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Equilibrium statistical systems



Isolated system at equilibrium

U is fixed

S(U), T,P(V,T)

THE EQUIBRIUM STATE IS A MACROSTAE

1. WHAT IS THE MULTIPLICITY OF A MACROSTATE?

2. WHAT IS THE ROLE OF ENTROPY?

3. WHAT IS THE CONDITION FOR EQUILIBRIUM?




U is fixed

S(U), T,P(V,T)

Isolated system at equilibrium

Multiplicity of a macrostate Q(U, V, N) counts all equally-likely accessible microstates

However, if the particles are indistinguishable the total number of accessible microstates
is reduced by the number of permutations N!

Q(U,V,N)

Q(U,V,N) - N

Probability that the system is in a specific microstate

Boltzmann’s formula: Entropy of an equilibrium state at fixed U

S(U,V,N)=kInQ(U,V,N) & S(U,V,N) = —k ZP(S) InP(s)

Entropy is maximized for an equilibrium state dS = 0
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U is fixed

S(U), T,P(V,T)

\4

THERMODYNAMIC PROPERTIES

Thermodynamic identity for S

s = 2qu + Lav — Fan
T T T

Temperature of an equibrium state measures the tendency of the system to give or accept

energy
(HS)_l
aU |},N

Pressure is the measures the tendency of a system to expand or contract

b T(@S)
- \aV/yw

Chemical potential is the measures the tendency of a system to give or take particles

ou
— <—) — P =P(V,T,N) equation of state
V/sn

= (5x),, = (&)
K= aN U,V_ aN SV
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THERMODYNAMIC PROPERTIES

U is fixed Helmholtz free energy
SW),T,P(V,T) F=U-TS
Enthalpy

Gibbs free energy

G=U—-TS+PV =Ny

Chemical potential is the energy increase by adding a particle in to the system
when the pressure and temperature are constant.

B (66)
H=\oN);p




*® / A system in contact with a thermal bath

T u(T),P(V,T)

1. WHAT IS THE PARTITION FUNCTION?

2. WHAT ARE THE FLUCTUATING QUANTITIES?

3. WHAT IS THE EQUILIBRIUM CONDITION?

4, 'WHAT IS THE ROLE OF ENTROPY?

Fys2160, 2018



P(s)

X ¥

T u(T),P(V,T)

A system in contact with a thermal bath

System+Thermal bath = isolated system

The probability that the system is in a given microstate is proportional to the probability that the
thermal bath is in any state that accomodate that particular microstate (hence the total number

of microstates of the thermal bath corresponding to systems’ microstate )

Probability ratio between two microstates (the system can exchange energy with the
thermal bath AUy = —AE)

P(sy) Qg(sy) [SrR(s1)—SR(s2)] [UR(S1)—UR(s2)] _[E(s1)—E(s)]
= = e k = e kT = e kT
P(sz)  Qg(syz)

Probability of the system in a specific microstate a fixed temperature T

P(s) =

Z(T)
Boltzmann partition function

_Es
Z(T) = ). e kr counts all the accessible microstates weighted by the Boltzmann factor




A system in contact with a thermal bath

X 4

E
. U(T),P(V,T) Z(T) =) e_k_; counts all the accessible microstates weighted by the Boltzmann factor

N-distinguishable, identical and independent classical particles

_En(s1,sN)

Zy(T,V) = Z e kr =7ZNT, V)
{s1,52sn}
N-indistinguishable, identical and independent classical particles

_En(s1,sN)

1
ZN(T’ V) — 2{51132...31\[} e kT == EZI]Y(T, V)




X ¥

T u(T),P(V,T)

THERMODYNAMIC PROPERTIES AND AVERAGES

1

Z(B) = ) eFE p =

S

Due to energy exchange with the thermal bath, the energy fluctuations from one microstate
to another. Thus, the total energy of an equilibrum macrostate is an average

U(TVN)—<E>_ZE e_ﬂES___@_Z)VN :_(a‘;rl[l’)Z)VN

0%7
Yo (08)

How entropy relates to the probability of a microstate

S=—k ZP(S) InP(s)




X ¥

T u(T),P(V,T)

HELMHOLTZ FREE ENERGY

1
Z(T,V,N) = Z e s B =

S

The partition function determines the thermodynamic potential which minimized at a
given T' Vand N.

