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Isolated system at equilibrium

THE EQUIBRIUM STATE IS A MACROSTAE

1. WHAT IS THE MULTIPLICITY OF A MACROSTATE? 

2. WHAT IS THE ROLE OF ENTROPY? 

3. WHAT IS THE CONDITION FOR EQUILIBRIUM?  

U is	fixed
) * , ,, -(/, ,)
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Isolated system at equilibrium

Multiplicity of a macrostate Ω ", $, % counts all equally-likely accessible microstates

However, if the particles are indistinguishable the total number of accessible microstates
is reduced by the number of permutations &!

( ), *,& →
( ), *,&

&!

Probability that the system is in a specific microstate

, - =
1

Ω ", $, %

Boltzmann’s formula: Entropy of an equilibrium state at fixed U 

0 ", $, % = 1 lnΩ(", $, %) ↔ S(U, V, N) = −1 <
=

, - >? , -

Entropy is maximized for an equilibrium state @0 = 0

U is	fixed
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THERMODYNAMIC PROPERTIES
Thermodynamic identity for S 
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Temperature of an equibrium state measures the tendency of the system to give or accept
energy

% =
-"
-&

./

0,2

Pressure is	the measures the tendency of a	system	to	expand or	contract

( = %
-"
-) F,2

≡ −
-&
-) H,2

→ ( = ( ), %, , JKLMNOPQ PR SNMNJ

Chemical	potential is	the measures the tendency of a	system	to	give or	take particles

+ = −%
-"
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U is	fixed
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THERMODYNAMIC PROPERTIES 

Helmholtz	free energy

/ = 1 − 34

Enthalpy

8 = 1 + :;

Gibbs	free energy

@ = 1 − 34 + :; = AB

Chemical	potential is	the energy increase by	adding a	particle in	to	the system	

when the pressure and	temperature are constant.	

B =
I@

IA J,L

U is	fixed

4 1 , 3, :(;, 3)
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Q(R, S)

T(R, U)

V(W, U)

X(W, S)
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A system in contact with a thermal bath

1. WHAT	IS	THE	PARTITION	FUNCTION?	

2. WHAT	ARE	THE	FLUCTUATING	QUANTITIES?	

3. WHAT	IS	THE	EQUILIBRIUM	CONDITION?

4. WHAT	IS	THE	ROLE	OF	ENTROPY?	

= > , @(B, >)>
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A system in contact with a thermal bath

System+Thermal bath =	isolated system		

The	probability that the system	is	in	a	given	microstate is	proportional to	the probability that the
thermal bath is	in	any state that accomodate that particular microstate (hence the total	number
of microstates of the thermal bath corresponding to	systems’ microstate )	

Probability ratio	between two microstates (the system	can exchange energy with the
thermal bath @AB = −@D)		

E FG
E FH

=
ΩJ FG
ΩJ FH

= K
LM NO PLM(NQ)

R = K
SM NO PSM NQ

RT = KP
U NO PU NQ

RT

Probability of the system	in	a	specific microstate a	fixed temperature T

V W =
X

Y(Z)
[P

\W
]Z

Boltzmann partition function

Y Z = ∑W [
P\W]Z counts all the accessible microstates weighted by the Boltzmann factor

a b , E(d, b)b
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A system in contact with a thermal bath

! " = ∑% &'
()
*+ counts all the accessible microstates weighted by the Boltzmann factor

N-distinguishable, identical and independent classical particles

!, ", . = /
01,02⋯04

5'
64 01,⋯04

78 = !9,(", .)

N-indistinguishable, identical and independent classical particles

<4 8, = = ∑ 01,02⋯04 5'
64 01,⋯04

78 = 1
4! <1

4(8, =)
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THERMODYNAMIC PROPERTIES AND AVERAGES

! " =$
%

&'()* , " =
1
-.

