Lecture 8

Thermodynamic equilibrium: temperature, pressure
12.09.2018

Boltzmann's Entropy

Relate the number of microstates (multiplicity) with the thermodynamic (macroscopic) state of the system

$$
S=k \ln \Omega, \quad k=1.381 \times 10^{-23} J K^{-1}
$$

Relate the thermodynamic state of the system with the probability to be in a given macrostate

Entropy

Second law of thermodynamics probabilistic law and isolated systems

Change in entropy between two thermodynamic states is given in terms of the corresponding multiplicities

$$
\Delta S=k \ln \frac{\Omega_{\text {final }}}{\Omega_{\text {initial }}}
$$

For an isolated system, the entropy can never decrease

$$
\begin{array}{ll}
& \Delta S \geq 0 \\
\Delta S>0 \text { for irreversible } \\
\Delta S=0 \text { for reversible }
\end{array}
$$

Second law of thermodynamics heat flow and principle of maximum work

Clausius inequality

Entropy cannot be less than the heat exchange over temperature

$$
d S \geq \frac{\delta Q}{T}
$$

For a reversible process, the entropy change is directly proportional to heat Clausius relation

$$
\begin{aligned}
T d S & =\delta Q_{\text {rev }} \\
\frac{\delta Q_{\text {rev }}}{T} & >\frac{\delta Q_{\text {irrev }}}{T}
\end{aligned}
$$Entropy S is a state variable

\square Entropy change $\Delta \boldsymbol{S}$ depends only on the initial and final states, independent on the path

Principle of maximum work

Using the 1st law of thermodynamics, $\boldsymbol{d} \boldsymbol{U}=\boldsymbol{\delta} \boldsymbol{Q}+\boldsymbol{\delta} \boldsymbol{W}$

$$
T d S \geq d U-\delta W \rightarrow \delta W \geq d U-T d S \rightarrow \delta W \geq-P d V=\delta W_{\text {rev }}
$$

Delivered work $-\delta W$ is maximum in a reversible process

\square We compute $\Delta \boldsymbol{S}$ from the reversible path$\mathrm{PdV} \geq-\boldsymbol{\delta} \boldsymbol{W}$, the work extracted from the system is maximum in a reversible path

Ideal gas: entropy S

Multiplicity of a macrostate of an ideal gas with N particles in a fixed volume V and energy U

$$
\begin{aligned}
& \Omega(U, V, N)=\frac{1}{N!\left(\frac{3 N}{2}\right)!} V^{N}\left(\frac{2 \pi m U}{h^{2}}\right)^{\frac{3 N}{2}}=f(N) V^{N} U^{\frac{3 N}{2}} \\
& \ln \left(N!\left(\frac{3 N}{2}\right)!\right)=N \ln N-N+\frac{3 N}{2} \ln \frac{3 N}{2}-\frac{3 N}{2} \\
& =\frac{5 N}{2} \ln N-\frac{5 N}{2}+\frac{3 N}{2} \ln \frac{3}{2}
\end{aligned}
$$

- Sackur-Tetrode Entropy:

$$
\begin{gathered}
S(U, V, N)=k \ln \Omega(U, V, N)=k\left[\ln f(N)+N \ln V+\frac{3 N}{2} \ln U\right] \\
S(U, V, N)=k N\left[\ln \left(\frac{V}{N}\left(\frac{4 \pi m}{3 h^{2}} \frac{U}{N}\right)^{\frac{3}{2}}\right)+\frac{5}{2}\right]
\end{gathered}
$$

Entropy is extensive (additive):

$$
S(U, V, N)=N \widetilde{S}\left(\frac{U}{N}, \frac{V}{N}, 1\right)
$$

Entropy of mixing: ΔS

- If the gas is the same on both sides of the wall

$$
\begin{gathered}
S_{t, \text { initial }}=S_{A}+S_{B}=2 S_{\text {initial }}(U, V, N) \\
\Delta S_{t}=S_{t, f i n a l}(U, V, N)-2 S_{\text {initial }}(U, V, U)
\end{gathered}
$$

