oscillators

$$
\Omega(q, N)=\frac{(N-1+q)!}{q!(N-1)!} \approx_{q \gg N \gg 1}\left(\frac{e q}{N}\right)^{N}
$$

- Two-interacting crystals:

Total multiplicity of a composite system of crystals of the same N and for which crystal A has q_{A} energy units out of a total of q

$$
\Omega_{t}=\Omega_{\mathrm{A}} \cdot \Omega_{\mathrm{B}} \approx\left(\frac{e}{N}\right)^{2 N}\left(q_{A} q_{B}\right)^{N}
$$

The most likely macrostate has a maximum multiplicity of the macrostate with $q_{A}=q_{B}=q / 2$

$$
\Omega_{\mathrm{t}}^{\max }=\left(\frac{e q}{2 N}\right)^{2 N}
$$

Macrostates away from the most likely one have a probability that falls of very rapidly (Gaussian tail)

$$
\Omega_{\mathrm{t}}\left(q_{A}\right) \approx \Omega_{t}^{\max } e^{-\frac{4 N}{q^{2}}\left(q_{A}-\frac{q}{2}\right)^{2}} \rightarrow_{N \rightarrow \infty} \Omega_{t}^{\max } \delta\left(q_{A}-\frac{q}{2}\right)
$$

Counting of microstates for 1 particles in 1D

- Consider 1 free classical particle with kinetic energy
$U=\frac{p_{x}^{2}}{2 m}$ in a 1D «box» of «volume» $V \equiv L$
- What is the number of microstates at fixed U and V for 1 free particle, $\Omega_{1}^{1 D}(U, V)$?
- Multiplicity $\Omega_{1}^{1 D}$ is equal to the number of microstates in the phase space $\left(x, p_{x}\right)$

$$
\Omega_{1}^{1 D}(U, L)=\frac{L \cdot 2 \sqrt{2 m U}}{\Delta x \cdot \Delta p_{x}}=\frac{2 L \sqrt{2 m U}}{h}
$$

Counting of microstates for 1 particles in 1D

- Consider one free quantum particle with wavelength $\lambda_{n}=\frac{2 L}{n_{x}}$ and momentum $p_{x}=\frac{h}{\lambda_{n}}=\frac{h}{2 L} n_{x}$ in a 1D «box» of «volume» $V \equiv L$
- The energy levels of a free particle in 1D are
$\epsilon_{n}=\frac{p_{x}^{2}}{2 m}=\frac{h^{2}}{8 m L^{2}} n_{x}^{2}$, where $n_{x}=0,1,2, \cdots$ is the state number
$n\left(\epsilon_{n}\right)=\frac{2 L}{h} \sqrt{2 m \epsilon_{n}}$
- What is $\Omega_{1}^{1 D}(U, V)$ the number of microstates at fixed U and V for 1 free quantum particle ?
- Multiplicity $\Omega_{1}^{1 D}$ is equal to the number of microstates in the «n-space» equals the maximum state number for a fixed energy U

$$
\Omega_{1}^{1 D}(U, L)=n\left(\epsilon_{n}=U\right) \rightarrow \boldsymbol{\Omega}_{\mathbf{1}}^{1 D}(\boldsymbol{U}, \boldsymbol{L})=\frac{\mathbf{2 L}}{\boldsymbol{h}} \sqrt{\mathbf{2 m \boldsymbol { U }}}
$$

Counting of microstates for 1 particles in 3D

- Consider one free quantum particle with momentum $\vec{p}=\frac{h}{2 L} \vec{n}$ in a 3D box of volume $V=L^{3}$
- The energy levels of a free particle in 3D are
$\epsilon_{n}=\frac{\vec{p} \cdot \vec{p}}{2 m}=\frac{h^{2}}{8 m L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)$, where $n_{k}=0,1,2, \cdots$ is the state number for $\mathrm{k}=x, y, z$
- Multiplicity $\Omega_{1}^{3 D}$ is equal to the number of microstates in the $« n$-space» corresponding to a fixed energy $\epsilon_{n}=U$
- Surface in the «n-space» with equal energy

$$
n_{x}^{2}+n_{y}^{2}+n_{z}^{2}=\frac{8 m L^{2} U}{h^{2}}=R_{n}^{2}
$$

which has the area equal to $A_{n}=4 \pi R_{n}^{2}=4 \pi \frac{8 m L^{2} U}{h^{2}}$. We have to devide by the number of «quadrants» 2^{3}, since we consider only positive-valued state numbers $n_{x}, n_{y}, n_{z} \geq 0$ (positive quandrant). Hence, the multiplicity is $1 / 8$ th of the area

$$
\Omega_{1}^{3 D}(U, V)=\frac{1}{8} A_{n} \rightarrow \Omega_{1}^{3 D}(\boldsymbol{U}, \boldsymbol{V})=4 \pi \frac{m^{\frac{2}{3}} U}{h^{2}}
$$