Due to energy exchange with the thermal bath, the energy fluctuations from one microstate
to another. Thus, the total energy of an equilibrum macrostate is an average

/(., 1, 2) = 4% =$
%

4% &'()* = −
1
!
6!
6" 7,8

= −
6 ln !
6" 7,8

4%; =$
%

4%; &'()* =
1
!

6;!
6";

7,8

How	entropy relates to	the probability of a	microstate

M = −- $
%

N O lnN O

/ . , N(1, .)
.
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HELMHOLTZ FREE ENERGY 

! ", $, % ='

(

)*+,- , . =
1

0"

The	partition function determines the thermodynamic potential which minimized at	a	
given	T,	V	and	N.	

Helmholtz free energy

K L, M, N = −PL QRS T, U,V ↔ S = X*YZ

Thermodynamic identity
[Z = −\ [T − ][U + _[V

` " , a($, ")
"

d
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THERMODYNAMIC PROPERTIES 

Thermodynamic identity
!" = −% !& − '!( + *!+

Entropy

, = −
-.
-/ 0,2

Pressure

8 = −
-.
-9 :,2

→ 8 = 8 9, /, < =>?@ABCD CE FA@A=

Chemical	potential

S =
-.
-< :,0

T / , 8(9, /)
/
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Ideal gas in a thermal bath (High T-classical limit )
• Independent and indistinguishable quantum particles

• Quantum state of 1 particle is given by the quantized energy levels and the corresponding wavefunction (the

energy is associated with a wavefunction rather then the particle itself!)

!" =
%⃑ ⋅ %⃑
2(

=
ℎ*

8(,*
(./* + .1* + .2*), 56, 57, 58 = 9, :, ;,⋯

• One-particle partition function (3D)  

=> ?, @ =A
"B
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=> ?, @ = ∑" O
FP
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U
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^

_`(a)
, b c = Q

;dSeZ
(quantum length)

• N-particle partition function (3D)  

=f(?, @) =
:
g!

@
ΛU ?

f
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Maxwell-Bolzmann distribution
• Probability that the particle in a state with velocity vector

!"# $ ∼ &'()
*⋅*
,

• Probability that a particles has a speed between - and - + /- (- = $ ) 

1(31) 5 65 ∼ !"# $ /$7/$8/$9 = &'()
:;

, 4=-,/-

>
?

@

65 1(31) 5 = A

1(31) 5 =
B

CDEF

3
C
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B
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C

Fys2160, 2018 13



N-free particles in a thermal bath

• N-particle partition function

!" #, % = !'"
"! =

'
"!

%
)*(#)

"

• Helmholtz free energy

:" #, % = −<# => !" #, % = −"<# => !'
" − '

:" #, % = −"<# => %
"?*(#) − '
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N-free particles in a thermal bath
• N-particle partition function

!" #, % =
!'"

"! =
'
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• Energy	energy
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• Entropy
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: − H
#

=
*A2
/

+ "2 + "2 >?
%

"-*(#)
= "2 >?

%
"-*(#)

+
J
/

• Equation of state
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N-free particles in a thermal bath
• Helmholtz	free energy

/0 1, 3 = −061 78 3
09:(1) − =

• Chemical potential

>(1, 3) = ?/
?0 1,3

= −61 78 3
09: 1

@= =
3

9: 1 = 0ABC>
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Ideal gas in contact with a thermal bath

Probability	of one particle to	be	in	a	in	a	specific energy state a	fixed temperature T

7 8 =
1

;<(>)
@ABCD

Boltzmann distribution for	the average number of particles (occupation number)	in	a	

given	energy state

IJ = IK J = LAM(NJAO)

P > , 7(R, >)
>
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A system in contact with a thermal and particle reservoir

WHAT IS THE GIBBS FACTOR? 

WHAT QUANTITIES FLUCTUATES? 

WHAT IS THE EQUILIBRIUM CONDITION?

