

Summary Part 1

Equilibrium statistical systems

CONTINUE....

A system in contact with a thermal and particle reservoir

The system can exchange energy and particles with a reservoir and it is in equilibrium at a fixed T and chemical potential μ

Probability of the system being in a given microstate is proportional to the probability that the reservois is in any state that accomodate that particular microstate (hence the total number of microstates of the thermal bath corresponding to a given system's microstate)

Probability ratio between two microstates (the system can exchange energy $\Delta \mathrm{U}_{\mathrm{R}}=-\Delta \mathrm{E}$, and particles $\Delta N_{R}=-\Delta N$)

$$
\frac{P\left(s_{1}\right)}{P\left(s_{2}\right)}=\frac{\Omega_{R}\left(s_{1}\right)}{\Omega_{R}\left(s_{2}\right)}=e^{\frac{\left[s_{R}\left(s_{1}\right)-s_{R}\left(s_{2}\right)\right]}{k}}=e^{\beta \Delta U_{R}} e^{-\beta \mu \Delta N_{R}}=e^{-\beta \Delta E} e^{\beta \mu \Delta N}
$$

Probability of the system in a specific microstate a fixed T and μ

$$
P(s)=\frac{1}{\Xi(T, \mu)} e^{-\beta\left(E_{s}-\mu N_{s}\right)}
$$

Grand Partition function
$\Xi(T, \mu)=\sum_{s} e^{-\beta\left(E_{s}-\mu N_{s}\right)}$ counts all the accessible microstates weighted by the Gibbs factor
What is the microstate s ?

Non-interacting particle system in contact with a thermal and particle reservoir

Each identical particle can occupy discrete energy states $\boldsymbol{\epsilon}_{\boldsymbol{j}}, \boldsymbol{j}=\mathbf{1}, \mathbf{2}, \cdots$ is the state number
For N identical particles, we can have N_{j} number of particles (occupation number) in the energy state $\boldsymbol{\epsilon}_{\boldsymbol{j}}$

The energy of a specific microstate with $N_{s}=\sum_{j} N_{j}$ particles is $E_{s}=\sum_{j} N_{j} \epsilon_{j}$
$\sum_{S} \equiv$ sum over all particles number \boldsymbol{N}_{s} and over all the partitions of particles \boldsymbol{N}_{s} in the quantum states with total energy E_{S}

$$
\begin{gathered}
\Xi(T, \mu)=\sum_{N_{S}} \sum_{\substack{\left\{N_{j}\right\} \\
\sum_{j} N_{j}=N_{S}}} e^{-\beta\left(E_{S}-\mu N_{s}\right)}=\sum_{\left\{N_{j}\right\}} e^{-\beta \sum_{j} N_{j}\left(\epsilon_{j}-\mu\right)} \\
\Xi(T, \mu)=\left(\sum_{N_{1}} e^{-\beta N_{1}\left(\epsilon_{1}-\mu\right)}\right) \cdot\left(\sum_{N_{2}} e^{-\beta N_{2}\left(\epsilon_{2}-\mu\right)}\right) \cdot \cdot\left(\sum_{N_{3}} e^{-\beta N_{3}\left(\epsilon_{3}-\mu\right)}\right) \cdots
\end{gathered}
$$

Occupation number of a state

Probability of the system in a specific microstate a fixed T and μ

$$
\begin{gathered}
P(s)=\frac{1}{\Xi(T, \mu)} e^{-\beta\left(E_{s}-\mu N_{s}\right)}=\frac{e^{-\beta N_{1}\left(\epsilon_{1}-\mu\right)} \cdot e^{-\beta N_{2}\left(\epsilon_{2}-\mu\right)} \cdot e^{-\beta N_{3}\left(\epsilon_{3}-\mu\right)} \ldots}{\left(\sum_{N_{1}} e^{-\beta N_{1}\left(\epsilon_{1}-\mu\right)}\right) \cdot\left(\sum_{N_{2}} e^{-\beta N_{2}\left(\epsilon_{2}-\mu\right)}\right) \cdot \cdot\left(\sum_{N_{3}} e^{-\beta N_{3}\left(\epsilon_{3}-\mu\right)}\right) \cdots} \\
P(s)=\frac{e^{-\beta N_{1}\left(\epsilon_{1}-\mu\right)}}{\left(\sum_{N_{1}} e^{-\beta N_{1}\left(\epsilon_{1}-\mu\right)}\right)} \cdot \frac{e^{-\beta N_{2}\left(\epsilon_{2}-\mu\right)}}{\left(\sum_{N_{2}} e^{-\beta N_{2}\left(\epsilon_{2}-\mu\right)}\right)} \cdot \frac{e^{-\beta N_{3}\left(\epsilon_{3}-\mu\right)}}{\left(\sum_{N_{3}} e^{-\beta N_{3}\left(\epsilon_{3}-\mu\right)}\right)} \cdots \\
\boldsymbol{P}(\boldsymbol{s})=\boldsymbol{P}\left(\boldsymbol{N}_{1}\right) \cdot \boldsymbol{P}\left(\boldsymbol{N}_{2}\right) \cdot \boldsymbol{P}\left(N_{3}\right) \cdots
\end{gathered}
$$

