

21.11.2018

Thermodynamic laws

Thermodynamic processes

U is fixed S(U), T, P(V, T)

Summary Part 1

Equilibrium statistical systems

CONTINUE....

A system in contact with a thermal and particle reservoir

The system can exchange energy and particles with a reservoir and it is in equilibrium at a fixed $\it T$ and chemical potential $\it \mu$

Probability of the system being in a given microstate is proportional to the probability that the reservois is in *any state that accommodate that particular microstate (hence the total number of microstates of the thermal bath corresponding to a given system's microstate)*

Probability ratio between two microstates (the system can exchange energy $\Delta U_R = -\Delta E$, and particles $\Delta N_R = -\Delta N$)

$$\frac{P(s_1)}{P(s_2)} = \frac{\Omega_R(s_1)}{\Omega_R(s_2)} = e^{\frac{[S_R(s_1) - S_R(s_2)]}{k}} = e^{\beta \Delta U_R} e^{-\beta \mu \Delta N_R} = e^{-\beta \Delta E} e^{\beta \mu \Delta N}$$

Probability of the system in a specific microstate a fixed T and μ

$$P(s) = \frac{1}{\Xi(T,\mu)} e^{-\beta(E_S - \mu N_S)}$$

Grand Partition function

 $\Xi(T,\mu) = \sum_{S} e^{-\beta(E_S - \mu N_S)}$ counts all the accessible microstates weighted by the Gibbs factor

What is the microstate s?

Non-interacting particle system in contact with a thermal and particle reservoir

Each identical particle can occupy discrete energy states ϵ_j , $j=1,2,\cdots$ is the state number

For N identical particles, we can have N_j number of particles (occupation number) in the energy state ϵ_j

The energy of a specific microstate with $N_s = \sum_j N_j$ particles is $E_s = \sum_j N_j \epsilon_j$

 \sum_s =sum over all particles number N_s and over all the partitions of particles N_s in the quantum states with total energy E_s

$$\Xi(T,\mu) = \sum_{N_S} \sum_{\substack{\{N_j\}\\ \sum_{i} N_j = N_S}} e^{-\beta (E_S - \mu N_S)} = \sum_{\substack{\{N_j\}}} e^{-\beta \sum_{j} N_j (\epsilon_j - \mu)}$$

$$\Xi(T,\mu) = \left(\sum_{N_1} e^{-\beta N_1(\epsilon_1 - \mu)}\right) \cdot \left(\sum_{N_2} e^{-\beta N_2(\epsilon_2 - \mu)}\right) \cdot \left(\sum_{N_3} e^{-\beta N_3(\epsilon_3 - \mu)}\right) \cdots$$

Occupation number of a state

Probability of the system in a specific microstate a fixed T and
$$\mu$$

$$P(s) = \frac{1}{\Xi(T,\mu)} e^{-\beta(E_S - \mu N_S)} = \frac{e^{-\beta N_1(\epsilon_1 - \mu)} \cdot e^{-\beta N_2(\epsilon_2 - \mu)} \cdot e^{-\beta N_3(\epsilon_3 - \mu)} \dots}{\left(\sum_{N_1} e^{-\beta N_1(\epsilon_1 - \mu)}\right) \cdot \left(\sum_{N_2} e^{-\beta N_2(\epsilon_2 - \mu)}\right) \dots \left(\sum_{N_3} e^{-\beta N_3(\epsilon_3 - \mu)}\right) \dots}$$

$$P(s) = \frac{e^{-\beta N_1(\epsilon_1 - \mu)}}{\left(\sum_{N_1} e^{-\beta N_1(\epsilon_1 - \mu)}\right)} \cdot \frac{e^{-\beta N_2(\epsilon_2 - \mu)}}{\left(\sum_{N_2} e^{-\beta N_2(\epsilon_2 - \mu)}\right)} \cdot \frac{e^{-\beta N_3(\epsilon_3 - \mu)}}{\left(\sum_{N_3} e^{-\beta N_3(\epsilon_3 - \mu)}\right)} \cdots$$

$$P(s) = P(N_1) \cdot P(N_2) \cdot P(N_3) \cdots$$

Probability for the occupation number N of the given state at fixed T and μ

$$P(N) = \frac{e^{-\beta N(\epsilon - \mu)}}{(\sum_{N} e^{-\beta N(\epsilon - \mu)})}, \qquad Z = \sum_{N} e^{-\beta N(\epsilon - \mu)} (partition function of a single mode)$$