Helmholtz free energy

F(T,V,N) = —KkTInZ(T,V,N) & Z = e FF

Thermodynamic identity
dF = —S dT — PdV + udN

Fys2160, 2018
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X ¥

T u(T),P(V,T)

THERMODYNAMIC PROPERTIES

Thermodynamic identity

dF = —S dT — PdV + pdN

Entropy
G (E)F)
— \aT /)y
Pressure

oF
P=-— (—) — P =P(V,T,N) equation of state
TN

aVv

Chemical potential

oF
o= (2

ON

>T,V




|deal gas in a thermal bath (High T-classical limit )

* Independent and indistinguishable quantum particles

* Quantum state of 1 particle is given by the quantized energy levels and the corresponding wavefunction (the
energy is associated with a wavefunction rather then the particle itself!)
p-p_ h°

— _ 2,2, 2 B
ETL B Zm o 8mL2 (nx + ny + nZ)’ nx;ny,nz — O’ 1, 2’”.

* One-particle partition function (3D)
_hz 2 2 2
Zl (Tr V) = z Z z e_'BSmLZ (nx'l'ny'l'nz);
Ny le ny
h2 3

_p vt 2
2,7) = (5, e Pm™) ~ won
highT

h2

1 (oo —B——n? 14 h
_f_oodne BSmLZn = A(T) = 2emkT

> = T (quantum length)

* N-particle partition function (3D)

Zy(T,V) = % (/%)N

Fys2160, 2018
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Maxwell-Bolzmann distribution

* Probability that the particle in a state with velocity vector

PgD(I_/)) ~ e_ﬁ

<!

mv'
2

* Probability that a particles has a speed betweenvandv + dv (v = |V|)

DCD)(v)dv ~ Py (V)dV,dV,dV, = e P Z 4nv?dv

2

j dv DCD(vp) =1
0

DG (v) = (

m
2wkT

)

3
2

__m 2
Amrvie” 2kTV
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N-free particles in a thermal

* N-particle partition function

1

bath

ZN(T,V)=ZF11\!,=_< /4 )N

* Helmholtz free energy

Fy(T,V) = —kT In Zy(T, V) = —NKT [ln (%) _ 1]

Fy(T,V) = —NKT lln(

A3(T)

NAI?’/(T)) a 1]

Fys2160, 2018
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N-free particles in a thermal bath

* N-particle partition function

* Energy energy

* Entropy
S =

* Equation of state

N

zZ¥ 1, v h
ZN(T’V)ZEZ_!(A?’(T)) ’ A(T)z‘/ankT
U = il Zy(T,V —3Nil A )—S—NkT
U—-—F 3Nk vV 1%
T 2 +Nk+Nk[ln(NA3(T))]=Nk lln<NA3(T)

)

5

3

2

© ©
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N-free particles in a thermal bath

* Helmholtz free energy

Fy(T,V) = —NKT [ln ( — (T)) _ 1]

e Chemical potential

wrT.V) = (S_Z)T,V = —kT'ln (NAZ(T))

Fys2160, 2018
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Ideal gas in contact with a thermal bath

X 4

. U(T),P(V,T) Probability of one particle to be in a in a specific energy state a fixed temperature T

P(S) = e_,BES

Z1(T)

Boltzmann distribution for the average number of particles (occupation number) in a
given energy state

(N,) = NP(s) = e PEs—H)

Fys2160, 2018 17



@ | A system in contact with a thermal and particle reservoir

U(T) P(V, T)

@ ©
o O

WHAT IS THE GIBBS FACTOR?

WHAT QUANTITIES FLUCTUATES?

