

Summary Part 1

19.11.2018

Equilibrium statistical systems

Isolated system at equilibrium

THE EQUIBRIUM STATE IS A MACROSTAE

1. WHAT IS THE MULTIPLICITY OF A MACROSTATE?
2. WHAT IS THE ROLE OF ENTROPY?
3. WHAT IS THE CONDITION FOR EQUILIBRIUM?

Isolated system at equilibrium

Multiplicity of a macrostate $\Omega(U, V, N)$ counts all equally-likely accessible microstates

However, if the particles are indistinguishable the total number of accessible microstates is reduced by the number of permutations N !

$$
\Omega(U, V, N) \rightarrow \frac{\Omega(U, V, N)}{N!}
$$

Probability that the system is in a specific microstate

$$
P(s)=\frac{1}{\Omega(U, V, N)}
$$

Boltzmann's formula: Entropy of an equilibrium state at fixed U

$$
S(U, V, N)=k \ln \Omega(U, V, N) \leftrightarrow \mathrm{S}(\mathrm{U}, \mathrm{~V}, \mathrm{~N})=-k \sum_{s} P(s) \ln P(s)
$$

Entropy is maximized for an equilibrium state $d S=0$

THERMODYNAMIC PROPERTIES

U is fixed $S(U), T, P(V, T)$

Thermodynamic identity for S

$$
d S=\frac{1}{T} d U+\frac{P}{T} d V-\frac{\mu}{T} d N
$$

Temperature of an equibrium state measures the tendency of the system to give or accept energy

$$
T=\left(\frac{\partial S}{\partial U}\right)_{V, N}^{-1}
$$

Pressure is the measures the tendency of a system to expand or contract

$$
P=T\left(\frac{\partial S}{\partial V}\right)_{U, N} \equiv-\left(\frac{\partial U}{\partial V}\right)_{S, N} \rightarrow P=P(V, T, N) \text { equation of state }
$$

Chemical potential is the measures the tendency of a system to give or take particles

$$
\mu=-T\left(\frac{\partial S}{\partial N}\right)_{U, V} \equiv\left(\frac{\partial U}{\partial N}\right)_{S, V}
$$

THERMODYNAMIC PROPERTIES

U is fixed
Helmholtz free energy

$$
F=U-T S
$$

Enthalpy

$$
H=U+P V
$$

Gibbs free energy

$$
G=U-T S+P V=N \mu
$$

Chemical potential is the energy increase by adding a particle in to the system when the pressure and temperature are constant.

$$
\mu=\left(\frac{\partial G}{\partial N}\right)_{T, P}
$$

A system in contact with a thermal bath
3. WHAT WHAT IS THE PARTITION FUNCTION?
2. WHAT THE EQUILIBRIUM CONDITION?
4. WHAT IS THE ROLE OF ENTROPY?

A system in contact with a thermal bath

System+Thermal bath = isolated system

The probability that the system is in a given microstate is proportional to the probability that the thermal bath is in any state that accomodate that particular microstate (hence the total number of microstates of the thermal bath corresponding to systems' microstate)

Probability ratio between two microstates (the system can exchange energy with the thermal bath $\Delta \mathrm{U}_{\mathrm{R}}=-\Delta \mathrm{E}$)

$$
\frac{P\left(s_{1}\right)}{P\left(s_{2}\right)}=\frac{\Omega_{R}\left(s_{1}\right)}{\Omega_{R}\left(s_{2}\right)}=e^{\frac{\left[s_{R}\left(s_{1}\right)-S_{R}\left(s_{2}\right)\right]}{k}}=e^{\frac{\left[U_{R}\left(s_{1}\right)-U_{R}\left(s_{2}\right)\right]}{k T}}=e^{-\frac{\left[E\left(s_{1}\right)-E\left(s_{2}\right)\right]}{k T}}
$$

Probability of the system in a specific microstate a fixed temperature T

$$
P(s)=\frac{1}{Z(T)} e^{-\frac{E_{s}}{k T}}
$$

Boltzmann partition function
$Z(T)=\sum_{s} e^{-\frac{E_{S}}{k T}}$ counts all the accessible microstates weighted by the Boltzmann factor

