Lecture &

Thermodynamic equilibrium: temperature, pressure
12.09.2018



Boltzmann’s Entropy

Relate the number of microstates (multiplicity)
with the thermodynamic (macroscopic) state of
the system

S=klnQ, k=1381x10"23] K1

Relate the thermodynamic state of the system
with the probability to be in a given macrostate
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Second law of thermodynamics
probabilistic law and isolated systems

Change in entropy between two thermodynamic states is
given in terms of the corresponding multiplicities

Q )
AS = k1n final
Qinitial

For an isolated system, the entropy can never decrease

AS =0

AS > 0 forirreversible
AS = O for reversible
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Things that are more
probability, tend to occur
more often

Qfinar 2 Qinitial

Entropy increases
AS =0

Time flows in one way

Arrow of Time




Second law of thermodynamics

heat flow and principle of maximum work 5t

Clausius inequality

Entropy cannot be less than the heat exchange over temperature

0Q
ds > T
For a reversible process, the entropy change is directly proportional to heat
Clausius relation
TdS = 0Q,¢y
6Qrev > 6Qirrev
T T

Principle of maximum work
Using the 1st law of thermodynamics, dU = é6Q + 6W

TdS =dU - 6W - W =>dU —TdS - W = —PdV = 6W,.,

Delivered work —6W is maximum in a reversible process
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reversible

irreversible
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O Entropy S is a state variable

O Entropy change AS depends only on
the initial and final states,
independent on the path

O We compute AS from the reversible
path

O PdV > —8W, the work extracted
from the system is maximum in a
reversible path



ldeal gas: entropy S

Multiplicity of a macrostate of an ideal gas with N particles in a fixed volume V and energy U

3N
2mmU

Q(U,V,N) __ VN ( )T=f(N)VNU¥
W ﬂ)! h?

In (N!<ﬂ>!>:NlnN —N+3Nln3N—3N
2 2 2 2

5N 5N 3N 3

=g InN-5+5ng

* Sackur-Tetrode Entropy:

3N
S(U,V,N) = kInQ(U,V,N) =k [ln f(N) + NInV +=~1n U]

3
S(UV.N —kN[l (V <4nmU>7>+5]
OV.N)=kN|In\g (357 w) ) +32

Entropy is extensive (additive):

1)

=| <

S(U,V,N) = N§(U
) ) - Nr



Entropy of mixing: AS

* If the gas is the same on both sides of the wall

S¢initial = Sa + S = 2Sinitiai(U,V,N)
AS; = Sifinat(U,V,N) — 2Sinitiat (U, V, U)

e Using Sackur-Tetrode formula

3 3
AS. = 2kN [l (ZV <4nm 2U)7> N 5] 2KN [l (V (41tm U)i) N 5
6= "\an\Brz2n) /T2 "\W\Brzw/ /T2

AS, =0

Nothing changes, when we remove the wall! (that’s good)

Gibbs paradox: if we didn’t use that particles were indistinguishable (divide by N!), then

AS, = 2kNIn (2V ) —2kN InV = 2kNIn2 > 0

(violate 2nd law of thermodynamics— the total system hasn’t changed its equilibrium state -- and the

extensivity property)
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Uinitiat = Ua + Up = 2U
Vinitiat = Va +Vp = 2V
Ninitiat = Ng + Np = 2N

®@ O 2N,21V,2U0 ® °
oo ® o o O
o ® oo e ©
Ufinal:2U
Vfinal:2V
Nfinal:2N
6



Entropy of mixing: AS

* Ifthe gasis different (distinguishable) on both sides of the wall

ASt = ASA + ASB

Using Sackur-Tetrode formula

V4 i Vg s
AS, = kN In 21" | kN - BI0et
A,initial VB,initial
AS, = 2kN In 2

U Entropy increases when we mix different gases

® o0 ANV,U

e © ®

o ® g0

® O A:N,2V,U ‘B:‘N,ZV,U
o ® @

e © ® PY °

e ® oo e ©

U Effectively, the available volume increases upon mixing hence the number of configurations increases
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Thermal equilibrium

At equilibrium, the multiplicity is maximizes. This means that the equilibrium state has maximum entropy

(Equilibrium is re/ative to the environment, another system with which it interacts with, or itself when isolated)

Thermal equilibrium of two interacting systems through energy exchange. Qiota1 = @a(Ua, Va) - Qg(Ug, V)

aQtole —0 5 aStotal .
aUy adUy
954 aﬁzoﬁ 6SA+aSBdUB=0_>aﬁ_aﬁ=0
dUy 0Uy 0Uy 0UgdUgy dUy 0Up
S, adsg _ 1
System A and system B have the same temperature —/— = — = -
y ¥ . oy oUp T O The system with higher g—z (smaller T)
will absorb energy
o (95 1
B (ﬁ)w\, L The system with higher T will give

Temperature is a measure of system’s ability to exchange energy energy to the system with fower T
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Example: Paramagnets: Sand T i

Number of spin configurations with N; out of N spins

N! N
Npt(N = Nt Y — NN

Q(N,Ny) =

Entropy of a macrostate with N;

S(NT) = k[N InN — NT In NT - (N — NT) ln(N — NT)]

S/k

Total energy of a macrostate with N;

N U
2 2uB

U/(Np B)

Net magnetization of a macrostate with N;

MOV = (N = N = =
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Entropy of a macrostate with N;