Probability for the occupation number N of the given state at fixed T and μ

$$
P(N)=\frac{e^{-\beta N(\epsilon-\mu)}}{\left(\sum_{N} e^{-\beta N(\epsilon-\mu)}\right)}, \quad Z=\sum_{N} e^{-\beta N(\epsilon-\mu)}(\text { partition function of a single mode) }
$$

The occupation number for each quantum state is $N=\mathbf{0 , 1}$

Probability for the occupation number N of the given energy state a fixed T and μ

$$
P(N)=\frac{e^{-\beta N(\epsilon-\mu)}}{1+e^{-\beta(\epsilon-\mu)}}
$$

Average occupation number $\langle N\rangle$ of the given energy state ϵ a fixed T and $\boldsymbol{\mu}$ FERMI-DIRAC distribution

$$
\langle N\rangle(\epsilon)=\sum_{N=0}^{1} N P(N)=\frac{e^{-\beta(\epsilon-\mu)}}{1+e^{-\beta(\epsilon-\mu)}} \rightarrow\langle N\rangle(\epsilon)=\frac{1}{e^{\beta(\epsilon-\mu)}+1}
$$

The occupation number for each state is $N=0,1,2 \cdots$
$\sum_{N=0}^{\infty} e^{-\beta N(\epsilon-\mu)}=\frac{1}{1-e^{-\beta(\epsilon-\mu)}}, \quad$ for $\mu<\epsilon($ for every $\epsilon!)$
Probability for the occupation number \boldsymbol{N} of the given energy state a fixed T and $\boldsymbol{\mu}$

$$
P(N)=\left(1-e^{-\beta(\epsilon-\mu)}\right) e^{-\beta N(\epsilon-\mu)}
$$

Average occupation number $\langle N\rangle$ of the given energy state ϵ a fixed T and $\boldsymbol{\mu}$
BOSE-EINSTEIN distribution

$$
\langle N\rangle(\epsilon)=\sum_{N=0}^{\infty} N P(N)=\left(1-e^{-\beta(\epsilon-\mu)}\right) \sum_{N=0}^{\infty} N e^{-\beta N(\epsilon-\mu)} \rightarrow\langle N\rangle(\epsilon)=\frac{1}{e^{\beta(\epsilon-\mu)}-1}
$$

Classical limit

QUANTUM distribution for the average occupation number of an energy state

$$
\langle N\rangle(\epsilon)=\frac{1}{e^{\beta(\epsilon-\mu)} \pm 1}
$$

High T limit $\left(\frac{\mu(T)}{k T} \ll 0\right)$

BOLZMANN distribution

$$
\langle N\rangle(\epsilon)=\frac{e^{\beta \mu}}{e^{\beta \epsilon} \pm e^{\beta \mu}} \rightarrow_{e^{\beta \mu} \rightarrow 0}\langle N\rangle(\epsilon)=e^{-\beta(\epsilon-\mu)}
$$

THERMODYNAMIC PROPERTIES AND DENSITY OF STATES

Average energy

$U=\sum_{n_{x}} \sum_{n_{y}} \sum_{n_{z}}\langle N\rangle(\epsilon) \cdot \epsilon\left(n_{x}, n_{y}, n_{x}\right)=\int_{0}^{\infty} d n_{x} \int_{0}^{\infty} d n_{y} \int_{0}^{\infty} d n_{z} \epsilon \cdot\langle N\rangle=\int_{0}^{\infty} d \epsilon g(\epsilon) \epsilon \cdot\langle N\rangle$

