Lecture 7

Entropy, 2nd law of thermodynamics
10.09.2018

Multiplicity function for N particles in 3D

Number of way of arranging N identical, independent, free particles in a 3D box of fixed volume V and fixed total energy U

$$
\Omega_{N}^{3 D}(U, V)=\frac{1}{N!\left(\frac{3 N}{2}\right)!} V^{N}\left(\frac{2 \pi m U}{h^{2}}\right)^{\frac{3 N}{2}}
$$

Generic expression when we consider only the U and V dependence

$$
\Omega_{N}^{3 D}(U, V)=f(N) V^{N} U^{\frac{3 N}{2}}
$$

Two weakly interacting ideal gases

- $\Omega_{N}=f(N) V^{N} U^{\frac{3 N}{2}}$ for each gas A and B
- Total multiplicity: $\Omega_{\text {total }}=\Omega_{N}^{A} \cdot \Omega_{N}^{B}=f(N)^{2}\left(V_{A} V_{B}\right)^{N}\left(U_{A} U_{B}\right)^{\frac{3 N}{2}}$
$\Omega_{\text {total }}\left(U_{A}, V_{A}\right)=f(N)^{2}\left[V_{A}\left(V-V_{A}\right)\right]^{N}\left[U_{A}\left(U-U_{A}\right)\right]^{\frac{3 N}{2}}$
- Macrostate with the maximum multiplicity:

$$
\frac{\partial \Omega_{\text {total }}}{\partial U_{A}}=0, \quad \frac{\partial \Omega_{\text {total }}}{\partial V_{A}}=0
$$

$$
\begin{aligned}
& U=U_{A}+U_{B} \\
& V=V_{A}+V_{B} \\
& N=N_{A}=N_{B}
\end{aligned}
$$

$U_{A}=U_{B}=\frac{U}{2}$ and $V_{A}=V_{B}=\frac{V}{2}$
$\Omega_{\text {total }}^{\max }=f(N)^{2}\left(\frac{V}{2}\right)^{2 N}\left(\frac{U}{2}\right)^{3 N}$ is the multiplicity of the system at equilibrium
What is the shape of the multiplicity for states near the most likely state?

Two weakly interacting ideal gases

- Total multiplicity: $\Omega_{\text {total }}=f(N)^{2}\left(V_{A} V_{B}\right)^{N}\left(U_{A} U_{B}\right)^{\frac{3 N}{2}}$
- States near the most likely state by varying U
$U_{A}=\frac{U}{2}+x, U_{B}=\frac{U}{2}-x$ with $x \ll U / 2$, while $V_{A}=V_{B}=\frac{V}{2}$

$$
\Omega_{t o t a l}=f(N)^{2}\left(\frac{V}{2}\right)^{2 N}\left[\left(\frac{U}{2}\right)^{2}-x^{2}\right]^{\frac{3 N}{2}}
$$

Taking the logarithm and looking only at the U-dependence

$$
\begin{gathered}
\ln \Omega_{t o t a l} \sim \frac{3 N}{2} \ln \left[\left(\frac{U}{2}\right)^{2}-x^{2}\right]=3 N \ln \left(\frac{U}{2}\right)+\frac{3 N}{2} \ln \left[1-\left(\frac{2 x}{U}\right)^{2}\right] \\
\ln \Omega_{\text {total }} \sim 3 N \ln \left(\frac{U}{2}\right)-\frac{3 N}{2}\left(\frac{2 x}{U}\right)^{2} \\
\Omega_{\text {total }}\left(x=U_{A}-\frac{U}{2}\right)=f(N)^{2}\left(\frac{V}{2}\right)^{2 N}\left(\frac{U}{2}\right)^{3 N} \cdot \exp \left(-\frac{3 N}{2}\left(\frac{2 x}{U}\right)^{2}\right) \\
\Omega_{\text {total }}\left(U_{A}\right)=\Omega_{\text {total }}^{\max } \cdot \exp \left(-\frac{3 N}{2}\left(\frac{2}{U}\right)^{2}\left(U_{A}-\frac{U}{2}\right)^{2}\right)
\end{gathered}
$$

