Lecture 6

Multiplicity of the ideal gas
05.09.2018



Two-state systems: Recap + + + + + + * + * +

* Paramagnets:

Multiplicity of a macrostate with N; out of N spins

N! NN
Nt (N = Nt Ny oy — NpyN-y

Q(N,N;) =

Macrostate with maximum multiplicity is Qa2 (N) = Q(N, N/2) =~ 2V and is the most likely state (largest
probability)

Macrostates away from the most likely one have a probability that falls of very rapidly (Gaussian tail)

ﬂ(N, NT) ~ -Q'max e
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Two-state systems: Recap

* Einstein crystal

Multiplicity of a macrostate with g units of energy distributed among N identical oscillators

Q(q,N) =

(N—-1+q)! _ eq\N
q'(N—1)! Fg»>N»1 (F)

* Two-interacting crystals:

Total multiplicity of a composite system of crystals of the same N and for which crystal A has g4 energy units out of a total

of q
e~ 2N
Q =0, Qpx (— N
T ATR (N) (495) Crystal A Crystal B
The most likely macrostate has a maximum multiplicity of the macrostate with g, = q = q/2 N yqda N ;)
2N
qQmax — (ﬂ)
t 2N

Macrostates away from the most likely one have a probability that falls of very rapidly ( Gaussian tail)

N

_AN o 4)?
an) = apere # D L apes (g, -3
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2
U= Px in a 1D «box» of «volume» V = L

Counting of microstates for 1 particles in 1D

Consider 1 free classical particle with kinetic energy

2m

What is the number of microstates at fixed U and V for 1 free

particle, Q1P (U, V)?

Multiplicity Q1Pis equal to the number of microstates in the

phase space (x, p,)

0P (U, L) =

L-2v2mU _ 2LVZmU

Ax - Ap,

h
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Counting of microstates for 1 particles in 1D

: : : 2L h
* Consider one free quantum particle with wavelength 4,, = — and momentum p,, = =5 M
in a 1D «box» of «volume» V = L ¥ "

—AN—

* The energy levels of a free particle in 1D are

2 2
_px _ _h" o — i
n = 21’; = Ny where n,, = 0,1,2, -+ is the state number

2L

n(e,) = - 2me,
« What is Q1P (U, V) the number of microstates at fixed U and V for 1 free quantum particle ?
L
 Multiplicity Q1Pis equal to the number of microstates in the «n-space» equals the maximum
state number for a fixed energy U
1D 1D 2L
Q°WU,L)=n(e, =U) > 027" (U, L) = T 2mU !



Counting of microstates for 1 particles in 3D

- h
* Consider one free quantum particle with momentum p = Zn in a 3D box of volume V = L3

* The energy levels of a free particle in 3D are

-7 hZ .
€n = > = ——(n} +nj +nf), wheren, =0,1,2,-- is the state number for k = x,y,z

 Multiplicity Q3Pis equal to the number of microstates in the «n-space» corresponding to a
fixed energye,, = U

e Surface in the «n-space» with equal energy

8mL?U
2 2 2 _ _ p2
8mL?U
h2
«quadrants» 23, since we consider only positive-valued state numbers n,, ny,n, =0
(positive quandrant). Hence, the multiplicity is 1/8th of the area

which has the area equal to 4A,, = 4mR2 = 41 . We have to devide by the number of

2
mV3U

03P (U,V) =<4, > 03P (U, V) = 4m

n,

n?

n,



Counting of microstates for N particles in 3D

 Consider N independent and free quantum particles in a 3D box of volume V = L3

* The energy levels for each free particle in 3D are /N
DD h?2 . /W\I
€n; = pzln? = (ny; +n5; +n;;), whereny; = 0,1,2,-- is the state number for VN
/N
k = x,vy, z of each particlei = 1, N /N N

/N

* Multiplicity Q3Pis equal to the number of microstates in the 3N-dimensional «n-space»
corresponding to a fixed energy U = Z?’:l €n,

* Hyper-surface in the «n-space» with equal energy is described by the quadratic form " 3N-dim. «n-space»

N

8mL*U
z ng;+ny;+ng; = PR R7
i
2 /2 Mg
 Using the formula for the area of a d-dimensional sphereis A = rd-1
(E _1)! n,
27_[3/2 47.[3/2
d=2-A=2nr, d=3-4 2 = r? = 4mr?

