U is fixed S(U), T, P(V, T)

Summary Part 1

19.11.2018

Equilibrium statistical systems

U is fixed S(U), T, P(V, T)

THE EQUIBRIUM STATE IS A MACROSTAE

1. WHAT IS THE MULTIPLICITY OF A MACROSTATE?

2. WHAT IS THE ROLE OF ENTROPY?

3. WHAT IS THE CONDITION FOR EQUILIBRIUM?

S

Isolated system at equilibrium

Multiplicity of a macrostate $\Omega(U, V, N)$ counts all equally-likely accessible microstates

However, if the particles are **indistinguishable** the total number of accessible microstates is reduced by the number of permutations N!

$$\Omega(U,V,N) \to \frac{\Omega(U,V,N)}{N!}$$

Probability that the system is in a *specific microstate*

$$P(s) = \frac{1}{\Omega(U, V, N)}$$

Boltzmann's formula: Entropy of an equilibrium state at fixed U

$$S(U, V, N) = k \ln \Omega(U, V, N) \leftrightarrow S(U, V, N) = -k \sum_{s} P(s) \ln P(s)$$

Entropy is maximized for an equilibrium state dS = 0

THERMODYNAMIC PROPERTIES

U is fixed S(U), T, P(V, T)

Thermodynamic identity for S

$$dS = \frac{1}{T}dU + \frac{P}{T}dV - \frac{\mu}{T}dN$$

<u>Temperature</u> of an equibrium state measures the tendency of the system to give or accept energy

$$T = \left(\frac{\partial S}{\partial U}\right)^{-1}_{V,N}$$

<u>Pressure</u> is the measures the tendency of a system to expand or contract

$$P = T \left(\frac{\partial S}{\partial V} \right)_{U,N} \equiv -\left(\frac{\partial U}{\partial V} \right)_{S,N} \to P = P(V,T,N) \text{ equation of state}$$

<u>Chemical potential</u> is the measures the tendency of a system to give or take particles

$$\mu = -T \left(\frac{\partial S}{\partial N} \right)_{U,V} \equiv \left(\frac{\partial U}{\partial N} \right)_{S,V}$$

THERMODYNAMIC PROPERTIES

Helmholtz free energy

$$F = U - TS$$

Enthalpy

$$H = U + PV$$

Gibbs free energy

$$G = U - TS + PV = N\mu$$

Chemical potential is the energy increase by adding a particle in to the system when the pressure and temperature are constant.

$$\mu = \left(\frac{\partial G}{\partial N}\right)_{T}$$

A system in contact with a thermal bath

1. WHAT IS THE PARTITION FUNCTION?

2. WHAT ARE THE FLUCTUATING QUANTITIES?

3. WHAT IS THE EQUILIBRIUM CONDITION?

4. WHAT IS THE ROLE OF ENTROPY?

(S)d

A system in contact with a thermal bath

System+Thermal bath = isolated system

The probability that the system is in a given microstate is proportional to the probability that the thermal bath is in *any state that accommodate that particular microstate (hence the total number of microstates of the thermal bath corresponding to systems' microstate)*

Probability ratio between two microstates (the system can exchange energy with the thermal bath $\Delta U_R = -\Delta E$)

$$\frac{P(s_1)}{P(s_2)} = \frac{\Omega_R(s_1)}{\Omega_R(s_2)} = e^{\frac{[S_R(s_1) - S_R(s_2)]}{k}} = e^{\frac{[U_R(s_1) - U_R(s_2)]}{kT}} = e^{-\frac{[E(s_1) - E(s_2)]}{kT}}$$

Probability of the system in a specific microstate a fixed temperature T

$$P(s) = \frac{1}{Z(T)}e^{-\frac{E_s}{kT}}$$

Boltzmann partition function

 $Z(T) = \sum_{s} e^{-\frac{E_{s}}{kT}}$ counts all the accessible microstates weighted by the Boltzmann factor