The width scales as $\sigma_{U}=2 \cdot \frac{U}{2} \sqrt{\frac{2}{3 N}}=\frac{U}{\sqrt{\frac{3 N}{2}}} \rightarrow \mathbf{0} \quad$ as $\quad N \rightarrow \infty$

Two weakly interacting ideal gases

- Total multiplicity: $\Omega_{\text {total }}=f(N)^{2}\left(V_{A} V_{B}\right)^{N}\left(U_{A} U_{B}\right)^{\frac{3 N}{2}}$
- States near the most likely state by varying V
$V_{A}=\frac{V}{2}+y, V_{B}=\frac{V}{2}-y$ with $y \ll V / 2$, while $U_{A}=U_{B}=\frac{U}{2}$

$$
\Omega_{\text {total }}=f(N)^{2}\left(\frac{U}{2}\right)^{3 N}\left[\left(\frac{V}{2}\right)^{2}-y^{2}\right]^{N}
$$

Taking the logarithm and looking only at the V-dependence

$$
\begin{gathered}
\ln \Omega_{t o t a l} \sim N \ln \left[\left(\frac{V}{2}\right)^{2}-y^{2}\right]=N \ln \left(\frac{V}{2}\right)+N \ln \left[1-\left(\frac{2 y}{V}\right)^{2}\right] \\
\ln \Omega_{t o t a l} \sim N \ln \left(\frac{V}{2}\right)-N\left(\frac{2 y}{V}\right)^{2} \\
\Omega_{\text {total }}\left(y=V_{A}-\frac{V}{2}\right)=f(N)^{2}\left(\frac{V}{2}\right)^{2 N}\left(\frac{U}{2}\right)^{3 N} \cdot \exp \left(-N\left(\frac{2 y}{V}\right)^{2}\right) \\
\Omega_{\text {total }}\left(V_{A}\right)=\Omega_{\text {total }}^{\max } \cdot \exp \left(-N\left(\frac{2}{V}\right)^{2}\left(V_{A}-\frac{V}{2}\right)^{2}\right)
\end{gathered}
$$

The width scales as $\sigma_{V}=\mathbf{2} \cdot \frac{V}{2} \sqrt{\frac{1}{N}}=\frac{V}{\sqrt{N}} \rightarrow \mathbf{0} \quad$ as $\quad N \rightarrow \infty$

$$
\begin{aligned}
& U=U_{A}+U_{B} \\
& V=V_{A}+V_{B}
\end{aligned}
$$

V/2

Two weakly interacting ideal gases

- Macrostates near the most likely state

$$
\begin{gathered}
\Omega_{\text {total }}\left(V_{A}, U_{A}\right)=\Omega_{\text {total }}^{\max } \cdot \exp \left(-N\left(\frac{2}{V}\right)^{2}\left(V_{A}-\frac{V}{2}\right)^{2}\right) \cdot \exp \left(-\frac{3 N}{2}\left(\frac{2}{U}\right)^{2}\left(U_{A}-\frac{U}{2}\right)^{2}\right) \\
\Omega_{\text {total }}\left(V_{A}, U_{A}\right) \rightarrow_{N \gg 1} \Omega_{\text {total }}^{\max } \delta\left(V_{A}-\frac{V}{2}\right) \delta\left(U_{A}-\frac{U}{2}\right)
\end{gathered}
$$

$U=U_{A}+U_{B}$

$$
V=V_{A}+V_{B}
$$

The number of particle configurations away from the equilibrium macrostate correspond to a much smaller multiplicity, hence are very unlikely (less probab

Boltzmann's Entropy

Relate the number of microstates (multiplicity) with the thermodynamic (macroscopic) state of the system

$$
S=k \ln \Omega, \quad k=1.381 \times 10^{-23} J K^{-1}
$$

Relate the thermodynamic state of the system with the probability to be in a given macrostate

