Lecture 9

Thermodynamic equilibrium: temperature, pressure, chemical potential
17.09.2018

Thermal equilibrium

Thermal equilibrium of two interacting systems through energyexchange.

$$
\begin{gathered}
\boldsymbol{\Omega}_{\text {total }}=\boldsymbol{\Omega}_{\mathbf{A}}\left(\mathbf{U}_{\mathbf{A}}, \mathbf{V}_{\mathbf{A}}\right) \cdot \mathbf{\Omega}_{\mathbf{B}}\left(\mathbf{U}_{\mathbf{B}}, \mathbf{V}_{\mathbf{B}}\right) \\
\frac{\partial \Omega_{\text {total }}}{\partial U_{A}}=0 \rightarrow \frac{\partial \mathrm{~S}_{\text {total }}}{\partial U_{A}}=0 \\
\frac{\partial \mathrm{~S}_{A}}{\partial U_{A}}+\frac{\partial \mathrm{S}_{B}}{\partial U_{A}}=0 \rightarrow \frac{\partial \mathrm{~S}_{A}}{\partial U_{A}}+\frac{\partial \mathrm{S}_{B}}{\partial U_{B}} \frac{d U_{B}}{d U_{A}}=0 \rightarrow \frac{\partial \mathrm{~S}_{A}}{\partial U_{A}}-\frac{\partial \mathrm{S}_{B}}{\partial U_{B}}=0
\end{gathered}
$$

System A and system B have the same temperature $\frac{\partial S_{A}}{\partial U_{A}}=\frac{\partial S_{B}}{\partial U_{B}} \equiv \frac{1}{T}$

$$
T=\left(\frac{\partial S}{\partial U}\right)_{V, N}^{-1}
$$

Temperature is a measure of system's ability to exchange energy

Thermal equilibrium: Temperature

$$
\frac{1}{T}=\left(\frac{\partial S}{\partial U}\right)_{V, N}
$$

\square The decrease $d U_{A}$ balances the increase $d U_{B}$, i.e
$-d U_{A}=d U_{B}$
$\square \frac{\partial S_{A}}{\partial U_{A}}<\frac{\partial S_{B}}{\partial U_{B}} \rightarrow-d S_{A}<d S_{B}$ decrease in the entropy for system A is smaller than the increase in the entropy of system B, so that the total entropy increases when heat flows from A to B
$\square d\left(S_{A}+S_{B}\right)>0$
The system with smaller $\frac{\partial S}{\partial U}$ (higher T) will tend to give energy
\square System with higher T gives heat the one with lower T

Mechanical equilibrium: What stays the same?

Mechanical and thermal equilibrium of two interacting systems through energyand volume exchange

$$
\begin{gathered}
\frac{\partial \mathrm{S}_{\text {total }}\left(U_{A}, V_{A}\right)}{\partial U_{A}}=0 \quad \text { and } \frac{\partial \mathrm{S}_{\text {total }}\left(U_{A}, V_{A}\right)}{\partial V_{A}}=0 \\
\frac{\partial \mathrm{~S}_{A}}{\partial V_{A}}+\frac{\partial \mathrm{S}_{B}}{\partial V_{A}}=0 \rightarrow \frac{\partial \mathrm{~S}_{A}}{\partial V_{A}}+\frac{\partial \mathrm{S}_{B}}{\partial V_{B}} \frac{d V_{B}}{d V_{A}}=0 \rightarrow \frac{\partial \mathrm{~S}_{A}}{\partial V_{A}}-\frac{\partial \mathrm{S}_{B}}{\partial V_{B}}=0
\end{gathered}
$$

System A and system B have the same pressure: $T \frac{\partial S_{A}}{\partial V_{A}}=T \frac{\partial S_{B}}{\partial V_{B}} \equiv P$

$$
P=T\left(\frac{\partial S}{\partial V}\right)_{U, N}
$$

Pressure is a measure of system's ability to exchange volume

Mechanical equilibrium: Pressure

$$
P=T\left(\frac{\partial S}{\partial V}\right)_{U, N}
$$

\square The decrease $d V_{A}$ balances the increase $d V_{B}$, i.e $-d V_{A}=$ $d V_{B}$

$$
U, V_{B}, N
$$

$\square \frac{\partial S_{A}}{\partial V_{A}}<\frac{\partial S_{B}}{\partial V_{B}} \rightarrow-d S_{A}<d S_{B}$ decrease in the entropy for system A is smaller than the increase in the entropy of system B, so that the total entropy increases when system B expands into system A
$\square d\left(S_{A}+S_{B}\right)>0$
\square The system with higher $\frac{\partial S}{\partial V}$ (higher P) will tend to gain volume (expand)
\square System with higher \boldsymbol{P} expands into the one with lower \boldsymbol{P}

$$
\frac{\partial S_{A}}{\partial V_{A}}<\frac{\partial S_{B}}{\partial V_{B}} \rightarrow
$$

$$
U, V_{A}, N
$$

Thermodynamic identity

- Entropy computed from the multiplicity of a macrostate at fixed U, V, and N

$$
S(U, V, N)
$$

- Change in entropy due to energy change or volume change has a differential form

$$
d S=\left(\frac{\partial S}{\partial U}\right)_{V, N} d U+\left(\frac{\partial S}{\partial V}\right)_{U, N} d V
$$