S(NT) = k[N InN — NT In NT - (N - NT) ln(N - NT)]

Temperature of a macrostate with Ny

L 95 N Ny =1+ In(N = Np) + 1) —
T N, ou v " ! —2uB
) N U
2uBf N+ 7Y 1 k2 7B
T = a In ! l - == ln2 2uB
k | N—N; T 2uB N_U
2  2uB
Total energy of a macrostate at a give temperature T
N U
2 2uB (ZuB) N U <N+ U ) (2/,13)
- @ = _ ) s - - = | — - -
N U =Pkt ) "2 " 2uB~ \2 7 2uB) P \iT
2  2uB

1—exp( lfT) pB
U=NuB —- U = —NuB tanh|—
2uB kT

kT
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U/(Nu B)

0.5

-0.57
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Net magnetization of a macrostate with N;

M(T) = Nutanh (E>

kT
T — oo, M - 0 (max randomness) 1 ‘
|
T <O, M is in the opposite with B : B>0
|
0.5+ :
|
— |
3 |
1 € O0————=-=------ [ o R
S |
|
0.5 -0.5¢ :
|
|
= T>0
€ 0 1 ‘ ‘
= -100 -50 0 50 100
KT/(1u B)
-0.57
4 ,
-1 0.5 0 0.5 1
nB/(KT)
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ldeal gas: Sand T

* Entropy:

3N
S(U,V,N) = kIn Q(U,V,N) = k [lnf(N) + NIV + == n U

* Temperature:

-=log) =5 gy mU= UT) = ——

1 (as) 3Nk d 3Nk 1 3NkT
— ———) o
vn 2 dU 2 U 2

Equipartition of energy: % for the kinetic energy per particle in 3D

 Heat capacity Cy:




Mechanical equilibrium: What stays the same?

Mechanical and thermal equilibrium of two interacting systems through energy and

volume exchange
S 4
aStotal(UArVA) — d aStotal(UAr VA) -0
Uy
9S4 L 9S8 _ g, 954 058 Vs _ o _ 054 _ 058 _ g
0Vyg 0Vgy 0Vyg 0VpdVgy dVp

d
System A and system B have the same pressure: Ty #
A

poT (65)
-~ \aV/yw

Pressure is a measure of system’s ability to exchange volume

Sa _ o 9Sp _
_TBaVB_

v

O The system with higher g—i (higher P)
will tend to extand

O The system with higher P will expand

at the expense of the compression of
the one with lower P
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Pressure P in the ideal gas:

* Entropy:

3N
S(U,V,N) = kIn Q(U,V,N) = k [ln fON) + NIV + =~ In U]

* Equation of state:

P T(as) NiT-L v =N oy~ Nkt
— - —_ _— = e d —
v/ yn av " v

This is now derived from counting the number of microstates for the gas particles!

 Heat capacity Cp:

av N
CP:CV‘l‘P(_) —)CP:—-|—Nk:—
T/,



Thermodynamic identity

Entropy computed from the multiplicity of a macrostate at fixed U,V,and N
S(U,V,N)

Change in entropy due to energy change or volume change has a differential form

ds = (as) U + (as) av
~\aU/y aV/yn

Using the definitions for T and P
ds = ! dU + P dV
T T

Thermodynamic identity for U(S,V)

dU =TdS — PdV

We have derived the first law of thermodynamics for a reversible change (system goes through equilibrium states)!
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Gas expansion: AS

* Entropy: E
3N
S(WU,V,N) =k [ln f(N) + NInV + =~ In Ul _EA_»

* Isolated system (AU = 0, AN = 0) only V changes during expansion

From Boltzmann’s formula of S: P

V>
As=S2 —S1 == kNln—
£

From 1st & 2nd laws of thermodynamics: (along the isothermal path)

4
TAS = Q,oy = —W,ey = KNT an—Z
1

O AS is related to heat during the quasistatic isothermal expansion

O AS > 0 because of the heat absorbed by the expanding gas to keep its internal energy constant




AS is path-independent

*  What if we choose the path A-B (isochoric+isobaric) instead of the isothermal path?

*  What will happen then?

Use the definition of entropy from heat dS = SQ—TT‘”’
The entropy change AS = S, — §1 isthen AS = fA_B pathw—;e"
AS = f 90Qrev f 9Crev , _ f av | f du + Pdv
pathisochoric T pathisoparic T pathisochoric pathisoparic T
AS = C de+C far C de+C tar
=Ly T p| =L | — Pl
a T b T a T b T
T P,V P,V.
AS=CV1n—b+CPln =C/In=22+ CpIn=2
Ty Ty 15141 PV;
PZ VZ Z/VZ VZ
A5=CVln_+Cpln_=C In +CP1
Py Vi T /Vy v

4 V,
AS =(T,=T,) CV ln + (CV+Nk) ln_ == Nkl Vl

U Entropy change is the same as on the isothermal path

L Moral: Choose the simplest path between the states to compute AS
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Free gas expansion: AS

VACUUM

* Irreversible expansion with no heat, no work |

AU=Q+W=0+0=0

* As the gas expands freely into the vaccum, its entropy changes because of volume
change

* The multiplicity of a state with higher volume is larger, hence the entropy increases

V .
AS = kN ln-tm

>0- Vfinal > Vinitial

initial

So this irreversible process must only be an expansion according to the 2nd law of
thermodynamics