A system in contact with a thermal bath

 $Z(T) = \sum_{S} e^{-\frac{E_{S}}{kT}}$ counts all the accessible microstates weighted by the Boltzmann factor

N-distinguishable, identical and independent classical particles

$$Z_N(T,V) = \sum_{\{s_1,s_2\cdots s_N\}} e^{-\frac{E_N(s_1,\cdots s_N)}{kT}} = Z_1^N(T,V)$$

N-indistinguishable, identical and independent classical particles

$$Z_N(T,V) = \sum_{\{s_1,s_2\cdots s_N\}} e^{-\frac{E_N(s_1,\cdots s_N)}{kT}} = \frac{1}{N!} Z_1^N(T,V)$$

THERMODYNAMIC PROPERTIES AND AVERAGES

$$Z(\beta) = \sum_{S} e^{-\beta E_{S}}$$
 , $\beta = \frac{1}{kT}$

Due to energy exchange with the thermal bath, the energy fluctuations from one microstate to another. Thus, the total energy of an equilibrum macrostate is an average

$$U(T, V, N) = \langle E_S \rangle = \sum_S E_S e^{-\beta E_S} = -\frac{1}{Z} \left(\frac{\partial Z}{\partial \beta} \right)_{V, N} = -\left(\frac{\partial \ln Z}{\partial \beta} \right)_{V, N}$$

$$\langle E_S^2 \rangle = \sum_S E_S^2 e^{-\beta E_S} = \frac{1}{Z} \left(\frac{\partial^2 Z}{\partial \beta^2} \right)_{V,N}$$

How entropy relates to the probability of a microstate

$$S = -k \sum_{s} P(s) \ln P(s)$$

Fys2160, 2018

9

HELMHOLTZ FREE ENERGY

$$Z(T, V, N) = \sum_{S} e^{-\beta E_{S}}, \beta = \frac{1}{kT}$$

The partition function determines the thermodynamic potential which minimized at a given T, V and N.

Helmholtz free energy

$$F(T, V, N) = -kT \ln Z(T, V, N) \leftrightarrow Z = e^{-\beta F}$$

Thermodynamic identity

$$dF = -S dT - P dV + \mu dN$$

THERMODYNAMIC PROPERTIES

Thermodynamic identity

$$dF = -S dT - P dV + \mu dN$$

Entropy

$$S = -\left(\frac{\partial F}{\partial T}\right)_{V,N}$$

Pressure

$$P = -\left(\frac{\partial F}{\partial V}\right)_{T,N} \to P = P(V,T,N) \text{ equation of state}$$

Chemical potential

$$\mu = \left(\frac{\partial F}{\partial N}\right)_{T,V}$$

Ideal gas in a thermal bath (High T-classical limit)

- Independent and indistinguishable quantum particles
- Quantum state of 1 particle is given by the quantized energy levels and the corresponding wavefunction (the energy is associated with a wavefunction rather then the particle itself!)

$$\epsilon_n = \frac{\vec{p} \cdot \vec{p}}{2m} = \frac{h^2}{8mL^2} (n_x^2 + n_y^2 + n_z^2), \qquad n_x, n_y, n_z = 0, 1, 2, \dots$$

One-particle partition function (3D)

$$Z_1(T,V) = \sum_{n_x} \sum_{n_y} \sum_{n_z} e^{-\beta \frac{h^2}{8mL^2} (n_x^2 + n_y^2 + n_z^2)},$$

$$Z_1(T,V) = \left(\sum_n e^{-\beta \frac{h^2}{8mL^2}n^2}\right)^3 \approx \underset{\substack{n \gg 1 \\ high\ T}}{\frac{1}{2}} \int_{-\infty}^{\infty} dn\ e^{-\beta \frac{h^2}{8mL^2}n^2} = \frac{V}{\Lambda^3(T)}, \quad \Lambda(\mathbf{T}) = \sqrt{\frac{h}{2\pi mkT}} \text{ (quantum length)}$$