Counting of microstates for N particles in 3D

- Consider \mathbf{N} independent and free quantum particles in a 3D box of volume $V=L^{3}$
- The energy levels for each free particle in 3D are
$\epsilon_{n_{i}}=\frac{\overline{p_{i}} \cdot \overline{p_{i}}}{2 m}=\frac{h^{2}}{8 m L^{2}}\left(n_{x, i}^{2}+n_{y, i}^{2}+n_{z, i}^{2}\right)$, where $n_{k, i}=0,1,2, \cdots$ is the state number for $\mathrm{k}=x, y, z$ of each particle $i=1, \cdots N$
- Multiplicity $\Omega_{N}^{3 D}$ is equal to the number of microstates in the $\mathbf{3 N}$-dimensional «n-space» corresponding to a fixed energy $U=\sum_{i=1}^{N} \epsilon_{n_{i}}$

- Hyper-surface in the «n-space» with equal energy is described by the quadratic form

$$
\sum_{i}^{N} n_{x, i}^{2}+n_{y, i}^{2}+n_{z, i}^{2}=\frac{8 m L^{2} U}{h^{2}}=R_{n}^{2}
$$

- Using the formula for the area of a d-dimensional sphere is $A=\frac{2 \pi^{d / 2}}{\left(\frac{d}{2}-1\right)!} r^{d-1}$

$$
d=2 \rightarrow A=2 \pi r, \quad d=3 \rightarrow A=\frac{2 \pi^{3 / 2}}{(1 / 2)!} r^{2}=\frac{4 \pi^{3 / 2}}{\sqrt{\pi}} r^{2}=4 \pi r^{2}
$$

Counting of microstates for N particles in 3D

- Consider \mathbf{N} independent and free quantum particles in a 3D box of volume $V=L^{3}$
- The energy levels for each free particle in 3D are
$\epsilon_{n_{i}}=\frac{\overline{p_{i}} \cdot \overrightarrow{p_{i}}}{2 m}=\frac{h^{2}}{8 m L^{2}}\left(n_{x, i}^{2}+n_{y, i}^{2}+n_{z, i}^{2}\right)$, where $n_{k, i}=0,1,2, \cdots$ is the state number for
$\mathrm{k}=x, y, z$ of each particle $i=1, \cdots N$
- Multiplicity $\Omega_{N}^{3 D}$ is equal to the number of microstates in the $\mathbf{3 N}$-dimensional «n-space» corresponding to a fixed energy $U=\sum_{i=1}^{N} \epsilon_{n_{i}}$
- Hyper-surface in the «n-space» with equal energy is described by the quadratic form

$$
\sum_{i}^{N} n_{x, i}^{2}+n_{y, i}^{2}+n_{z, i}^{2}=\frac{8 m L^{2} U}{h^{2}}=R_{n}^{2}
$$

- Using the formula for the area of a d-dimensional sphere is $A=\frac{2 \pi^{d / 2}}{\left(\frac{d}{2}-1\right)!} r^{d-1}$, with $d=3 N$ and dividing by the number of «quadrants» $2^{3 N}$

$$
\widetilde{\Omega}_{N}^{3 D}(U, V)=\frac{1}{2^{3 N}} A_{n} \rightarrow \widetilde{\Omega}_{N}^{3 D}(U, V)=\frac{1}{2^{3 N}} \frac{2 \pi^{3 N / 2}}{\left(\frac{3 N}{2}-1\right)!}\left(\frac{2 L}{h} \sqrt{2 m U}\right)^{3 N-1}
$$