- Using Sackur-Tetrode formula

$$
\begin{gathered}
\Delta S_{t}=2 k N\left[\ln \left(\frac{2 V}{2 N}\left(\frac{4 \pi m}{3 h^{2}} \frac{2 U}{2 N}\right)^{\frac{3}{2}}\right)+\frac{5}{2}\right]-2 k N\left[\ln \left(\frac{V}{N}\left(\frac{4 \pi m}{3 h^{2}} \frac{U}{N}\right)^{\frac{3}{2}}\right)+\frac{5}{2}\right] \\
\Delta S_{t}=0
\end{gathered}
$$

Nothing changes, when we remove the wall! (that's good)

Gibbs paradox: if we didn't use that particles were indistinguishable (divide by N !), then

$$
\begin{aligned}
& U_{\text {initial }}=U_{A}+U_{B}=2 U \\
& V_{\text {initial }}=V_{A}+V_{B}=2 \mathrm{~V} \\
& N_{\text {initial }}=N_{A}+N_{B}=2 N
\end{aligned}
$$

Nos when

$$
\begin{aligned}
& U_{\text {final }}=2 U \\
& V_{\text {final }}=2 \mathrm{~V} \\
& N_{\text {final }}=2 \mathrm{~N}
\end{aligned}
$$

$$
\Delta S_{t}=2 k N \ln (2 V)-2 k N \ln V=2 k N \ln 2>0
$$

(violate 2nd law of thermodynamics - the total system hasn't changed its equilibrium state -- and the extensivity property)

Entropy of mixing: ΔS

- If the gas is different (distinguishable) on both sides of the wall

$$
\Delta S_{t}=\Delta S_{A}+\Delta S_{B}
$$

Using Sackur-Tetrode formula

$$
\begin{gathered}
\Delta S_{t}=k N \ln \frac{V_{A, f i n a l}}{V_{A, \text { initial }}}+k N \ln \frac{V_{B, \text { final }}}{V_{B, \text { initial }}} \\
\Delta S_{t}=2 k N \ln 2
\end{gathered}
$$Entropy increases when we mix different gases

Effectively, the available volume increases upon mixing hence the number of configurations increases

Thermal equilibrium

At equilibrium, the multiplicity is maximizes. This means that the equilibrium state has maximum entropy
(Equilibrium is relative to the environment, another system with which it interacts with, or itself when isolated)

Thermal equilibrium of two interacting systems through energyexchange. $\boldsymbol{\Omega}_{\text {total }}=\boldsymbol{\Omega}_{\mathbf{A}}\left(\mathbf{U}_{\mathbf{A}}, \mathbf{V}_{\mathbf{A}}\right) \cdot \mathbf{\Omega}_{\mathbf{B}}\left(\mathbf{U}_{\mathbf{B}}, \mathbf{V}_{\mathbf{B}}\right)$

$$
\begin{gathered}
\frac{\partial \Omega_{\text {total }}}{\partial U_{A}}=0 \rightarrow \frac{\partial \mathrm{~S}_{\text {total }}}{\partial U_{A}}=0 \\
\frac{\partial \mathrm{~S}_{A}}{\partial U_{A}}+\frac{\partial \mathrm{S}_{B}}{\partial U_{A}}=0 \rightarrow \frac{\partial \mathrm{~S}_{A}}{\partial U_{A}}+\frac{\partial \mathrm{S}_{B}}{\partial U_{B}} \frac{d U_{B}}{d U_{A}}=0 \rightarrow \frac{\partial \mathrm{~S}_{A}}{\partial U_{A}}-\frac{\partial \mathrm{S}_{B}}{\partial U_{B}}=0
\end{gathered}
$$