N-particle partition function (3D)

$$Z_N(T,V) = \frac{1}{N!} \left(\frac{V}{\Lambda^3(T)}\right)^N$$

Maxwell-Bolzmann distribution

Probability that the particle in a state with velocity vector

$$P_{3D}(\vec{V}) \sim e^{-\beta m \frac{\vec{V} \cdot \vec{V}}{2}}$$

• Probability that a particles has a *speed* between v and v+dv ($v=\left|\overrightarrow{V}\right|$)

$$\mathbf{D}^{(3D)}(\mathbf{v})d\mathbf{v} \sim P_{3D}(\vec{V})dV_x dV_y dV_z = e^{-\beta m \frac{v^2}{2}} 4\pi v^2 dv$$
$$\int_0^\infty d\mathbf{v} \ \mathbf{D}^{(3D)}(\mathbf{v}) = \mathbf{1}$$

$$D^{(3D)}(v) = \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} 4\pi v^{2} e^{-\frac{m}{2kT}v^{2}}$$

N-free particles in a thermal bath

N-particle partition function

$$Z_N(T,V) = \frac{Z_1^N}{N!} = \frac{1}{N!} \left(\frac{V}{\Lambda^3(T)}\right)^N$$

Helmholtz free energy

$$F_N(T,V) = -kT \ln Z_N(T,V) = -NkT \left[\ln \left(\frac{Z_1}{N} \right) - 1 \right]$$

$$F_N(T,V) = -NkT \left[ln \left(\frac{V}{N\Lambda^3(T)} \right) - 1 \right]$$

N-free particles in a thermal bath

N-particle partition function

$$Z_N(T,V) = \frac{Z_1^N}{N!} = \frac{1}{N!} \left(\frac{V}{\Lambda^3(T)}\right)^N, \qquad \Lambda(T) = \sqrt{\frac{h}{2\pi mkT}}$$

Energy energy

$$U = -\frac{\partial}{\partial \beta} \ln Z_N(T, V) = 3N \frac{d}{d\beta} \ln \Lambda(\beta) = \frac{3N}{2} kT$$

Entropy

$$S = \frac{U - F}{T} = \frac{3Nk}{2} + Nk + Nk \left[ln \left(\frac{V}{N\Lambda^3(T)} \right) \right] = Nk \left[ln \left(\frac{V}{N\Lambda^3(T)} \right) + \frac{5}{2} \right]$$

Equation of state

$$P = -\left(\frac{\partial F}{\partial V}\right)_{T,N} = \frac{kT}{V}$$

N-free particles in a thermal bath

Helmholtz free energy

$$F_N(T,V) = -NkT \left[ln \left(\frac{V}{N\Lambda^3(T)} \right) - 1 \right]$$

$$\mu(T,V) = \left(\frac{\partial F}{\partial N}\right)_{T,V} = -kT \ln \left(\frac{V}{N\Lambda^3(T)}\right)$$

$$Z_1 = \frac{V}{\Lambda^3(T)} = Ne^{-\beta\mu}$$

E₆

Ideal gas in contact with a thermal bath

Probability of one particle to be in a in a specific energy state a fixed temperature T

$$P(s) = \frac{1}{Z_1(T)} e^{-\beta E_S}$$

Boltzmann distribution for the average number of particles (occupation number) in a given energy state

$$\langle N_s \rangle = NP(s) = e^{-\beta(E_s - \mu)}$$

A system in contact with a thermal and particle reservoir

WHAT IS THE GIBBS FACTOR?

WHAT QUANTITIES FLUCTUATES?

WHAT IS THE EQUILIBRIUM CONDITION?