- Using the definitions for T and P

$$
d S=\frac{1}{T} d U+\frac{P}{T} d V
$$

- Thermodynamic identity for $U(S, V)$

$$
d U=T d S-P d V
$$

We have derived the first law of thermodynamics for a reversible change (system goes through equilibrium states)!

Pressure P in the ideal gas:

- Entropy:

$$
S(U, V, N)=k \ln \Omega(U, V, N)=k\left[\ln f(N)+N \ln V+\frac{3 N}{2} \ln U\right]
$$

- Equation of state:

$$
P=T\left(\frac{\partial S}{\partial V}\right)_{U, N}=N k T \frac{d}{d V} \ln V=\frac{N k T}{V} \rightarrow P V=N k T
$$

This is now derived from counting the number of microstates for the gas particles!

- Heat capacity C_{P} :

$$
C_{P}=C_{V}+P\left(\frac{\partial V}{\partial T}\right)_{P} \rightarrow C_{P}=\frac{3 N k}{2}+N k=\frac{5 N k}{2}
$$

Gas expansion: ΔS

- Entropy:

$$
S(U, V, N)=k\left[\ln f(N)+N \ln V+\frac{3 N}{2} \ln U\right]
$$

- Isolated system ($\boldsymbol{\Delta} \boldsymbol{U}=\mathbf{0}, \boldsymbol{\Delta} \boldsymbol{N}=\mathbf{0}$) only \boldsymbol{V} changes during expansion

From Boltzmann's formula of S :

$$
\Delta S=S_{2}-S_{1}=k N \ln \frac{V_{2}}{V_{1}}
$$

From 1st \& 2nd laws of thermodynamics: (along the isothermal path)

$$
\mathrm{T} \Delta \mathrm{~S}=\mathrm{Q}_{\mathrm{rev}}=-\mathrm{W}_{\mathrm{rev}}=k N T \ln \frac{V_{2}}{V_{1}}
$$

ΔS is related to heat during the quasistatic isothermal expansion$\Delta S>0$ because of the heat absorbed by the expanding gas to keep its internal energy constant

ΔS is path-independent

- What if we choose the path A-B (isochoric+isobaric) instead of the isothermal path?
- What will happen then?

Use the definition of entropy from heat $d S=\frac{\delta Q_{\text {rev }}}{T}$
The entropy change $\Delta S=S_{2}-S_{1}$ is then $\Delta S=\int_{A-B \text { path }} \frac{\delta Q_{\text {rev }}}{T}$

$$
\Delta S=\int_{\text {path }_{\text {isochoric }}} \frac{\delta \boldsymbol{Q}_{\text {rev }}}{T}+\int_{\text {path }_{\text {isobaric }}} \frac{\delta \boldsymbol{Q}_{\boldsymbol{r e v}}}{T} \Delta=\int_{\text {path }_{\text {isochoric }}} \frac{d U}{T}+\int_{\text {path }_{\text {isobaric }}} \frac{d U+P d V}{T}
$$

$$
\begin{array}{r}
\Delta S=C_{V} \int_{a}^{b} \frac{d T}{T}+C_{P} \int_{b}^{c} \frac{d T}{T}=C_{V} \int_{a}^{b} \frac{d T}{T}+C_{P} \int_{b}^{c} \frac{d T}{T} \\
\Delta S=C_{V} \ln \frac{T_{b}}{T_{a}}+C_{P} \ln \frac{T_{c}}{T_{b}}=C_{V} \ln \frac{P_{2} V_{1}}{P_{1} V_{1}}+C_{P} \ln \frac{P_{2} V_{2}}{P_{2} V_{1}} \\
\Delta S=C_{V} \ln \frac{P_{2}}{P_{1}}+C_{P} \ln \frac{V_{2}}{V_{1}}=C_{V} \ln \frac{T_{2} / V_{2}}{T_{1} / V_{1}}+C_{P} \ln \frac{V_{2}}{V_{1}} \\
\Delta S={ }_{\left(T_{1}=T_{2}\right)} C_{V} \ln \frac{V_{1}}{V_{2}}+\left(C_{V}+N k\right) \ln \frac{V_{2}}{V_{1}}=N k \ln \frac{V_{2}}{V_{1}}
\end{array}
$$