System A and system B have the same temperature $\frac{\partial S_{A}}{\partial U_{A}}=\frac{\partial S_{B}}{\partial U_{B}} \equiv \frac{1}{T}$

$$
T=\left(\frac{\partial S}{\partial U}\right)_{V, N}^{-1}
$$

The system with higher $\frac{\partial S}{\partial U}$ (smaller T) will absorb energy
T. The system with higher \mathbf{T} will give energy to the system with lower T
Temperature is a measure of system's ability to exchange energy

Example: Paramagnets: S and T

Number of spin configurations with N_{\uparrow} out of N spins

$$
\Omega\left(N, N_{\uparrow}\right)=\frac{N!}{N_{\uparrow}!\left(N-N_{\uparrow}\right)!} \approx_{N \gg 1} \frac{N^{N}}{N_{\uparrow}^{N_{\uparrow}}\left(N-N_{\uparrow}\right)^{N-N_{\uparrow}}}
$$

Entropy of a macrostate with N_{\uparrow}

$$
\mathrm{S}\left(N_{\uparrow}\right)=k\left[N \ln N-N_{\uparrow} \ln N_{\uparrow}-\left(N-N_{\uparrow}\right) \ln \left(N-N_{\uparrow}\right)\right]
$$

Total energy of a macrostate with N_{\uparrow}

$$
\mathrm{U}\left(N_{\uparrow}\right)=-\mu B\left(N_{\uparrow}-N_{\downarrow}\right)=-\mu B\left(2 N_{\uparrow}-N\right) \rightarrow N_{\uparrow}=\frac{N}{2}-\frac{U}{2 \mu B}
$$

Net magnetization of a macrostate with N_{\uparrow}

$$
M\left(N_{\uparrow}\right)=\mu\left(N_{\uparrow}-N_{\downarrow}\right)=-\frac{U}{B}
$$

Entropy of a macrostate with N_{\uparrow}

$$
\mathrm{S}\left(N_{\uparrow}\right)=k\left[N \ln N-N_{\uparrow} \ln N_{\uparrow}-\left(N-N_{\uparrow}\right) \ln \left(N-N_{\uparrow}\right)\right]
$$

Temperature of a macrostate with N_{\uparrow}

$$
\begin{gathered}
\frac{1}{T}=\frac{\partial S}{\partial N_{\uparrow}} \frac{\partial N_{\uparrow}}{\partial U}=k\left(-\ln N_{\uparrow}-1+\ln \left(N-N_{\uparrow}\right)+1\right) \frac{1}{-2 \mu B} \\
T=\frac{2 \mu B}{k}\left[\ln \frac{N_{\uparrow}}{N-N_{\uparrow}}\right]^{-1} \rightarrow \frac{1}{T}=\frac{k}{2 \mu B} \ln \frac{\frac{N}{2}-\frac{U}{2 \mu B}}{\frac{N}{2}+\frac{U}{2 \mu B}}
\end{gathered}
$$

Total energy of a macrostate at a give temperature T

$$
\begin{gathered}
\frac{\frac{N}{2}-\frac{U}{2 \mu B}}{\frac{N}{2}+\frac{U}{2 \mu B}}=\exp \left(\frac{2 \mu B}{k T}\right) \rightarrow \frac{N}{2}-\frac{U}{2 \mu B}=\left(\frac{N}{2}+\frac{U}{2 \mu B}\right) \exp \left(\frac{2 \mu B}{k T}\right) \\
\boldsymbol{U}=\boldsymbol{N} \boldsymbol{\mu} \boldsymbol{B} \frac{1-\exp \left(\frac{2 \boldsymbol{\mu} \boldsymbol{B}}{\boldsymbol{k} \boldsymbol{T}}\right)}{1+\exp \left(\frac{2 \boldsymbol{\mu} \boldsymbol{B}}{\boldsymbol{k} \boldsymbol{T}}\right)} \rightarrow \boldsymbol{U}=-\boldsymbol{N} \boldsymbol{\mu} \boldsymbol{B} \tanh \left(\frac{\boldsymbol{\mu} \boldsymbol{B}}{\boldsymbol{k} \boldsymbol{T}}\right)
\end{gathered}
$$