A system in contact with a thermal and particle reservoir

The system can exchange energy and particles with a reservoir and it is in equilibrium at a fixed $\it T$ and chemical potential $\it \mu$

Probability of the system being in a given microstate is proportional to the probability that the reservois is in *any state that accomodate that particular microstate (hence the total number of microstates of the thermal bath corresponding to a given system's microstate)*

Probability ratio between two microstates (the system can exchange energy $\Delta U_R = -\Delta E$, and particles $\Delta N_R = -\Delta N$)

$$\frac{P(s_1)}{P(s_2)} = \frac{\Omega_R(s_1)}{\Omega_R(s_2)} = e^{\frac{[S_R(s_1) - S_R(s_2)]}{k}} = e^{\beta \Delta U_R} e^{-\beta \mu \Delta N_R} = e^{-\beta \Delta E} e^{\beta \mu \Delta N}$$

Probability of the system in a specific microstate a fixed T and μ

$$P(s) = \frac{1}{\Xi(T,\mu)} e^{-\beta(E_S - \mu N_S)}$$

Grand Partition function

 $\Xi(T,\mu) = \sum_{S} e^{-\beta(E_S - \mu N_S)}$ counts all the accessible microstates weighted by the Gibbs factor

What is the microstate s?

Non-interacting particle system in contact with a thermal and particle reservoir

Each identical particle can occupy discrete energy states ϵ_j , $j=1,2,\cdots$ is the state number

For N identical particles, we can have N_j number of particles (occupation number) in the energy state ϵ_i

The energy of a specific microstate with $N_s = \sum_j N_j$ particles is $E_s = \sum_j N_j \epsilon_j$

 \sum_s =sum over all particles number N_s and over all the partitions of particles N_s in the quantum states with total energy E_s

$$\Xi(T,\mu) = \sum_{N_S} \sum_{\substack{\{N_j\}\\ \sum_{i} N_j = N_S}} e^{-\beta (E_S - \mu N_S)} = \sum_{\substack{\{N_j\}}} e^{-\beta \sum_{j} N_j (\epsilon_j - \mu)}$$

$$\Xi(T,\mu) = \left(\sum_{N_1} e^{-\beta N_1(\epsilon_1 - \mu)}\right) \cdot \left(\sum_{N_2} e^{-\beta N_2(\epsilon_2 - \mu)}\right) \cdot \left(\sum_{N_3} e^{-\beta N_3(\epsilon_3 - \mu)}\right) \cdots$$

Occupation number of a state

Probability of the system in a specific microstate a fixed T and
$$\mu$$

$$P(s) = \frac{1}{\Xi(T,\mu)} e^{-\beta(E_S - \mu N_S)} = \frac{e^{-\beta N_1(\epsilon_1 - \mu)} \cdot e^{-\beta N_2(\epsilon_2 - \mu)} \cdot e^{-\beta N_3(\epsilon_3 - \mu)} \dots}{\left(\sum_{N_1} e^{-\beta N_1(\epsilon_1 - \mu)}\right) \cdot \left(\sum_{N_2} e^{-\beta N_2(\epsilon_2 - \mu)}\right) \cdots \left(\sum_{N_3} e^{-\beta N_3(\epsilon_3 - \mu)}\right) \dots}$$

$$P(s) = \frac{e^{-\beta N_1(\epsilon_1 - \mu)}}{\left(\sum_{N_1} e^{-\beta N_1(\epsilon_1 - \mu)}\right)} \cdot \frac{e^{-\beta N_2(\epsilon_2 - \mu)}}{\left(\sum_{N_2} e^{-\beta N_2(\epsilon_2 - \mu)}\right)} \cdot \frac{e^{-\beta N_3(\epsilon_3 - \mu)}}{\left(\sum_{N_3} e^{-\beta N_3(\epsilon_3 - \mu)}\right)} \cdots$$

$$P(s) = P(N_1) \cdot P(N_2) \cdot P(N_3) \cdots$$

Probability for the occupation number N of the given state at fixed T and μ

$$P(N) = \frac{e^{-\beta N(\epsilon - \mu)}}{(\sum_{N} e^{-\beta N(\epsilon - \mu)})}$$