! " , $(&, ")"
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A system in contact with a thermal and particle reservoir

The	system	can exchange energy and	particles with a	reservoir and	it	is	in	equilibrium at	a	fixed
: and	chemical potential ;

Probability of the system	being in	a	given	microstate is	proportional to	the probability that the
reservois is	in	any state that accomodate that particular microstate (hence the total	number of
microstates of the thermal bath corresponding to	a	given		system’s microstate)	

Probability ratio	between two microstates (the system	can exchange energy @AB = −@E,	and	
particles @GB = −@G)		

H IJ
H IK

= LM IJ
LM IK

= N
OM PJ QOM(PK)

R = NSTUMNVSWTXM = NVSTY N SWTX

Probability of the system	in	a	specific microstate a	fixed T	and	;

Z [ =
\

](:, ;)
^V _(`[V; a[)

Grand	Partition function

Ξ d, e = ∑I NV S(YPVW XP) counts all the accessible microstates weighted by the Gibbs factor

What is the microstate [?

g d , h(i, d)d
e
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Non-interacting particle system in contact with a thermal and particle reservoir

Each	identical particle can occupy discrete energy states 34, 4 = 7, 8,⋯ is	the state number

For	N	identical particles,	we can have	@4 number of particles (occupation number)	in	the energy
state 34

The	energy of a	specific microstate with @E = ∑4@4 particles is		GE = ∑4@434

∑H ≡sum	over	all	particles number @E and	over	all	the partitions of particles	@E in	the quantum
states with total	energy GE

Ξ L, M =N
OP

N
{OR}

∑R ORTOP

UV W(XPVY OP) = N
{OR}

UVW ∑R OR(ZRVY)

Ξ L, M = N
O[

UVWO[ Z[VY ⋅ N
O]

UVWO] Z]VY ⋅⋅ N
O^

UVWO^ Z^VY ⋯

_ L , `(a, L)
L

M
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Occupation number of a state

Probability	of the system	in	a	specific microstate a	fixed T	and	6

7 8 =
1

Ξ(=, ?)
AB C(DEBF GE) =

ABCGH IHBF ⋅ ABCGK IKBF ⋅ ABCGL ILBF ⋯
∑GH A

BCGH IHBF ⋅ ∑GK A
BCGK IKBF ⋅⋅ ∑GL A

BCGL ILBF ⋯

O P =
QBRST UTB6

∑ST Q
BRST UTB6

⋅
QBRSV UVB6

∑SV Q
BRSV UVB6

⋅
QBRSW UWB6

∑SW Q
BRSW UWB6

⋯

O P = O(ST) ⋅ O(SV) ⋅ O(SW)⋯

Probability	for	the occupation number S of the given	state at	fixed T	and	6

O S =
QBRS UB6

∑S QBRS UB6

[ = , 7(\, =)=
?
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Non-interacting FERMIONS in contact with a thermal and particle reservoir

The	occupation number for	each quantum state is	3 = 5, 7

Probability	for	the occupation number 3 of the given	energy state a	fixed T	and	?

@ A =
BCDE FCG

1 + BCD FCG

Average occupation number ⟨3⟩ of the given	energy state M a	fixed T	and	?

FERMI-DIRAC	distribution

3 (W) = Y
3Z5

7

3[ 3 =
\C] WC?

7 + \C] WC? → 3 (W) =
7

\] WC? + 7

_ ` , @(a, `)`
b
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Fermi Dirac distribution

! " , $(&, ")"
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Non-interacting BOSONS in contact with a thermal and particle reservoir

The	occupation number for	each state is	2 = 4, 6, 7⋯

∑:;<
= >?@: A?B = C

C?DEF GEH , IJK L < N (IJK >P>KQ N!)