SR T Vm n:



€n

Counting of microstates for N particles in 3D

Consider N independent and free quantum particles in a 3D box of volume V = L3

The energy levels for each free particle in 3D are

_pipi _ h?
i 2m 8mlL2

(ny; +n>; +nz,), wheremny; = 0,1,2,-- is the state number for

k = x,y, z of each particlei = 1,--- N

Multiplicity Q3" is equal to the number of microstates in the 3N-dimensional «n-space» corresponding to a fixed
energy U =Y, €,

Hyper-surface in the «n-space» with equal energy is described by the quadratic form

N
8mL*U

2 2 2 _ — D2
z nx'i + ny'i + nZ‘i = 12 — Rn

i

d/2
Using the formula for the area of a d-dimensional sphereis A = (Zdn—)' r2=1, with d = 3N and dividing by the

=-1
2

number of «quadrants» 23V

3N-1

_ 1 _ 1 2m3N2 (2]

QBP(U,V) = 57 Ap = B3P (U V) = sz e J2mu
2 2 (BN B 1), h

2 '
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Multiplicity function for N particles in 3D

_ 1 2m3N2  2p 3N-1
3P, v) = SN (T\/ZmU>
(7 -1)!
~3p B 1 2 71'3N/2 23N—1 31\]3_1 3NZ_1 B 1T3N/2 31\]3_1 31\]2_1
Qy (U,V) = 73N 3N FINT v (2mU) = 3N V (2mU)
(7 -1)! (7 -1) v

Forlarge N, N — 1 = N and area scales like the volume

3N
anU)T

3N_1)! VN( h2

QP U, v) =

In addition, for indistinguishable particles the multiplicity is reduced by their number of permutations, N!

Q3P (w,v)

QP WU,V) =——

- 0P, V) =

2
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Multiplicity function for N particles in 3D

3N
QP W, V) =

N!(¥—1)! VN( h?

Generic expression when we consider only the U and V dependence

3N
0P W, V) =f(NVNUZ

The multiplicity depends on the accessible volume in the coordinate space V and
momentum space V,for each particle, QﬁD(U, V) ~ (V- Vp)N. The volume in the
3

momentum space scales like 1, ~ Uz for the sphere (quadratic form).

fN
For f quadratic degrees of freedom, the multiplicity scales as QI%D (U) ~U 2

Fys2160, 2018

10



Two weakly interacting ideal gases

3N
« Oy = f(N)VNUZ for each gas A and B

‘ ‘ N,VA,UA ' ‘IV!VBIUB
A L I M
* Total multiplicity: () =Qn - Qn = fN)“(VaVB)" (UgUp) 2
PHCILY: Sltotal N f aVp)" (UgUg) o © PP ® o
* Macrostate with the maximum multiplicity: U=U,+Us
V=VA+VB

|%4

UA=UB=%andVA=VB=E

A AR CAN

What is the shape of the multiplicity for states near the most likely state?
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Two weakly interacting ideal gases

3N
 Total multiplicity: Qorq; = fF(N)2(V, V)N (UuUR)

* States near the most likely state by varying U
y y varying ‘ . N’VA,UA ‘ ‘IV,VB,UB
u U . . 14 () () ® @ @ ®
A — 7 yYp — T T , A— VB —7
U—2+xU—2 xwithx K U/2 wh|IeV—V—2 @ o
e ® g0 e ©
VAZN [ /DN 2 % ‘
Q-total = f(N)z <E) [(E) - le U U U
= Uy +Up
Taking the logarithm and looking only at the U-dependence V = VA + VB
1 i ~ ot [(2) = 2] = 3mn (2) + 21 - ()
Mhow 5 \g) TF ) T T 0
Uy 3N 2x\°
In e ~ 310 (5) =5 ()
q A NZVZNUS’V 3N (2x\* |
o (1= Ua=3) =102 (3) (3) -ew(-F(T) |
|
|
3N /2\? U\? |
Qiotar(Ua) = Qfpta; - €Xp _7<5) (UA _E) > ;
Thewidthscalesasau=2-g %=\[%—>0 as N - o U/Z
2
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Two weakly interacting ideal gases

3N
 Total multiplicity: Qorq; = fF(N)2(V, V)N (UuUR)

* States near the most likely state by varying V

Va=2+yVs=2—ywithy KV/2,while Uy = Uy ==

Qeotar = fF(N)? (%)SN [(g)z - yle

Taking the logarithm and looking only at the V-dependence

vV 29\*

—vZ| = — — =
y] Nln(2)+N1n[1 (V)] .
%4 29\*
lTl 'Qtotal ~ N ln (E) - N <_>

V
(=1 9) = s () () e (- (2))

2 V\?
Qiotar (Vo) = Q10 - exp <_N (V) (VA - E) )

ThewidthscalesaSO'V=2-K 1=L50 as N> V/Z
24N VN

2

V
ln 'Q'total ~ N ln [(E)

3N
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Two weakly interacting ideal gases

* Macrostates near the most likely state

-Qtotal (VA; UA) ) 2

- gt exp (-
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