Non-interacting FERMIONS in contact with a thermal and particle reservoir

The occupation number for each quantum state is N = 0, 1

Probability for the occupation number N of the given energy state a fixed T and μ

$$P(N) = \frac{e^{-\beta N(\epsilon - \mu)}}{1 + e^{-\beta(\epsilon - \mu)}}$$

Average occupation number $\langle N \rangle$ of the given energy state ϵ a fixed T and μ

FERMI-DIRAC distribution

$$\langle N \rangle (\epsilon) = \sum_{N=0}^{1} NP(N) = \frac{e^{-\beta(\epsilon-\mu)}}{1 + e^{-\beta(\epsilon-\mu)}} \rightarrow \langle N \rangle (\epsilon) = \frac{1}{e^{\beta(\epsilon-\mu)} + 1}$$

Fermi Dirac distribution

Non-interacting BOSONS in contact with a thermal and particle reservoir

The occupation number for each state is $N = 0, 1, 2 \cdots$

$$\sum_{N=0}^{\infty} e^{-\beta N(\epsilon - \mu)} = \frac{1}{1 - e^{-\beta(\epsilon - \mu)}}, \quad for \ \mu < \epsilon \ (for \ every \ \epsilon!)$$

Probability for the occupation number N of the given energy state a fixed T and μ

$$P(N) = (1 - e^{-\beta(\epsilon - \mu)})e^{-\beta N(\epsilon - \mu)}$$

Average occupation number $\langle N \rangle$ of the given energy state ϵ a fixed T and μ

BOSE-EINSTEIN distribution

$$\langle N \rangle(\epsilon) = \sum_{N=0}^{\infty} NP(N) = \left(1 - e^{-\beta(\epsilon - \mu)}\right) \sum_{N=0}^{\infty} N e^{-\beta N(\epsilon - \mu)} \rightarrow \langle N \rangle(\epsilon) = \frac{1}{e^{\beta(\epsilon - \mu)} - 1}$$

Bose Einstein distribution

Classical limit

QUANTUM distribution for the average occupation number of an energy state

$$\langle N \rangle (\epsilon) = \frac{1}{e^{\beta(\epsilon - \mu)} \pm 1}$$

High T limit
$$(\frac{\mu(T)}{kT} \ll 0)$$

BOLZMANN distribution

$$\langle N \rangle (\epsilon) = \frac{e^{\beta \mu}}{e^{\beta \epsilon} \pm e^{\beta \mu}} \rightarrow_{e^{\beta \mu} \to 0} \langle N \rangle (\epsilon) = e^{-\beta (\epsilon - \mu)}$$

THERMODYNAMIC PROPERTIES AND DENSITY OF STATES

Average energy

$$U = \sum_{n_x} \sum_{n_y} \sum_{n_z} \langle N \rangle(\epsilon) \cdot \epsilon (n_x, n_y, n_x) = \int_0^\infty dn_x \int_0^\infty dn_y \int_0^\infty dn_z \ \epsilon \cdot \langle N \rangle = \int_0^\infty d\epsilon \ g(\epsilon) \epsilon \cdot \langle N \rangle$$

- Density of states $g(\epsilon)$ comes become we need to count all the quantum states at a given energy ϵ . Remember that the quantum state is given by the state of the wavefunction
- Number of states with energy between ϵ and $\epsilon + d\epsilon \equiv$ Number of states with state number between n and n + dn (positive quadrant)

$$(3D) g(\epsilon) d\epsilon = \frac{1}{8} 4\pi n^2 dn, \qquad (2D)g(\epsilon) d\epsilon = \frac{1}{4} 2\pi n dn, (2D), \qquad (1D) g(\epsilon) d\epsilon = dn$$

Energy $\epsilon(n)$ is determined by the *quantum mechanics*:

- Particle in a box $\epsilon(n) = \frac{h^2}{8mL^2}n^2$
- Quantum harmonic oscillator $\epsilon(n) = n\hbar\omega$
- Relativistic particles $\epsilon(n) = hf = \frac{hc}{2L}n$

Density of states

Number of states with energy between ϵ and $\epsilon+d\epsilon\equiv$ Number of states with state number between n and n+dn

$$(3D) g(\epsilon) d\epsilon = \frac{\pi}{2} n^2 dn, \qquad (2D) g(\epsilon) d\epsilon = \frac{\pi}{2} n dn, (2D), \qquad (1D) g(\epsilon) d\epsilon = dn$$

FERMIONS: remember to multiply by factor 2 because there are two electrons per energy level (spin up and spin down)

$$(3D) g(\epsilon) d\epsilon = 2 \times \frac{\pi}{2} n^2 dn, \qquad (2D) g(\epsilon) d\epsilon = 2 \times \frac{\pi}{2} n dn, (2D), \qquad (1D) g(\epsilon) d\epsilon = 2 \times dn$$

PHOTONS: remember to multiply by factor 2 for the two transverse polarizations of the EM waves

$$(3D) g(\epsilon) d\epsilon = 2 \times \frac{\pi}{2} n^2 dn,$$

PHONONS: remember to multiply by factor 3 for the three polarizations of the sound waves

$$(3D) g(\epsilon) d\epsilon = 3 \times \frac{\pi}{2} n^2 dn$$

Thermodynamic properties and density of states

$$U(T, V, \mu) = \int_0^\infty d\epsilon \ g(\epsilon) \langle N \rangle \epsilon = \int_0^\infty d\epsilon \ g(\epsilon) \frac{\epsilon}{e^{\beta(\epsilon - \mu)} \pm 1}$$

Average number of particles

$$N(T, V, \mu) = \int_0^\infty d\epsilon \ g(\epsilon) \langle N \rangle = \int_0^\infty d\epsilon \ g(\epsilon) \frac{1}{e^{\beta(\epsilon - \mu)} \pm 1}$$

DEGENERATE FERMIONS

$$\epsilon(n) = \frac{h^2}{8mL^2}n^2 \to g^{(3D)}(\epsilon)d\epsilon = \pi n^2 dn \to g^{(3D)}(\epsilon) = \frac{\pi}{2} \left(\frac{8m}{h^2}\right)^3 \sqrt{\epsilon}$$

$$\epsilon_F(N) = \frac{h^2}{8mL^2} n_{max}^2 = \frac{h^2}{8mL^2} \left(\frac{N}{2}\right)^2$$

Average energy

$$U(T,V,\epsilon_F) = \int_0^{\epsilon_F} d\epsilon \ g(\epsilon) \ \epsilon$$

Average number of particles

$$N(T, V, \epsilon_F) = \int_0^{\epsilon_F} d\epsilon \ g(\epsilon)$$

Photons

$$\epsilon_n = \frac{hc}{2L}n \rightarrow g(\epsilon)d\epsilon = \pi n^2 dn \rightarrow g(\epsilon) = \frac{8\pi V}{(hc)^3}\epsilon^2$$

Average energy

$$U(T,V) = \int_0^\infty d\epsilon \ g(\epsilon) \frac{\epsilon}{e^{\beta \epsilon} - 1} = \frac{8\pi V}{(hc)^3} \int_0^\infty d\epsilon \frac{\epsilon^3}{e^{\beta \epsilon} - 1} = \frac{8\pi^5 (kT)^4}{15 (hc)^3}$$

Average number of particles

$$N(T,V) = \int_0^\infty d\epsilon \ g(\epsilon) \frac{1}{e^{\beta \epsilon} - 1} = \frac{8\pi V}{(hc)^3} \int_0^\infty d\epsilon \frac{\epsilon^2}{e^{\beta \epsilon} - 1}$$