WHAT IS THE EQUILIBRIUM CONDITION?




Ng A

U(T) P(V, T)

@ ©
o O

A system in contact with a thermal and particle reservoir

The system can exchange energy and particles with a reservoir and it is in equilibrium at a fixed
T and chemical potential u

Probability of the system being in a given microstate is proportional to the probability that the
reservois is in any state that accomodate that particular microstate (hence the total number of
microstates of the thermal bath corresponding to a given system’s microstate)

Probability ratio between two microstates (the system can exchange energy AUy = —AE, and
particles ANg = —AN)

S -S
P(sy) _ Qr(sp) _ L R(sl)k rG2)| oBAUR ,—BUANR _ o—BAE , BUAN
P(sz) Qgr(sz) B B

Probability of the system in a specific microstate a fixed T and u

P(S) = e B(Es—pu Ng)

E(T, W)
Grand Partition function

E(T,u) =Y. e FEs=1Ns) counts all the accessible microstates weighted by the Gibbs factor

What is the microstate s?




@ | Non-interacting particle system in contact with a thermal and particle reservoir

U (T) P(V, T) Each identical particle can occupy discrete energy states €;, j = 1,2, --- is the state number

@ & © \© For N identical particles, we can have N; number of particles (occupation number) in the energy
state €;
J

The energy of a specific microstate with Ny = ),; N; particlesis E; = }.; Nj€;

Y. =sum over all particles number N, and over all the partitions of particles N in the quantum
states with total energy E

2(T, 1) = Z Z o B(Es—H Ng) — z =B T Nj(ej=1)

Ng {PVj} {de}
AZjIVj=st
E(T,u) = (2 e—BN1(61—Ii)) . (2 e—ﬁNZ(ez—u)) .. <z e—,BN3(63—y)>
Nl N2 N3

Fys2160, 2018 20



Ng A

U(T) P(V, T)

@ ©
o O

Occupation number of a state

Probability of the system in a specific microstate a fixed T and u

e_:B(Es—M Ng) _ e‘ﬁN1(€1—M) . e_:BNZ(Gz—#) . e_:BNS(Gg—M)

P(s) = (T, 1) (ZNl e—ﬂN1(€1—ﬂ)) ) (ZNZ e—ﬂNz(Ez—u)) .. (ZN3 e—ﬁN3(€3—M))

e_ﬁNl(el_ﬂ) e_BNZ(GZ_ﬂ) e_BN3(€3_ﬂ)

P(s) = (ZNl e—ﬁN1(€1—H)) . (ZNZ e—ﬁNz(fz—H)) . (2N3 e_ﬁN3(€3_”))

P(s) = P(Ny) - P(N2) - P(N3) -
Probability for the occupation number N of the given state at fixed T and u

e_ﬁN(G_ﬂ)

(ZN e—ﬂN(f—ﬂ))

P(N) =

Fys2160, 2018 21




@ | Non-interacting FERMIONS in contact with a thermal and particle reservoir

The occupation number for each quantum stateis N = 0,1

U(T) P(V, T)

@ © \@
© Probability for the occupation number N of the given energy state a fixed T and u

e_,BN(E_M)

PIN) = o

Average occupation number (N) of the given energy state € a fixed T and u

FERMI-DIRAC distribution

1
- 1
<N>(E) = z NP(N) = 1 _T_ e—Ble—w - <N>(E) - eB(e
N=0

Fys2160, 2018 22



Ng A

U(T) P(V, T)
© ©
o DX

Fermi Dirac distribution

Fys2160, 2018
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Ng A

U(T) P(V, T)

©
o O

Non-interacting BOSONS in contact with a thermal and particle reservoir

The occupation number for each stateisN = 0,1,2 -

2N=0 e AN(E~1) = 1—e‘2(6—#)’ for u <e (for every e!)