\square Entropy change is the same as on the isobaric path
\square Moral: Choose the simplest path between the states to compute ΔS

Free gas expansion: ΔS

- Irreversible expansion with no heat, no work

$$
\Delta U=Q+W=\mathbf{0}+\mathbf{0}=\mathbf{0}
$$

- As the gas expands freely into the vaccum, its entropy changes because of volume change
- The multiplicity of a state with higher volume is larger, hence the entropy increases

$$
\Delta S=k N \ln \frac{V_{\text {final }}}{V_{\text {initial }}}>0, \quad \text { since } V_{\text {final }}>V_{\text {initial }}
$$

This is a spontaneous expansion

Diffusive equilibrium: What stays the same?

Diffusive, mechanical and thermal equilibrium of two interacting systems through particle, energyand volume exchange

$$
\begin{gathered}
\frac{\partial \mathrm{S}_{\text {total }}\left(U_{A}, V_{A}, N_{A}\right)}{\partial U_{A}}=0, \quad \frac{\partial \mathrm{~S}_{\text {total }}\left(U_{A}, V_{A}, N_{A}\right)}{\partial V_{A}}=0 \text { and } \quad \frac{\partial \mathrm{S}_{\text {total }}\left(U_{A}, V_{A}, N_{A}\right)}{\partial N_{A}}=0 \\
\frac{\partial \mathrm{~S}_{A}}{\partial N_{A}}+\frac{\partial \mathrm{S}_{B}}{\partial N_{A}}=0 \rightarrow \frac{\partial \mathrm{~S}_{A}}{\partial N_{A}}+\frac{\partial \mathrm{S}_{B}}{\partial N_{B}} \frac{d N_{B}}{d N_{A}}=0 \rightarrow \frac{\partial \mathrm{~S}_{A}}{\partial N_{A}}-\frac{\partial \mathrm{S}_{B}}{\partial N_{B}}=0 \quad \text { at } U_{A}, V_{A} \text { fixed }
\end{gathered}
$$

System A and system B have the same chemical potential: $T_{A}\left(\frac{\partial S_{A}}{\partial N_{A}}\right)_{U_{A}, V_{A}}=T_{B}\left(\frac{\partial S_{B}}{\partial N_{B}}\right)_{U_{B}, V_{B}} \equiv-\mu$

$$
\mu=-T\left(\frac{\partial S}{\partial N}\right)_{U, V}
$$

Chemical potential is a measure of system's ability to exchange particle

Diffusive equilibrium: chemical potential

$$
\mu=-T\left(\frac{\partial S}{\partial N}\right)_{U, V}
$$

\square The increase $d N_{A}$ balances the decrease $d N_{B}$, i.e $d N_{A}=-d N_{B}$
$\square \frac{\partial S_{A}}{\partial N_{A}}>\frac{\partial S_{B}}{\partial N_{B}} \rightarrow d S_{A}>-d S_{B}$ increase in entropy for system A is larger than the decrease in entropy of system B, so that the total entropy increases when particles flow from B to A

$$
\frac{\partial S_{A}}{\partial N_{A}}>\frac{\partial S_{B}}{\partial N_{B}} \rightarrow
$$

Particle flow

$$
U, V, N_{A} \quad U, V, N_{B}
$$

The system with higher $\frac{\partial S}{\partial N}$ (smaller μ) will tend to gain particles

- Particles flow from the system with higher $\boldsymbol{\mu}$ to the one with smaller $\boldsymbol{\mu}$

Thermodynamic identity

- Entropy computed from the multiplicity of a macrostate at fixed U, V, and N

$$
S(U, V, N)
$$

- Change in entropy due to energy change, volume change or particle number changes has a differential form

$$
d S=\left(\frac{\partial S}{\partial U}\right)_{V, N} d U+\left(\frac{\partial S}{\partial V}\right)_{U, N} d V+\left(\frac{\partial S}{\partial N}\right)_{U, V} d N
$$

- Using the definitions for T, P and μ

$$
d S=\frac{1}{T} d U+\frac{P}{T} d V-\frac{\mu}{T} d N
$$

- Thermodynamic identity for $U(S, V, N)$

Chemical potential μ

- In a process with fixed internal energy U and volume V

$$
\mu=-T\left(\frac{\partial S}{\partial N}\right)_{U, V}
$$

- In a process with fixed entropy S and volume V :

$$
\begin{gathered}
d U=T d S-P d V+\mu d N \rightarrow d U=\mu d N \\
\mu=\left(\frac{\partial U}{\partial N}\right)_{S, V}
\end{gathered}
$$

$\square \mu$ has units of energy
$\square \mu$ is the change in the internal energy by bring in or taking out a particle at fixed entropy and volume