Entropy

Second law of thermodynamics probabilistic law

Change in entropy between two thermodynamic states is
given in terms of the corresponding multiplicities

$$
\Delta S=k \ln \frac{\Omega_{\mathrm{final}}}{\Omega_{\text {initial }}}
$$

Things that are more probability, tend to occur

For an isolated system, the entropy can never decrease

$$
\begin{array}{ll}
& \Delta S \geq 0 \\
\Delta S>0 \text { for irreversible } \\
\Delta S=0 \text { for reversible }
\end{array}
$$

more often
$\Omega_{\text {final }} \geq \Omega_{\text {initial }}$

Entropy increases
 $\Delta S \geq 0$

Boltzmann's Entropy and equilibrium

At equilibrium, the multiplicity is maximized. This means that the equilibrium state has maximum entropy
(Equilibrium is relative to the environment, another system with which it interacts with, or itself when isolated)
Example:
Thermal equilibrium of two interacting ideal gases through energy exchange

$$
\begin{gathered}
\frac{\partial \Omega_{\text {total }}}{\partial U_{A}}=0 \rightarrow \frac{\partial \mathrm{~S}_{\text {total }}}{\partial U_{A}}=0 \\
\frac{\partial \mathrm{~S}_{A}}{\partial U_{A}}+\frac{\partial \mathrm{S}_{B}}{\partial U_{A}}=0 \rightarrow \frac{\partial \mathrm{~S}_{A}}{\partial U_{A}}+\frac{\partial \mathrm{S}_{B}}{\partial U_{B}} \frac{d U_{B}}{d U_{A}}=0 \rightarrow \frac{\partial \mathrm{~S}_{A}}{\partial U_{A}}-\frac{\partial \mathrm{S}_{B}}{\partial U_{B}}=0
\end{gathered}
$$

System A and system B have the same temperature $\frac{\partial \mathrm{S}_{A}}{\partial U_{A}}=\frac{\partial \mathrm{S}_{B}}{\partial U_{B}} \equiv \frac{1}{T}$

$$
T=\left(\frac{\partial S}{\partial U}\right)^{-1}
$$

Temperature is the measure of system's ability to exchange energy

$S(U)$ for isolated systems

\square Tincreases as U increases
\square To increase its entropy, the system receives energy and increases its temperature

$S(U)$ for isolated systems

$\square T$ decreases as U increases
\square Added energy goes into potential energy
\square eg: Stars and clusters held by gravitational pull

$S(U)$ for isolated systems

\square Negative temperature
\square Entropy decreases with increasing energy
\square Energy is bound, so that the system becomes more «ordered» towards reaching its maximum energy (saturation)
\square Eg: nuclear paramagnetism
(Maximum energy is when all spins are antiparallel wrt to the external magnetic field)

Boltzmann's Entropy for an isolated system

$$
T=\left(\frac{\partial S}{\partial U}\right)^{-1}
$$

- $\frac{\partial S}{\partial U}>\mathbf{0} \rightarrow \boldsymbol{T}>\mathbf{0}$
- Entropy increases with increasing energy
- System in a low-energy state has a higher tendency to increase its entropy by energy gain (higher steepness, low T) then system in a higher energy-state (lower steepness, high T)
- Temperature increases with added energy
- Absorbs energy
- $\frac{\partial S}{\partial U}=0 \rightarrow T=\infty$
- Entropy is at maximum
- Temperature is infinite, meaning that the system will give away energy to anything that comes into contact with
- $\frac{\partial S}{\partial U}<\mathbf{0} \rightarrow \boldsymbol{T}<\mathbf{0}(\boldsymbol{T}>-\infty)$
- Entropy decreases with increasing energy

energy, U
- Temperature is negative but actually this means higher than infinity. This meaning that the system will give away energy to anything that comes into contact with
- Radiate energy

Second law of thermodynamics heat flow law

The thing that increases by an infinitesimally added heat $\delta \mathrm{Q}$ at a given temperature T in a reversible way

$$
d S=\frac{\delta Q_{r e v}}{T}
$$

The heat transfer in an irreversible change is smaller than the reversible heat at a given T

$$
\frac{\delta Q_{\text {irrev }}}{T}<\frac{Q_{\text {rev }}}{T}
$$

Clausius inequality

$$
d S \geq \frac{\delta Q}{T}
$$

Using the 1st law of thermodynamics,

$$
d U=\delta Q+\delta W
$$

for a reversible path: $d U=\delta Q_{r e v}-P d V \rightarrow \quad T d S=d U+P d V$