Multiplicity function for N particles in 3D

$$
\begin{aligned}
& \widetilde{\Omega}_{N}^{3 D}(U, V)=\frac{1}{2^{3 N}} \frac{2 \pi^{3 N / 2}}{\left(\frac{3 N}{2}-1\right)!}\left(\frac{2 L}{h} \sqrt{2 m U}\right)^{3 N-1} \\
& \widetilde{\Omega}_{N}^{3 D}(U, V)=\frac{1}{2^{3 N}} \frac{2 \pi^{3 N / 2}}{\left(\frac{3 N}{2}-1\right)!} \frac{2^{3 N-1}}{h^{3 N-1}} V^{\frac{3 N-1}{3}}(2 m U)^{\frac{3 N-1}{2}}=\frac{\pi^{3 N / 2}}{\left(\frac{3 N}{2}-1\right)!h^{3 N-1}} V^{\frac{3 N-1}{3}}(2 m U)^{\frac{3 N-1}{2}}
\end{aligned}
$$

For large $\mathrm{N}, N-1 \approx N$ and area scales like the volume

$$
\widetilde{\Omega}_{N}^{3 D}(U, V)=\frac{1}{\left(\frac{3 N}{2}-1\right)!} V^{N}\left(\frac{2 \pi m U}{h^{2}}\right)^{\frac{3 N}{2}}
$$

In addition, for indistinguishable particles the multiplicity is reduced by their number of permutations, N !

$$
\Omega_{N}^{3 D}(U, V)=\frac{\widetilde{\Omega}_{N}^{3 D}(U, V)}{N!} \rightarrow \Omega_{N}^{3 D}(U, V)=\frac{1}{N!\left(\frac{3 N}{2}-1\right)!} V^{N}\left(\frac{2 \pi m U}{h^{2}}\right)^{\frac{3 N}{2}}
$$

Multiplicity function for N particles in 3D

$$
\Omega_{N}^{3 D}(U, V)=\frac{1}{N!\left(\frac{3 N}{2}-1\right)!} V^{N}\left(\frac{2 \pi m U}{h^{2}}\right)^{\frac{3 N}{2}}
$$

Generic expression when we consider only the U and V dependence

$$
\Omega_{N}^{3 D}(\boldsymbol{U}, \boldsymbol{V})=\boldsymbol{f}(N) \boldsymbol{V}^{N} \boldsymbol{U}^{\frac{3 N}{2}}
$$

The multiplicity depends on the accessible volume in the coordinate space V and momentum space V_{p} for each particle, $\Omega_{\mathrm{N}}^{3 \mathrm{D}}(\mathrm{U}, \mathrm{V}) \sim\left(\mathrm{V} \cdot V_{p}\right)^{\mathrm{N}}$. The volume in the momentum space scales like $V_{p} \sim U^{\frac{3}{2}}$ for the sphere (quadratic form).
For f quadratic degrees of freedom, the multiplicity scales as $\Omega_{\mathrm{N}}^{3 \mathrm{D}}(\mathrm{U}) \sim U^{\frac{f N}{2}}$

Two weakly interacting ideal gases

- $\Omega_{N}=f(N) V^{N} U^{\frac{3 N}{2}}$ for each gas A and B
- Total multiplicity: $\Omega_{\text {total }}=\Omega_{N}^{A} \cdot \Omega_{N}^{B}=f(N)^{2}\left(V_{A} V_{B}\right)^{N}\left(U_{A} U_{B}\right)^{\frac{3 N}{2}}$

- Macrostate with the maximum multiplicity:

$$
\begin{aligned}
& U=U_{A}+U_{B} \\
& V=V_{A}+V_{B}
\end{aligned}
$$

$$
U_{A}=U_{B}=\frac{U}{2} \text { and } V_{A}=V_{B}=\frac{V}{2}
$$

$$
\Omega_{\text {total }}^{\max }=f(N)^{2}\left(\frac{V}{2}\right)^{2 N}\left(\frac{U}{2}\right)^{3 N}
$$

What is the shape of the multiplicity for states near the most likely state?

Two weakly interacting ideal gases

- Total multiplicity: $\Omega_{\text {total }}=f(N)^{2}\left(V_{A} V_{B}\right)^{N}\left(U_{A} U_{B}\right)^{\frac{3 N}{2}}$
- States near the most likely state by varying U
$U_{A}=\frac{U}{2}+x, U_{B}=\frac{U}{2}-x$ with $x \ll U / 2$, while $V_{A}=V_{B}=\frac{V}{2}$

$$
\Omega_{t o t a l}=f(N)^{2}\left(\frac{V}{2}\right)^{2 N}\left[\left(\frac{U}{2}\right)^{2}-x^{2}\right]^{\frac{3 N}{2}}
$$