- Density of states $g(\epsilon)$ comes become we need to count all the quantum states at a given energy ϵ. Remember that the quantum state is given by the state of the wavefunction
- Number of states with energy between ϵ and $\epsilon+d \epsilon \equiv$ Number of states with state number between n and $n+d n$ (positive quadrant)
(3D) $g(\epsilon) \mathrm{d} \epsilon=\frac{1}{8} 4 \pi n^{2} d n$,
$(2 D) g(\epsilon) \mathrm{d} \epsilon=\frac{1}{4} 2 \pi n d n,(2 D)$,
(1D) $g(\epsilon) \mathrm{d} \epsilon=d n$

Energy $\epsilon(n)$ is determined by the quantum mechanics:

- Particle in a box $\epsilon(n)=\frac{h^{2}}{8 m L^{2}} n^{2}$
- Quantum harmonic oscillator $\epsilon(n)=n \hbar \omega$
- Relativistic particles $\epsilon(n)=h f=\frac{h c}{2 L} n$

Density of states

Number of states with energy between ϵ and $\epsilon+d \epsilon \equiv$ Number of states with state number between n and $n+d n$

$$
(3 D) g(\epsilon) \mathrm{d} \epsilon=\frac{\pi}{2} n^{2} d n, \quad(2 D) g(\epsilon) \mathrm{d} \epsilon=\frac{\pi}{2} n d n,(2 D), \quad(1 D) g(\epsilon) \mathrm{d} \epsilon=d n
$$

FERMIONS: remember to multiply by factor 2 because there are two electrons per energy level (spin up and spin down)

$$
(3 D) g(\epsilon) \mathrm{d} \epsilon=2 \times \frac{\pi}{2} n^{2} d n, \quad(2 D) g(\epsilon) \mathrm{d} \epsilon=2 \times \frac{\pi}{2} n d n,(2 D), \quad(1 D) g(\epsilon) \mathrm{d} \epsilon=2 \times d n
$$

PHOTONS : remember to multiply by factor 2 for the two transverse polarizations of the EM waves

$$
(3 D) g(\epsilon) \mathrm{d} \epsilon=2 \times \frac{\pi}{2} n^{2} d n
$$

PHONONS: remember to multiply by factor 3 for the three polarizations of the sound waves

$$
(3 D) g(\epsilon) \mathrm{d} \epsilon=3 \times \frac{\pi}{2} n^{2} d n
$$

Thermodynamic properties and density of states

Average energy

$$
U(T, V, \mu)=\int_{0}^{\infty} d \epsilon g(\epsilon)\langle N\rangle \epsilon=\int_{0}^{\infty} d \epsilon g(\epsilon) \frac{\epsilon}{e^{\beta(\epsilon-\mu)} \pm 1}
$$

Average number of particles

$$
N(T, V, \mu)=\int_{0}^{\infty} d \epsilon g(\epsilon)\langle N\rangle=\int_{0}^{\infty} d \epsilon g(\epsilon) \frac{1}{e^{\beta(\epsilon-\mu)} \pm 1}
$$

DEGENERATE FERMIONS

$$
\begin{gathered}
\epsilon(n)=\frac{h^{2}}{8 m L^{2}} n^{2} \rightarrow g^{(3 D)}(\epsilon) d \epsilon=\pi n^{2} d n \rightarrow g^{(3 D)}(\epsilon)=\frac{\pi}{2}\left(\frac{8 m}{h^{2}}\right)^{3} \sqrt{\epsilon} \\
\epsilon_{F}(N)=\frac{h^{2}}{8 m L^{2}} n_{\max }^{2}=\frac{h^{2}}{8 m L^{2}}\left(\frac{N}{2}\right)^{2}
\end{gathered}
$$

Average energy

$$
U\left(T, V, \epsilon_{F}\right)=\int_{0}^{\epsilon_{F}} d \epsilon g(\epsilon) \epsilon
$$

Average number of particles

$$
N\left(T, V, \epsilon_{F}\right)=\int_{0}^{\epsilon_{F}} d \epsilon g(\epsilon)
$$

$$
\epsilon=h f=h c / \lambda
$$

$$
\epsilon_{n}=\frac{h c}{2 L} n \rightarrow g(\epsilon) d \epsilon=\pi n^{2} d n \rightarrow g(\epsilon)=\frac{8 \pi V}{(h c)^{3}} \epsilon^{2}
$$

Average energy

$$
U(T, V)=\int_{0}^{\infty} d \epsilon g(\epsilon) \frac{\epsilon}{e^{\beta \epsilon}-1}=\frac{8 \pi V}{(h c)^{3}} \int_{0}^{\infty} d \epsilon \frac{\epsilon^{3}}{e^{\beta \epsilon}-1}=\frac{8 \pi^{5}(k T)^{4}}{15(h c)^{3}}
$$