A system in contact with a thermal bath

$Z(T)=\sum_{s} e^{-\frac{E_{s}}{k T}}$ counts all the accessible microstates weighted by the Boltzmann factor
N-distinguishable, identical and independent classical particles

$$
Z_{N}(T, V)=\sum_{\left\{s_{1}, s_{2} \cdots s_{N}\right\}} e^{-\frac{E_{N}\left(s_{1}, \cdots s_{N}\right)}{k T}}=Z_{1}^{N}(T, V)
$$

N-indistinguishable, identical and independent classical particles

$$
Z_{N}(T, V)=\sum_{\left\{s_{1}, s_{2} \cdots s_{N}\right\}} e^{-\frac{E_{N}\left(s_{1} \cdots s_{N}\right)}{k T}}=\frac{1}{N!} Z_{1}^{N}(T, V)
$$

THERMODYNAMIC PROPERTIES AND AVERAGES

$$
Z(\beta)=\sum_{s} e^{-\beta E_{s}}, \beta=\frac{1}{k T}
$$

Due to energy exchange with the thermal bath, the energy fluctuations from one microstate to another. Thus, the total energy of an equilibrum macrostate is an average

$$
\begin{gathered}
U(T, V, N)=\left\langle E_{S}\right\rangle=\sum_{S} E_{S} e^{-\beta E_{S}}=-\frac{1}{Z}\left(\frac{\partial Z}{\partial \beta}\right)_{V, N}=-\left(\frac{\partial \ln Z}{\partial \beta}\right)_{V, N} \\
\left\langle E_{S}^{2}\right\rangle=\sum_{S} E_{S}^{2} e^{-\beta E_{S}}=\frac{1}{Z}\left(\frac{\partial^{2} Z}{\partial \beta^{2}}\right)_{V, N}
\end{gathered}
$$

How entropy relates to the probability of a microstate

$$
S=-k \sum_{s} P(s) \ln P(s)
$$

HELMHOLTZ FREE ENERGY

$$
Z(T, V, N)=\sum_{s} e^{-\beta E_{s}}, \beta=\frac{1}{k T}
$$

The partition function determines the thermodynamic potential which minimized at a given T, V and N.

Helmholtz free energy

$$
\mathrm{F}(\mathrm{~T}, \mathrm{~V}, \mathrm{~N})=-\mathrm{kT} \ln Z(T, V, N) \leftrightarrow Z=e^{-\beta F}
$$

Thermodynamic identity

$$
d F=-S d T-P d V+\mu d N
$$

THERMODYNAMIC PROPERTIES

Thermodynamic identity

$$
d F=-S d T-P d V+\mu d N
$$

Entropy

$$
S=-\left(\frac{\partial F}{\partial T}\right)_{V, N}
$$

Pressure

$$
P=-\left(\frac{\partial F}{\partial V}\right)_{T, N} \rightarrow P=P(V, T, N) \text { equation of state }
$$

Chemical potential

$$
\mu=\left(\frac{\partial F}{\partial N}\right)_{T, V}
$$

Ideal gas in a thermal bath (High T-classical limit)

- Independent and indistinguishable quantum particles
- Quantum state of 1 particle is given by the quantized energy levels and the corresponding wavefunction (the energy is associated with a wavefunction rather then the particle itself!)

$$
\epsilon_{n}=\frac{\vec{p} \cdot \vec{p}}{2 m}=\frac{h^{2}}{8 m L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right), \quad \boldsymbol{n}_{x}, \boldsymbol{n}_{\boldsymbol{y}}, \boldsymbol{n}_{z}=\mathbf{0}, \mathbf{1}, 2, \cdots
$$

- One-particle partition function (3D)

$$
Z_{1}(T, V)=\sum_{n_{x}} \sum_{n_{y}} \sum_{n_{z}} e^{-\beta \frac{h^{2}}{8 m L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)}
$$

$$
Z_{1}(T, V)=\left(\sum_{n} e^{-\beta \frac{h^{2}}{8 m L^{2}} n^{2}}\right)^{3} \approx \underset{n i g h T}{ } \frac{1}{2} \int_{-\infty}^{\infty} d n e^{-\beta \frac{h^{2}}{8 m L^{2}} n^{2}}=\frac{V}{\Lambda^{3}(T)}, \quad \Lambda(T)=\sqrt{\frac{h}{2 \pi m k T}} \text { (quantum length) }
$$