Probability for	the occupation number 2 of the given	energy state a	fixed T	and	[

\ ] = 1 − >?@ A?B >?@: A?B

Average occupation number ⟨2⟩ of the given	energy state N a	fixed T	and	[

BOSE-EINSTEIN	distribution

2 (j) = k
2;4

=

2l 2 = 6 − m?n j?[ k
2;4

=

2 m?n2 j?[ → 2 (j) =
6

mn j?[ − 6

p q , \(r, q)q
L
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Bose Einstein distribution

! " , $(&, ")"
(



Fys2160, 2018 26

Classical limit 

QUANTUM	distribution for	the average occupation number of an	energy state

; (=) =
1

AB CDE ± 1

High T limit (E G

HG
≪ 0)

BOLZMANN distribution

K L =
MNO

MNL ± MNO
→MNO→Q K L = MDN LDO

R S , U(V, S)
S

W
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THERMODYNAMIC PROPERTIES AND DENSITY OF STATES 
Average	energy

* =,
-.

,
-/

,
-0

1 (3) ⋅ 3 67, 69, 67 = :
;

<
=67 :

;

<
=69 :

;

<
=6> 3 ⋅ 1 = :

;

<
=3 ? 3 3 ⋅ ⟨1⟩

• Density of states ? 3 comes become we need to count all the quantum states at a given 
energy 3. Remember that the quantum state is given by the state of the wavefunction

• Number of states with energy between 3 and 3 + =3 ≡ Number of states with state number
between 6 and 6 + =6 (positive quadrant)

3E ? 3 d3 =
1
8
4J6K=6, 2E ? 3 d3 =

1
4
2J6=6, 2E , (1E) ? 3 d3 = =6

Energy 3 6 is determined by the quantum mechanics: 
• Particle in a box 3 6 = MN

OPQN
6K

• Quantum harmonic oscillator 3 6 = 6ℏS

• Relativistic particles 3 6 = ℎU = MV
KQ
6

* W , X(Y, W)W
Z
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Density of states
Number of states with energy between ! and ! + #! ≡ Number of states with state number
between % and % + #%

3' ( ! d! = +
2 %

-#%, 2' ( ! d! = +
2 %#%, 2' , (1') ( ! d! = #%

FERMIONS: remember to multiply by factor 2 because there are two electrons per energy level
(spin up and spin down)

3' ( ! d! = 2×+2 %
-#%, 2' ( ! d! = 2×+2 %#%, 2' , 1' ( ! d! = 2×#%

PHOTONS : remember to multiply by factor 2 for the two transverse polarizations of the EM 
waves

3' ( ! d! = 2×+2 %
-#%,

PHONONS: remember to multiply by factor 3 for the three polarizations of the sound waves

3' ( ! d! = 3×+2 %
-#%

3 4 , 5(6, 4)4
7
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Thermodynamic properties and density of states

Average	energy

*(,, ., /) = 2
3

4

56 7 6 8 6 = 2
3

4

56 7 6
6

9: ;<= ± 1

Average number of particles

8(,, ., /) = 2
3

4

56 7 6 8 = 2
3

4

56 7 6
1

9: ;<= ± 1

* , , K(., ,)
,

/
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DEGENERATE FERMIONS 

!(#) =
ℎ'

8)*'
#' → , -. ! /! = 0#'/# → , -. ! =

0

2

8)

ℎ'

-

!

!2(3) =
ℎ'

8)*'
#456
' =

ℎ'

8)*'
3

2

'

Average energy

?(@, B, !2) = C
D

EF

/! , ! !

Average number of particles

3(@, B, !2) = C
D

EF

/! , !

? @ , R(B, @)
@

S
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Photons

!" =
$%
&'

" → ) ! *! = +"&*" → ) ! =
,+ -
$% . !

&

Average energy

7 8, : = ;
<

=

>? @ ?
?

ABC − 1
=
8G :
ℎI J ;

<

=

>?
?J

ABC − 1
=
8GK L8 M

15 ℎI J

Average number of particles

Z 8, : = ;
<

=

>? @ ?
1

ABC − 1
=
8G :
ℎI J ;

<

=

>?
?[

ABC − 1

7 8 , \(:, 8)
8
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