Planck distribution

$$
u(f)=\frac{8 \pi h}{c^{3}} \frac{f^{3}}{e^{\beta h f}-1}
$$

Average number of particles

$$
N(T, V)=\int_{0}^{\infty} d \epsilon g(\epsilon) \frac{1}{e^{\beta \epsilon}-1}=\frac{8 \pi V}{(h c)^{3}} \int_{0}^{\infty} d \epsilon \frac{\epsilon^{2}}{e^{\beta \epsilon}-1}
$$

First law of thermodynamics: CONSERVATION OF ENERGY

Change in the internal energy of a system is due to heat or work exchanges with its surrounding

$$
\Delta U=Q+W
$$

The change in the «stored» energy equal the sum of «energies in transit»
The infinitesimal change in internal energy

$$
d U=\delta Q+\delta W
$$

Infinitesimal reversible process

$$
d U=T d S-P d V
$$

Clausius equality

$$
\begin{gathered}
\mathrm{dU}=\delta Q+\delta W \\
\text { Reversible } \\
\mathrm{dU}=T d S-P d V
\end{gathered}
$$

$$
\begin{aligned}
& \quad d S=\frac{\delta Q_{\text {rev }}}{T} \\
& \text { Heat capacities }
\end{aligned}
$$

$$
\begin{aligned}
& C_{V}=\left(\frac{\delta Q}{d T}\right)_{V}=\left(\frac{\partial U}{\partial T}\right)_{V} \rightarrow d U=C_{V} d T \\
& C_{P}=\left(\frac{\delta Q}{d T}\right)_{P}=C_{V}+N k
\end{aligned}
$$

Second law of thermodynamics
Irreversible heat flow
Entropy increase
$\mathrm{dS} \geq \frac{\delta Q}{T}$
Irreversible heat transfer is smaller than the reversible heat

Entropy of the Universe: exchange at a given T

$$
\frac{\delta Q_{i r r e v}}{T}<\frac{Q_{\text {rev }}}{T}
$$

Clausius inequality

$$
d S \geq \frac{\delta Q}{T}
$$

Isolated system
Entropy tends to increase as the system sponteneously finds its equilibrium state

$$
d S \geq \mathbf{0}
$$

Example of (reversible) transformations of an ideal gas:

1. Isothermal process: $\quad T_{1}=T_{2} \rightarrow U_{1}=U_{2}\left(\Delta U=W_{r e v}+Q_{r e v}=0\right)$

$$
\begin{aligned}
& W_{\mathrm{rev}}=-\int_{V_{1}}^{V_{2}} P d V=-N k T \ln \left(\frac{V_{2}}{V_{1}}\right) \\
& \Delta S=\frac{Q_{\text {rev }}}{T}=N k \ln \left(\frac{V_{2}}{V_{1}}\right)
\end{aligned}
$$

2. Isobaric process: $\quad P_{1}=P_{2}=P\left(C_{V} d T=T d S-P d V\right)$

$$
\begin{aligned}
& W_{\mathrm{rev}}=-\int_{V_{1}}^{V_{2}} P d V=-P\left(V_{2}-V_{1}\right) \\
& \Delta S=\int_{\text {isobaric }} \frac{\delta Q_{\text {rev }}}{T}=C_{P} \int_{T_{1}}^{T_{2}} \frac{d T}{T}=C_{P} \ln \left(\frac{T_{2}}{T_{1}}\right)
\end{aligned}
$$

Example of reversible transformations of an ideal gas:

3. Adiabatic process: $\delta Q_{r e v}=0 \rightarrow d U=-P d V$

$$
\begin{aligned}
& C_{V} d T=-P d V \rightarrow C_{V} \frac{d T}{T}=-N k \frac{d V}{V} \rightarrow \frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{\frac{C_{p}}{C_{V}}-1} \\
& W_{\text {rev }}=-\int_{V_{1}}^{V_{2}} P d V=C_{V}\left(T_{2}-T_{1}\right)
\end{aligned}
$$

$$
\Delta S=0
$$

4. Isochoric process: $\quad V_{1}=V_{2} \quad\left(C_{V} d T=T d S\right)$

$$
\begin{aligned}
& W_{\mathrm{rev}}=-\int_{V_{1}}^{V_{2}} P d V=0 \\
& \Delta S=\int_{\text {isochoric }} \frac{\delta Q_{\text {rev }}}{T}=C_{V} \int_{T_{1}}^{T_{2}} \frac{d T}{T}=C_{V} \ln \left(\frac{T_{2}}{T_{1}}\right)
\end{aligned}
$$