- N-particle partition function (3D)

$$
Z_{N}(T, V)=\frac{1}{N!}\left(\frac{V}{\Lambda^{3}(T)}\right)^{N}
$$

Maxwell-Bolzmann distribution

- Probability that the particle in a state with velocity vector

$$
P_{3 D}(\vec{V}) \sim e^{-\beta m \frac{\vec{V} \cdot \vec{V}}{2}}
$$

- Probability that a particles has a speed between v and $v+d v(v=|\vec{V}|)$

$$
\begin{gathered}
\boldsymbol{D}^{(3 \boldsymbol{D})}(\boldsymbol{v}) \boldsymbol{d} v \sim P_{3 D}(\vec{V}) d V_{x} d V_{y} d V_{z}=e^{-\beta m \frac{v^{2}}{2}} 4 \pi v^{2} d v \\
\int_{0}^{\infty} \boldsymbol{d} v \boldsymbol{D}^{(3 \boldsymbol{D})}(v)=\mathbf{1} \\
\boldsymbol{D}^{(3 D)}(v)=\left(\frac{m}{2 \pi k T}\right)^{\frac{3}{2}} 4 \pi v^{2} e^{-\frac{m}{2 k T} v^{2}}
\end{gathered}
$$

N -free particles in a thermal bath

- N-particle partition function

$$
Z_{N}(T, V)=\frac{Z_{1}^{N}}{N!}=\frac{1}{N!}\left(\frac{V}{\Lambda^{3}(T)}\right)^{N}
$$

- Helmholtz free energy

$$
\begin{gathered}
F_{N}(T, V)=-k T \ln Z_{N}(T, V)=-N k T\left[\ln \left(\frac{Z_{1}}{N}\right)-1\right] \\
F_{N}(T, V)=-N k T\left[\ln \left(\frac{V}{N \Lambda^{3}(T)}\right)-1\right]
\end{gathered}
$$

N -free particles in a thermal bath

- N-particle partition function

$$
Z_{N}(T, V)=\frac{Z_{1}^{N}}{N!}=\frac{1}{N!}\left(\frac{V}{\Lambda^{3}(T)}\right)^{N}, \quad \Lambda(T)=\sqrt{\frac{h}{2 \pi m k T}}
$$

- Energy energy

$$
U=-\frac{\partial}{\partial \beta} \ln Z_{N}(T, V)=3 N \frac{d}{d \beta} \ln \Lambda(\beta)=\frac{3 \mathrm{~N}}{2} \mathrm{kT}
$$

- Entropy

$$
S=\frac{U-F}{T}=\frac{3 N k}{2}+N k+N k\left[\ln \left(\frac{V}{N \Lambda^{3}(T)}\right)\right]=N k\left[\ln \left(\frac{V}{N \Lambda^{3}(T)}\right)+\frac{5}{2}\right]
$$

- Equation of state

$$
P=-\left(\frac{\partial F}{\partial V}\right)_{T, N}=\frac{k T}{V}
$$

N -free particles in a thermal bath

- Helmholtz free energy

$$
F_{N}(T, V)=-N k T\left[\ln \left(\frac{V}{N \Lambda^{3}(T)}\right)-1\right]
$$

- Chemical potential

$$
\mu(T, V)=\left(\frac{\partial F}{\partial N}\right)_{T, V}=-k T \ln \left(\frac{V}{N \Lambda^{3}(T)}\right)
$$

$$
Z_{1}=\frac{V}{\Lambda^{3}(T)}=N e^{-\beta \mu}
$$

Ideal gas in contact with a thermal bath

Probability of one particle to be in a in a specific energy state a fixed temperature T

$$
P(s)=\frac{1}{Z_{1}(T)} e^{-\beta E_{s}}
$$

Boltzmann distribution for the average number of particles (occupation number) in a given energy state

$$
\left\langle N_{s}\right\rangle=N P(s)=e^{-\beta\left(E_{s}-\mu\right)}
$$


```
WHAT IS THE GIBBS FACTOR?
WHAT QUANTITIES FLUCTUATES?
WHAT IS THE EQUILIBRIUM CONDITION?
```


A system in contact with a thermal and particle reservoir

The system can exchange energy and particles with a reservoir and it is in equilibrium at a fixed T and chemical potential μ

Probability of the system being in a given microstate is proportional to the probability that the reservois is in any state that accomodate that particular microstate (hence the total number of microstates of the thermal bath corresponding to a given system's microstate)