Probability for the occupation number N of the given energy state a fixed T and u

P(N) = (1 — e—ﬂ(e—ﬂ))e—ﬂN(e—u)

Average occupation number (N) of the given energy state € a fixed T and u

BOSE-EINSTEIN distribution

%) e o ) G_ 1
(N)(€) = NZ;)NP(N) =(1-e A *‘))NZ;Ne BN(e=) > (N)(€) = Bl _ 1

Fys2160, 2018 24




Ng A

U(T) P(V, T)
© ©
o DX

Bose Einstein distribution

-2

Fys2160, 2018
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Ng A

U(T) P(V, T)

©
o O

Classical limit

QUANTUM distribution for the average occupation number of an energy state

u( )
High T limit ( K 0)
BOLZMANN distribution
ebPr
(N)(€) = eBe + eBn  ePr-0 (N)(e) = e Flemm)

Fys2160, 2018
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Ng A

U(T) P(V, T)

© ©
o O

iy,

2 0
(e-p)/KT

Fys2160, 2018

27



n:

Ng A

U(T) P(V, T)
@ ©
o DX

n y

n,

THERMODYNAMIC PROPERTIES AND DENSITY OF STATES

Average energy

U= 777(N)(6) e(nx,ny,nx) jdnxj dnyj dn, € -(N) = fde g(e)e - (N)

nx ny nz

* Density of states g(e) comes become we need to count all the quantum states at a given
energy €. Remember that the quantum state is given by the state of the wavefunction

* Number of states with energy between € and € + de = Number of states with state number
between n and n 4+ dn (positive quadrant)

(3D) g(e)de = él}nnzdn, (2D)g(e)de = %Zmzdn, (2D), (1D) g(e)de = dn

Energy e(n) is determined by the quantum mechanics:

2
8mlL2

* Quantum harmonic oscillator e(n) = nhw

* Particle in a box e(n) =

* Relativistic particles e(n) = hf = Zn

Fys2160, 2018 28



Ng A

U(T) P(V, T)

©
o O

n,

Density of states

Number of states with energy between € and € + de = Number of states with state number
betweenn and n + dn

(3D) g(e)de = 7%nzdn, (2D)g(e)de = gndn, (2D), (1D) g(e)de = dn

FERMIONS: remember to multiply by factor 2 because there are two electrons per energy level
(spin up and spin down)

T T
(3D) g(e)de = ZXEnzdn, (2D)g(e)de = 2X Endn, (2D), (1D)g(e)de = 2xdn

PHOTONS : remember to multiply by factor 2 for the two transverse polarizations of the EM
waves

T
(3D) g(e)de = 2x Enzdn,

PHONONS: remember to multiply by factor 3 for the three polarizations of the sound waves

(3D) g(e)de = 3><gn2dn

Fys2160, 2018 29




Ng A

U(T) P(V, T)
@ ©
o DX

n y

n:

n,

Thermodynamic properties and density of states

Average energy

Average number of particles

U(T,V, ) =J de g(€) <N>E:J de g(e)eﬂ(e—i)+1
0 0 —

N(T,V,u) =f de g(€) UV)ZJ de g(e)eﬂ(e—u>+1
0 0 =

Fys2160, 2018
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© / DEGENERATE FERMIONS

U(T) P(V, T)

@ ©
& @\ e(n) = 8h2L 2 —>g(3D)(6)de —nnzdn—>g(3D)(e) __(8;1) Ve

n y

2

h? h* (N
er(N) = 8ml2 Mtmax = 8mlL2 (5)

Average energy

€F
" U(T,V,er) :j de g(e) €
0

n:

Average number of particles

N(T,V,ep) = jeFde g(e)
0

Fys2160, 2018



© / Photons

U(T) P(V, T)
2 _ 2
5 \ €n =57 M — g(e)de = mn“dn - g(e) = (he)? €
P Average energy
00 € 8nV 63 _ 8m>(kT)*
T =
u(r,v) fo de 9(©) 5 "1™ The )3f —1 15 (ho)3
n | Average number of particles
" N(T V)—jood © I 87TVJOO €2
! _0 E'geeﬂe—l_(hC)SO 68'86—1
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