Taking the logarithm and looking only at the U-dependence

$$
\begin{gathered}
\ln \Omega_{t o t a l} \sim \frac{3 N}{2} \ln \left[\left(\frac{U}{2}\right)^{2}-x^{2}\right]=3 N \ln \left(\frac{U}{2}\right)+\frac{3 N}{2} \ln \left[1-\left(\frac{2 x}{U}\right)^{2}\right] \\
\ln \Omega_{\text {total }} \sim 3 N \ln \left(\frac{U}{2}\right)-\frac{3 N}{2}\left(\frac{2 x}{U}\right)^{2} \\
\Omega_{\text {total }}\left(x=U_{A}-\frac{U}{2}\right)=f(N)^{2}\left(\frac{V}{2}\right)^{2 N}\left(\frac{U}{2}\right)^{3 N} \cdot \exp \left(-\frac{3 N}{2}\left(\frac{2 x}{U}\right)^{2}\right) \\
\Omega_{\text {total }}\left(U_{A}\right)=\Omega_{\text {total }}^{\max } \cdot \exp \left(-\frac{3 N}{2}\left(\frac{2}{U}\right)^{2}\left(U_{A}-\frac{U}{2}\right)^{2}\right)
\end{gathered}
$$

The width scales as $\sigma_{U}=2 \cdot \frac{U}{2} \sqrt{\frac{2}{3 N}}=\frac{U}{\sqrt{\frac{3 N}{2}}} \rightarrow \mathbf{0} \quad$ as $\quad N \rightarrow \infty$

Two weakly interacting ideal gases

- Total multiplicity: $\Omega_{\text {total }}=f(N)^{2}\left(V_{A} V_{B}\right)^{N}\left(U_{A} U_{B}\right)^{\frac{3 N}{2}}$
- States near the most likely state by varying V
$V_{A}=\frac{V}{2}+y, V_{B}=\frac{V}{2}-y$ with $y \ll V / 2$, while $U_{A}=U_{B}=\frac{U}{2}$

$$
\Omega_{\text {total }}=f(N)^{2}\left(\frac{U}{2}\right)^{3 N}\left[\left(\frac{V}{2}\right)^{2}-y^{2}\right]^{N}
$$

Taking the logarithm and looking only at the V-dependence

$$
\begin{gathered}
\ln \Omega_{t o t a l} \sim N \ln \left[\left(\frac{V}{2}\right)^{2}-y^{2}\right]=N \ln \left(\frac{V}{2}\right)+N \ln \left[1-\left(\frac{2 y}{V}\right)^{2}\right] \\
\ln \Omega_{t o t a l} \sim N \ln \left(\frac{V}{2}\right)-N\left(\frac{2 y}{V}\right)^{2} \\
\Omega_{\text {total }}\left(y=V_{A}-\frac{V}{2}\right)=f(N)^{2}\left(\frac{V}{2}\right)^{2 N}\left(\frac{U}{2}\right)^{3 N} \cdot \exp \left(-N\left(\frac{2 y}{V}\right)^{2}\right) \\
\Omega_{\text {total }}\left(V_{A}\right)=\Omega_{\text {total }}^{\max } \cdot \exp \left(-N\left(\frac{2}{V}\right)^{2}\left(V_{A}-\frac{V}{2}\right)^{2}\right)
\end{gathered}
$$

The width scales as $\sigma_{V}=\mathbf{2} \cdot \frac{V}{2} \sqrt{\frac{1}{N}}=\frac{V}{\sqrt{N}} \rightarrow \mathbf{0} \quad$ as $\quad N \rightarrow \infty$

$$
\begin{aligned}
& U=U_{A}+U_{B} \\
& V=V_{A}+V_{B}
\end{aligned}
$$

V/2

Two weakly interacting ideal gases

- Macrostates near the most likely state

$$
\begin{aligned}
& \Omega_{\text {total }}\left(V_{A}, U_{A}\right) \\
& =\Omega_{\text {total }}^{\max } \cdot \exp \left(-N\left(\frac{2}{V}\right)^{2}\left(V_{A}-\frac{V}{2}\right)^{2}\right) \cdot \exp \left(-\frac{3 N}{2}\left(\frac{2}{U}\right)^{2}\left(U_{A}-\frac{U}{2}\right)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& U=U_{A}+U_{B} \\
& V=V_{A}+V_{B}
\end{aligned}
$$