Clausius inequality:
For a cyclic process

$$
\oint \frac{\delta Q}{T} \leq 0
$$

It is impossible to construct a

 machine that transfers heat from a cool to a hot reservoir without workHeat flows sponteneously one way

Einstein crystal: S and T

Multiplicity of a macrostate with q units of energy distributed among N identical oscillators

$$
\Omega(q, N)=\frac{(N-1+q)!}{q!(N-1)!} \approx_{q \gg N \gg 1}\left(\frac{e q}{N}\right)^{N}
$$

- Entropy:

$$
S(q, N)=k N\left[\ln \left(\frac{q}{N}\right)+1\right], \quad q \equiv \frac{U}{\hbar \omega}
$$

- Temperature:

$$
T=\left(\frac{\partial S}{\partial U}\right)^{-1}=\left(k N \frac{d}{d U} \ln U\right)^{-1} \rightarrow U=N k T
$$

Equipartition of energy: $\frac{k T}{2}$ for the kinetic energy and $\frac{k T}{2}$ for the potential energy per oscillator

- $S(U, N)=k N\left[\ln \left(\frac{U}{N \hbar \omega}\right)+1\right] \rightarrow S(T, N)=k N\left[\ln \left(\frac{k T}{\hbar \omega}\right)+1\right]$
- Heat capacity C_{V} :

$$
C_{V}=\frac{d U}{d T} \rightarrow C_{V}=N k
$$

Ideal gas: entropy S

Multiplicity of a macrostate of an ideal gas with N particles in a fixed volume V and energy U

$$
\begin{gathered}
\Omega(U, V, N)=\frac{1}{N!\left(\frac{3 N}{2}\right)!} V^{N}\left(\frac{2 \pi m U}{h^{2}}\right)^{\frac{3 N}{2}} \\
\ln \left(N!\left(\frac{3 N}{2}\right)!\right)=N \ln N-N+\frac{3 N}{2} \ln \frac{3 N}{2}-\frac{3 N}{2} \\
=\frac{5 N}{2} \ln N-\frac{5 N}{2}+\frac{3 N}{2} \ln \frac{3}{2}
\end{gathered}
$$

- Sackur-Tetrode Entropy:

$$
\begin{gathered}
S(U, V, N)=k \ln \Omega(U, V, N) \\
S(U, V, N)=k N\left[\ln \left(\frac{V}{N}\left(\frac{4 \pi m}{3 h^{2}} \frac{U}{N}\right)^{\frac{3}{2}}\right)+\frac{5}{2}\right]
\end{gathered}
$$

Entropy is extensive:

$$
S(U, V, N)=N \tilde{S}\left(\frac{U}{N}, \frac{V}{N}, 1\right)
$$

Ideal gas: entropy S and temperature T

- Sackur-Tetrode Entropy:

$$
\begin{gathered}
S(U, V, N)=k \ln \Omega(U, V, N) \\
S(U, V, N)=k N\left[\ln \left(\frac{V}{N}\left(\frac{4 \pi m}{3 h^{2}} \frac{U}{N}\right)^{\frac{3}{2}}\right)+\frac{5}{2}\right]
\end{gathered}
$$

- Temperature:

$$
T=\left(\frac{\partial S}{\partial U}\right)^{-1}=\left(k N \frac{d}{d U} \ln U^{\frac{3}{2}}\right)^{-1}=\left(\frac{3 k N}{2} \frac{1}{U}\right)^{-1} \rightarrow U=\frac{3 N k T}{2}
$$

Equipartition of energy: $\frac{3 k T}{2}$ for the kinetic energy per particle in 3D

- Heat capacity C_{V} :

$$
C_{V}=\frac{d U}{d T} \rightarrow C_{V}=\frac{3 N k}{2}
$$