Probability ratio between two microstates (the system can exchange energy $\Delta \mathrm{U}_{\mathrm{R}}=-\Delta \mathrm{E}$, and particles $\Delta N_{R}=-\Delta N$)

$$
\frac{P\left(s_{1}\right)}{P\left(s_{2}\right)}=\frac{\Omega_{R}\left(s_{1}\right)}{\Omega_{R}\left(s_{2}\right)}=e^{\frac{\left[s_{R}\left(s_{1}\right)-s_{R}\left(s_{2}\right)\right]}{k}}=e^{\beta \Delta U_{R}} e^{-\beta \mu \Delta N_{R}}=e^{-\beta \Delta E} e^{\beta \mu \Delta N}
$$

Probability of the system in a specific microstate a fixed T and μ

$$
P(s)=\frac{1}{\Xi(T, \mu)} e^{-\beta\left(E_{s}-\mu N_{s}\right)}
$$

Grand Partition function
$\Xi(T, \mu)=\sum_{s} e^{-\beta\left(E_{s}-\mu N_{s}\right)}$ counts all the accessible microstates weighted by the Gibbs factor
What is the microstate s ?

Non-interacting particle system in contact with a thermal and particle reservoir

Each identical particle can occupy discrete energy states $\boldsymbol{\epsilon}_{\boldsymbol{j}}, \boldsymbol{j}=\mathbf{1}, \mathbf{2}, \cdots$ is the state number
For N identical particles, we can have N_{j} number of particles (occupation number) in the energy state $\boldsymbol{\epsilon}_{\boldsymbol{j}}$

The energy of a specific microstate with $N_{s}=\sum_{j} N_{j}$ particles is $E_{s}=\sum_{j} N_{j} \epsilon_{j}$
$\sum_{s} \equiv$ sum over all particles number \boldsymbol{N}_{s} and over all the partitions of particles \boldsymbol{N}_{s} in the quantum states with total energy $\boldsymbol{E}_{\boldsymbol{s}}$

$$
\begin{gathered}
\Xi(T, \mu)=\sum_{N_{S}} \sum_{\substack{\left\{N_{j}\right\} \\
\sum_{j} N_{j}=N_{S}}} e^{-\beta\left(E_{S}-\mu N_{s}\right)}=\sum_{\left\{N_{j}\right\}} e^{-\beta \sum_{j} N_{j}\left(\epsilon_{j}-\mu\right)} \\
\Xi(T, \mu)=\left(\sum_{N_{1}} e^{-\beta N_{1}\left(\epsilon_{1}-\mu\right)}\right) \cdot\left(\sum_{N_{2}} e^{-\beta N_{2}\left(\epsilon_{2}-\mu\right)}\right) \cdot \cdot\left(\sum_{N_{3}} e^{-\beta N_{3}\left(\epsilon_{3}-\mu\right)}\right) \cdots
\end{gathered}
$$

Occupation number of a state

Probability of the system in a specific microstate a fixed T and μ

$$
\begin{gathered}
P(s)=\frac{1}{\Xi(T, \mu)} e^{-\beta\left(E_{s}-\mu N_{s}\right)}=\frac{e^{-\beta N_{1}\left(\epsilon_{1}-\mu\right)} \cdot e^{-\beta N_{2}\left(\epsilon_{2}-\mu\right)} \cdot e^{-\beta N_{3}\left(\epsilon_{3}-\mu\right)} \ldots}{\left(\sum_{N_{1}} e^{-\beta N_{1}\left(\epsilon_{1}-\mu\right)}\right) \cdot\left(\sum_{N_{2}} e^{-\beta N_{2}\left(\epsilon_{2}-\mu\right)}\right) \cdot \cdot\left(\sum_{N_{3}} e^{-\beta N_{3}\left(\epsilon_{3}-\mu\right)}\right) \cdots} \\
P(s)=\frac{e^{-\beta N_{1}\left(\epsilon_{1}-\mu\right)}}{\left(\sum_{N_{1}} e^{-\beta N_{1}\left(\epsilon_{1}-\mu\right)}\right)} \cdot \frac{e^{-\beta N_{2}\left(\epsilon_{2}-\mu\right)}}{\left(\sum_{N_{2}} e^{-\beta N_{2}\left(\epsilon_{2}-\mu\right)}\right)} \cdot \frac{e^{-\beta N_{3}\left(\epsilon_{3}-\mu\right)}}{\left(\sum_{N_{3}} e^{-\beta N_{3}\left(\epsilon_{3}-\mu\right)}\right)} \cdots \\
\boldsymbol{P}(\boldsymbol{s})=\boldsymbol{P}\left(N_{1}\right) \cdot \boldsymbol{P}\left(N_{2}\right) \cdot \boldsymbol{P}\left(N_{3}\right) \cdots
\end{gathered}
$$