- When a particle is added, entropy typically increases. Hence, to keep S constant some energy may be removed
\square thus, typically $\mu<0$

Ideal gas: chemical potential μ

- From $S(U, V, N)=k N\left[\ln \left(\frac{V}{N}\left(\frac{4 \pi m}{3 h^{2}} \frac{U}{N}\right)^{\frac{3}{2}}\right)+\frac{5}{2}\right]$
- The chemical potential is $\mu=-T\left(\frac{\partial S}{\partial N}\right)_{U, V}$

$$
\begin{gathered}
\mu=-k T\left[\ln \left(\frac{V}{N}\left(\frac{4 \pi m}{3 h^{2}} \frac{U}{N}\right)^{\frac{3}{2}}\right)+\frac{5}{2}\right]+N k T \cdot \frac{5}{2 N} \\
\mu=-k T \ln \left(\frac{V}{N}\left(\frac{4 \pi m}{3 h^{2}} \frac{U}{N}\right)^{\frac{3}{2}}\right) \rightarrow \mu(T, V, N)=-k T \ln \left(\frac{V}{N}\left(\frac{2 \pi m k T}{h^{2}}\right)^{\frac{3}{2}}\right)
\end{gathered}
$$

- $\mu(T, V, N)<0$ when $\frac{V}{N}\left(\frac{2 \pi m k T}{h^{2}}\right)^{\frac{3}{2}}>1 \rightarrow\left(\frac{V}{N}\right)^{1 / 3}>\sqrt{\frac{h^{2}}{2 \pi m k T}}$
typical distance between particles is larger than thermal wavelength $\Lambda=\sqrt{\frac{h^{2}}{2 \pi m k T}}$
\square thermal wavelenth is very small at room temperatures, but increases with cooling the system and then the chemical potential can change sign
something fundamental happens with the ideal gas at sufficiently small temperature! (stay tuned to find out)

Einstein crystal: chemical potential μ

- $\operatorname{From} S(q, N)=k[(N+q) \ln (N+q)-q \ln q-N \ln N]$
- The chemical potential is $\mu=-T\left(\frac{\partial S}{\partial N}\right)_{U, V}$

$$
\mu=-k T[\ln (N+q)-\ln N]=-k T \ln \left(1+\frac{q}{N}\right)
$$

Energetic limit: $q \gg N \rightarrow \mu \approx-k T \ln \left(\frac{q}{N}\right)<-k T$ entropy increases more when a particle with no energy is added

Dense limit: $\mathrm{N} \gg q \rightarrow \mu \approx-k T \frac{q}{N}$ very small entropy increase when a new particle with no energy is added

In energetic limit, the system can take in more particles to gain entropy, while in the dense limit is more saturated in its entropy already.

Recap

- 1st law of thermodynamics:

Energy cannot be created or destroyed, it can be transformed
A change in the internal energy (energy of a state) of a system is equal to heat exchage or work exchange (energies in action) with its surroundings

$$
d U=\delta Q+\delta W
$$

A change in the internal energy (energy of a state) of a system on a reversible path

$$
d U=T d S-P d V
$$

Recap

- Entropy is a state variable (path-independent)

$$
S(U, V, N)=k_{B} \ln \Omega(U, V, N)
$$

- S is maximum for the thermodynamic state that is the most likely one (highest probability, maximum number of microstates)
- When the system is in a state that has a lower probability, it will spontaneously go into the most likely state. This is the free relaxation to equilibrium

Recap

- 2nd law of thermodynamics:

Entropy of an isolated system can be created, but never destroyed

$$
d S \geq 0
$$

On a reversible path, entropy change is due to heat exchange between the system and its surroundings at a given temperature T

$$
T d S=\delta Q_{r e v}
$$

Mechanical analogue to heat and entropy: volume change due to reversible work at a given pressure

$$
-P d V=\delta W_{r e v}
$$

On an irreversible path, not all heat gives rise to entropy change or available work (some of it is lost or dissipated into the environment)

$$
\begin{gathered}
d S \geq \frac{\delta Q}{T} \\
d U \leq T d S-P d V
\end{gathered}
$$

Recap

- Thermodynamic identity:

$$
\begin{aligned}
d S & =\frac{1}{T} d U+\frac{P}{T} d V-\frac{\mu}{P} d N \leftrightarrow d U=T d S-P d V+\mu d N \\
T & =\left(\frac{\partial S}{\partial U}\right)_{V, N}^{-1}, P=T\left(\frac{\partial S}{\partial V}\right)_{U, N}, \mu=-T\left(\frac{\partial S}{\partial N}\right)_{U, V}
\end{aligned}
$$

- 2nd law implies that
$>$ Heat flows from hot to cold
$>$ Volume expansion happens from high pressure to low pressure
$>$ Particle migration is from high chemical potential to low chemical potential