Net magnetization of a macrostate with N_{\uparrow}

$$
M(T)=N \mu \tanh \left(\frac{\mu B}{k T}\right)
$$

$T \rightarrow \infty, \quad M \rightarrow \mathbf{0}$ (max randomness)
$T<0, \quad M$ is in the opposite with B

Ideal gas: S and T

- Entropy:

$$
S(U, V, N)=k \ln \Omega(U, V, N)=k\left[\ln f(N)+N \ln V+\frac{3 N}{2} \ln U\right]
$$

- Temperature:

$$
\begin{aligned}
& \frac{1}{T}=\left(\frac{\partial S}{\partial U}\right)_{V, N}=\frac{3 N k}{2} \frac{d}{d U} \ln U=\frac{3 N k}{2} \frac{1}{U} \rightarrow U(T)=\frac{3 N k T}{2} \\
& \quad \text { Equipartition of energy: } \frac{3 k T}{2} \text { for the kinetic energy per particle in 3D }
\end{aligned}
$$

- Heat capacity C_{V} :

$$
C_{V}=\frac{d U}{d T} \rightarrow C_{V}=\frac{3 N k}{2}
$$

Mechanical equilibrium: What stays the same?

Mechanical and thermal equilibrium of two interacting systems through energyand volume exchange

$$
\begin{gathered}
\frac{\partial \mathrm{S}_{\text {total }}\left(U_{A}, V_{A}\right)}{\partial U_{A}}=0 \quad \text { and } \frac{\partial \mathrm{S}_{\text {total }}\left(U_{A}, V_{A}\right)}{\partial V_{A}}=0 \\
\frac{\partial \mathrm{~S}_{A}}{\partial V_{A}}+\frac{\partial \mathrm{S}_{B}}{\partial V_{A}}=0 \rightarrow \frac{\partial \mathrm{~S}_{A}}{\partial V_{A}}+\frac{\partial \mathrm{S}_{B}}{\partial V_{B}} \frac{d V_{B}}{d V_{A}}=0 \rightarrow \frac{\partial \mathrm{~S}_{A}}{\partial V_{A}}-\frac{\partial \mathrm{S}_{B}}{\partial V_{B}}=0
\end{gathered}
$$

System A and system B have the same pressure: $T_{A} \frac{\partial S_{A}}{\partial V_{A}}=T_{B} \frac{\partial S_{B}}{\partial V_{B}} \equiv P$

$$
P=T\left(\frac{\partial S}{\partial V}\right)_{U, N}
$$

\square The system with higher $\frac{\partial S}{\partial V}$ (higher P) will tend to extand
\square The system with higher \mathbf{P} will expand at the expense of the compression of the one with lower P

Pressure P in the ideal gas:

- Entropy:

$$
S(U, V, N)=k \ln \Omega(U, V, N)=k\left[\ln f(N)+N \ln V+\frac{3 N}{2} \ln U\right]
$$

- Equation of state:

$$
P=T\left(\frac{\partial S}{\partial V}\right)_{U, N}=N k T \frac{d}{d V} \ln V=\frac{N k T}{V} \rightarrow P V=N k T
$$

This is now derived from counting the number of microstates for the gas particles!

- Heat capacity C_{P} :

$$
C_{P}=C_{V}+P\left(\frac{\partial V}{\partial T}\right)_{P} \rightarrow C_{P}=\frac{3 N k}{2}+N k=\frac{5 N k}{2}
$$

Thermodynamic identity

- Entropy computed from the multiplicity of a macrostate at fixed U, V, and N

$$
S(U, V, N)
$$

- Change in entropy due to energy change or volume change has a differential form

$$
d S=\left(\frac{\partial S}{\partial U}\right)_{V, N} d U+\left(\frac{\partial S}{\partial V}\right)_{U, N} d V
$$

- Using the definitions for T and P

$$
d S=\frac{1}{T} d U+\frac{P}{T} d V
$$

- Thermodynamic identity for $U(S, V)$

$$
d U=T d S-P d V
$$

We have derived the first law of thermodynamics for a reversible change (system goes through equilibrium states)!