Probability for the occupation number N of the given state at fixed T and μ

$$
P(N)=\frac{e^{-\beta N(\epsilon-\mu)}}{\left(\sum_{N} e^{-\beta N(\epsilon-\mu)}\right)}
$$

The occupation number for each quantum state is $N=\mathbf{0 , 1}$

Probability for the occupation number N of the given energy state a fixed T and μ

$$
P(N)=\frac{e^{-\beta N(\epsilon-\mu)}}{1+e^{-\beta(\epsilon-\mu)}}
$$

Average occupation number $\langle N\rangle$ of the given energy state ϵ a fixed T and $\boldsymbol{\mu}$ FERMI-DIRAC distribution

$$
\langle N\rangle(\epsilon)=\sum_{N=0}^{1} N P(N)=\frac{e^{-\beta(\epsilon-\mu)}}{1+e^{-\beta(\epsilon-\mu)}} \rightarrow\langle N\rangle(\epsilon)=\frac{1}{e^{\beta(\epsilon-\mu)}+1}
$$

The occupation number for each state is $N=0,1,2 \cdots$
$\sum_{N=0}^{\infty} e^{-\beta N(\epsilon-\mu)}=\frac{1}{1-e^{-\beta(\epsilon-\mu)}}, \quad$ for $\mu<\epsilon($ for every $\epsilon!)$
Probability for the occupation number \boldsymbol{N} of the given energy state a fixed T and $\boldsymbol{\mu}$

$$
P(N)=\left(1-e^{-\beta(\epsilon-\mu)}\right) e^{-\beta N(\epsilon-\mu)}
$$

Average occupation number $\langle N\rangle$ of the given energy state ϵ a fixed T and $\boldsymbol{\mu}$
BOSE-EINSTEIN distribution

$$
\langle N\rangle(\epsilon)=\sum_{N=0}^{\infty} N P(N)=\left(1-e^{-\beta(\epsilon-\mu)}\right) \sum_{N=0}^{\infty} N e^{-\beta N(\epsilon-\mu)} \rightarrow\langle N\rangle(\epsilon)=\frac{1}{e^{\beta(\epsilon-\mu)}-1}
$$

Classical limit

QUANTUM distribution for the average occupation number of an energy state

$$
\langle N\rangle(\epsilon)=\frac{1}{e^{\beta(\epsilon-\mu)} \pm 1}
$$

High T limit $\left(\frac{\mu(T)}{k T} \ll 0\right)$

BOLZMANN distribution

$$
\langle N\rangle(\epsilon)=\frac{e^{\beta \mu}}{e^{\beta \epsilon} \pm e^{\beta \mu}} \rightarrow_{e^{\beta \mu} \rightarrow 0}\langle N\rangle(\epsilon)=e^{-\beta(\epsilon-\mu)}
$$

THERMODYNAMIC PROPERTIES AND DENSITY OF STATES

Average energy

$U=\sum_{n_{x}} \sum_{n_{y}} \sum_{n_{z}}\langle N\rangle(\epsilon) \cdot \epsilon\left(n_{x}, n_{y}, n_{x}\right)=\int_{0}^{\infty} d n_{x} \int_{0}^{\infty} d n_{y} \int_{0}^{\infty} d n_{z} \epsilon \cdot\langle N\rangle=\int_{0}^{\infty} d \epsilon g(\epsilon) \epsilon \cdot\langle N\rangle$

- Density of states $g(\epsilon)$ comes become we need to count all the quantum states at a given energy ϵ. Remember that the quantum state is given by the state of the wavefunction
- Number of states with energy between ϵ and $\epsilon+d \epsilon \equiv$ Number of states with state number between n and $n+d n$ (positive quadrant)
(3D) $g(\epsilon) \mathrm{d} \epsilon=\frac{1}{8} 4 \pi n^{2} d n$,
$(2 D) g(\epsilon) \mathrm{d} \epsilon=\frac{1}{4} 2 \pi n d n,(2 D)$,
(1D) $g(\epsilon) \mathrm{d} \epsilon=d n$

Energy $\epsilon(n)$ is determined by the quantum mechanics:

- Particle in a box $\epsilon(n)=\frac{h^{2}}{8 m L^{2}} n^{2}$
- Quantum harmonic oscillator $\epsilon(n)=n \hbar \omega$
- Relativistic particles $\epsilon(n)=h f=\frac{h c}{2 L} n$

Density of states

Number of states with energy between ϵ and $\epsilon+d \epsilon \equiv$ Number of states with state number between n and $n+d n$

$$
(3 D) g(\epsilon) \mathrm{d} \epsilon=\frac{\pi}{2} n^{2} d n, \quad(2 D) g(\epsilon) \mathrm{d} \epsilon=\frac{\pi}{2} n d n,(2 D), \quad(1 D) g(\epsilon) \mathrm{d} \epsilon=d n
$$

FERMIONS: remember to multiply by factor 2 because there are two electrons per energy level (spin up and spin down)

$$
(3 D) g(\epsilon) \mathrm{d} \epsilon=2 \times \frac{\pi}{2} n^{2} d n, \quad(2 D) g(\epsilon) \mathrm{d} \epsilon=2 \times \frac{\pi}{2} n d n,(2 D), \quad(1 D) g(\epsilon) \mathrm{d} \epsilon=2 \times d n
$$

PHOTONS : remember to multiply by factor 2 for the two transverse polarizations of the EM waves

$$
(3 D) g(\epsilon) \mathrm{d} \epsilon=2 \times \frac{\pi}{2} n^{2} d n
$$

PHONONS: remember to multiply by factor 3 for the three polarizations of the sound waves

$$
(3 D) g(\epsilon) \mathrm{d} \epsilon=3 \times \frac{\pi}{2} n^{2} d n
$$

Thermodynamic properties and density of states

Average energy

$$
U(T, V, \mu)=\int_{0}^{\infty} d \epsilon g(\epsilon)\langle N\rangle \epsilon=\int_{0}^{\infty} d \epsilon g(\epsilon) \frac{\epsilon}{e^{\beta(\epsilon-\mu)} \pm 1}
$$

Average number of particles

$$
N(T, V, \mu)=\int_{0}^{\infty} d \epsilon g(\epsilon)\langle N\rangle=\int_{0}^{\infty} d \epsilon g(\epsilon) \frac{1}{e^{\beta(\epsilon-\mu)} \pm 1}
$$

DEGENERATE FERMIONS

$$
\begin{gathered}
\epsilon(n)=\frac{h^{2}}{8 m L^{2}} n^{2} \rightarrow g^{(3 D)}(\epsilon) d \epsilon=\pi n^{2} d n \rightarrow g^{(3 D)}(\epsilon)=\frac{\pi}{2}\left(\frac{8 m}{h^{2}}\right)^{3} \sqrt{\epsilon} \\
\epsilon_{F}(N)=\frac{h^{2}}{8 m L^{2}} n_{\max }^{2}=\frac{h^{2}}{8 m L^{2}}\left(\frac{N}{2}\right)^{2}
\end{gathered}
$$

Average energy

$$
U\left(T, V, \epsilon_{F}\right)=\int_{0}^{\epsilon_{F}} d \epsilon g(\epsilon) \epsilon
$$

Average number of particles

$$
N\left(T, V, \epsilon_{F}\right)=\int_{0}^{\epsilon_{F}} d \epsilon g(\epsilon)
$$

Photons

$$
\epsilon_{n}=\frac{h c}{2 L} n \rightarrow g(\epsilon) d \epsilon=\pi n^{2} d n \rightarrow g(\epsilon)=\frac{8 \pi V}{(h c)^{3}} \epsilon^{2}
$$

Average energy

$$
U(T, V)=\int_{0}^{\infty} d \epsilon g(\epsilon) \frac{\epsilon}{e^{\beta \epsilon}-1}=\frac{8 \pi V}{(h c)^{3}} \int_{0}^{\infty} d \epsilon \frac{\epsilon^{3}}{e^{\beta \epsilon}-1}=\frac{8 \pi^{5}(k T)^{4}}{15(h c)^{3}}
$$

Average number of particles

$$
N(T, V)=\int_{0}^{\infty} d \epsilon g(\epsilon) \frac{1}{e^{\beta \epsilon}-1}=\frac{8 \pi V}{(h c)^{3}} \int_{0}^{\infty} d \epsilon \frac{\epsilon^{2}}{e^{\beta \epsilon}-1}
$$