Second law of thermodynamics:
In search for the most probable state

Boltzmann's formula

$$
\Delta S=k \ln \frac{\Omega_{\mathrm{final}}}{\Omega_{\text {initial }}}
$$

An isolated system will spontaneously evolve towards the most likely equilibrium state, i.e. The macrostate with maximum multiplicity Ω

Two weakly interacting ideal gases

- Total multiplicity: $\Omega_{\text {total }}=f(N)^{2}\left(V_{A} V_{B}\right)^{N}\left(U_{A} U_{B}\right)^{\frac{3 N}{2}}$
- $\Omega_{\text {total }}^{\max }=f(N)^{2}\left(\frac{V}{2}\right)^{2 N}\left(\frac{U}{2}\right)^{3 N}$
- States near the most likely state by varying U

$$
\begin{aligned}
& U=U_{A}+U_{B} \\
& V=V_{A}+V_{B}
\end{aligned}
$$

$U_{A}=\frac{U}{2}+x, U_{B}=\frac{U}{2}-x$ with $x \ll U / 2$, while $V_{A}=V_{B}=\frac{V}{2}$

$$
\begin{gathered}
\ln \Omega_{\text {total }} \sim \frac{3 N}{2} \ln \left[\left(\frac{U}{2}\right)^{2}-x^{2}\right] \sim 3 N \ln \left(\frac{U}{2}\right)-\frac{3 N}{2}\left(\frac{2 x}{U}\right)^{2} \\
\Omega_{\text {total }}\left(U_{A}\right)=\Omega_{\text {total }}^{\max } \cdot \exp \left(-\frac{3 N}{2}\left(\frac{2}{U}\right)^{2}\left(U_{A}-\frac{U}{2}\right)^{2}\right)
\end{gathered}
$$

The width scales as $\sigma_{U}=2 \cdot \frac{U}{2} \sqrt{\frac{2}{3 N}}=\frac{U}{\sqrt{\frac{3 N}{2}}} \rightarrow \mathbf{0}$

Two weakly interacting ideal gases

- Macrostates near the-most-likely macrostate (aka THE EQUILIBRIUM STATE)

$$
\Omega_{t o t a l}\left(V_{A}, U_{A}\right)=\Omega_{t o t a l}^{\max } \cdot \exp \left(-N\left(\frac{2}{V}\right)^{2}\left(V_{A}-\frac{V}{2}\right)^{2}\right) \cdot \exp \left(-\frac{3 N}{2}\left(\frac{2}{U}\right)^{2}\left(U_{A}-\frac{U}{2}\right)^{2}\right)
$$

$$
\begin{aligned}
& U=U_{A}+U_{B} \\
& V=V_{A}+V_{B}
\end{aligned}
$$

The number of microstates away from the equilibrium macrostate decay very rapidly, hence they are extremely unlikely

Liquid-gas phase transition

Van der Waals equation of state for fluids

$$
\left(P+\frac{a N^{2}}{V^{2}}\right)(V-N b)=N k T \rightarrow P=\frac{N k T}{V-N b}-\frac{a N^{2}}{V^{2}}
$$

- Maxwell's equal-area construction: The phase transition happens at constant PRESSURE! We find the pressure on the P-V diagram by the equal areas construction of a given isotherm
- Phase transition from liquid to vapor at a constant Gibbs free energy $G(P, T, N)$

$$
d G_{l}=d G_{g}
$$

00

Liquid-gas phase transition

Phase transition from liquid to vapor at a constant Gibbs free energy $G(P, T, N)$

$$
d G_{l}=d G_{g}
$$

Clausius Clapeyron relation
$-S_{l} d T+V_{l} d P=-S_{-} g d T+V_{g} d P$
$\frac{d P}{d T}=\frac{S_{g}-S_{l}}{V_{g}-V_{l}}=\frac{\Delta \mathrm{S}}{\Delta \mathrm{V}}=\frac{L}{T \Delta \mathrm{~V}}, \quad L$ is the latent heat of the phase transition

- Entropy jumps going from a liquid to a gas
- Volume expansion going from a liquid to a gas

Clausius Clapeyron relation tells us how much the phase transition pressure changes with changing temperature

How does the boling temperature of water depends on the altitude (pressure)?