Gas expansion: ΔS

- Entropy:

$$
S(U, V, N)=k\left[\ln f(N)+N \ln V+\frac{3 N}{2} \ln U\right]
$$

- Isolated system ($\boldsymbol{\Delta} \boldsymbol{U}=\mathbf{0}, \boldsymbol{\Delta} \boldsymbol{N}=\mathbf{0}$) only \boldsymbol{V} changes during expansion

From Boltzmann's formula of S :

$$
\Delta S=S_{2}-S_{1}=k N \ln \frac{V_{2}}{V_{1}}
$$

From 1st \& 2nd laws of thermodynamics: (along the isothermal path)

$$
\mathrm{T} \Delta \mathrm{~S}=\mathrm{Q}_{\mathrm{rev}}=-\mathrm{W}_{\mathrm{rev}}=k N T \ln \frac{V_{2}}{V_{1}}
$$

ΔS is related to heat during the quasistatic isothermal expansion$\Delta S>0$ because of the heat absorbed by the expanding gas to keep its internal energy constant

ΔS is path-independent

- What if we choose the path A-B (isochoric+isobaric) instead of the isothermal path?
- What will happen then?

Use the definition of entropy from heat $d S=\frac{\delta Q_{\text {rev }}}{T}$
The entropy change $\Delta S=S_{2}-S_{1}$ is then $\Delta S=\int_{A-B \text { path }} \frac{\delta Q_{\text {rev }}}{T}$

$$
\Delta S=\int_{\text {path }_{\text {isochoric }}} \frac{\delta \boldsymbol{Q}_{\text {rev }}}{T}+\int_{\text {path }_{\text {isobaric }}} \frac{\delta \boldsymbol{Q}_{\boldsymbol{r e v}}}{T} \Delta=\int_{\text {path }_{\text {isochoric }}} \frac{d U}{T}+\int_{\text {path }_{\text {isobaric }}} \frac{d U+P d V}{T}
$$

$$
\begin{array}{r}
\Delta S=C_{V} \int_{a}^{b} \frac{d T}{T}+C_{P} \int_{b}^{c} \frac{d T}{T}=C_{V} \int_{a}^{b} \frac{d T}{T}+C_{P} \int_{b}^{c} \frac{d T}{T} \\
\Delta S=C_{V} \ln \frac{T_{b}}{T_{a}}+C_{P} \ln \frac{T_{c}}{T_{b}}=C_{V} \ln \frac{P_{2} V_{1}}{P_{1} V_{1}}+C_{P} \ln \frac{P_{2} V_{2}}{P_{2} V_{1}} \\
\Delta S=C_{V} \ln \frac{P_{2}}{P_{1}}+C_{P} \ln \frac{V_{2}}{V_{1}}=C_{V} \ln \frac{T_{2} / V_{2}}{T_{1} / V_{1}}+C_{P} \ln \frac{V_{2}}{V_{1}} \\
\Delta S={ }_{\left(T_{1}=T_{2}\right)} C_{V} \ln \frac{V_{1}}{V_{2}}+\left(C_{V}+N k\right) \ln \frac{V_{2}}{V_{1}}=N k \ln \frac{V_{2}}{V_{1}}
\end{array}
$$

\square Entropy change is the same as on the isothermal path
\square Moral: Choose the simplest path between the states to compute ΔS

Free gas expansion: ΔS

- Irreversible expansion with no heat, no work

$$
\Delta U=Q+W=\mathbf{0}+\mathbf{0}=\mathbf{0}
$$

- As the gas expands freely into the vaccum, its entropy changes because of volume change
- The multiplicity of a state with higher volume is larger, hence the entropy increases

$$
\Delta S=k N \ln \frac{V_{\text {final }}}{V_{\text {initial }}}>0 \rightarrow V_{\text {final }}>V_{\text {initial }}
$$

So this irreversible process must only be an expansion according to the 2nd law of thermodynamics