Non-interacting FERMIONS in contact with a thermal and particle reservoir

The occupation number for each quantum state is N = 0, 1

Probability for the occupation number N of the given energy state a fixed T and μ

$$P(N) = \frac{e^{-\beta N(\epsilon - \mu)}}{1 + e^{-\beta(\epsilon - \mu)}}$$

Average occupation number $\langle N \rangle$ of the given energy state ϵ a fixed T and μ

FERMI-DIRAC distribution

$$\langle N \rangle (\epsilon) = \sum_{N=0}^{1} NP(N) = \frac{e^{-\beta(\epsilon-\mu)}}{1 + e^{-\beta(\epsilon-\mu)}} \rightarrow \langle N \rangle (\epsilon) = \frac{1}{e^{\beta(\epsilon-\mu)} + 1}$$

Fermi Dirac distribution

Non-interacting BOSONS in contact with a thermal and particle reservoir

The occupation number for each state is $N = 0, 1, 2 \cdots$

$$\sum_{N=0}^{\infty} e^{-\beta N(\epsilon - \mu)} = \frac{1}{1 - e^{-\beta(\epsilon - \mu)}}, \quad for \ \mu < \epsilon \ (for \ every \ \epsilon!)$$

Probability for the occupation number N of the given energy state a fixed T and μ

$$P(N) = (1 - e^{-\beta(\epsilon - \mu)})e^{-\beta N(\epsilon - \mu)}$$

Average occupation number $\langle N \rangle$ of the given energy state ϵ a fixed T and μ

BOSE-EINSTEIN distribution

$$\langle N \rangle(\epsilon) = \sum_{N=0}^{\infty} NP(N) = \left(1 - e^{-\beta(\epsilon - \mu)}\right) \sum_{N=0}^{\infty} N e^{-\beta N(\epsilon - \mu)} \rightarrow \langle N \rangle(\epsilon) = \frac{1}{e^{\beta(\epsilon - \mu)} - 1}$$

Bose Einstein distribution

Classical limit

QUANTUM distribution for the average occupation number of an energy state

$$\langle N \rangle (\epsilon) = \frac{1}{e^{\beta(\epsilon - \mu)} \pm 1}$$

High T limit
$$(\frac{\mu(T)}{kT} \ll 0)$$

BOLZMANN distribution

$$\langle N \rangle (\epsilon) = \frac{e^{\beta \mu}}{e^{\beta \epsilon} \pm e^{\beta \mu}} \rightarrow_{e^{\beta \mu} \to 0} \langle N \rangle (\epsilon) = e^{-\beta (\epsilon - \mu)}$$

THERMODYNAMIC PROPERTIES AND DENSITY OF STATES

Average energy

$$U = \sum_{n_x} \sum_{n_y} \sum_{n_z} \langle N \rangle (\epsilon) \cdot \epsilon (n_x, n_y, n_x) = \int_0^\infty dn_x \int_0^\infty dn_y \int_0^\infty dn_z \ \epsilon \cdot \langle N \rangle = \int_0^\infty d\epsilon \ g(\epsilon) \epsilon \cdot \langle N \rangle$$

• Density of states $g(\epsilon)$ comes become we need to count all the quantum states at a given energy ϵ . Remember that the quantum state is given by the state of the wavefunction

• Number of states with energy between ϵ and $\epsilon + d\epsilon \equiv$ Number of states with state number between n and n + dn (positive quadrant)

$$(3D) g(\epsilon) d\epsilon = \frac{1}{8} 4\pi n^2 dn, \qquad (2D)g(\epsilon) d\epsilon = \frac{1}{4} 2\pi n dn, (2D), \qquad (1D) g(\epsilon) d\epsilon = dn$$

Energy $\epsilon(n)$ is determined by the *quantum mechanics*:

- Particle in a box $\epsilon(n) = \frac{h^2}{8mL^2}n^2$
- Quantum harmonic oscillator $\epsilon(n) = n\hbar\omega$
- Relativistic particles $\epsilon(n) = hf = \frac{hc}{2L}n$

Density of states

Number of states with energy between ϵ and $\epsilon+d\epsilon\equiv$ Number of states with state number between n and n+dn

$$(3D) g(\epsilon) d\epsilon = \frac{\pi}{2} n^2 dn, \qquad (2D) g(\epsilon) d\epsilon = \frac{\pi}{2} n dn, (2D), \qquad (1D) g(\epsilon) d\epsilon = dn$$

FERMIONS: remember to multiply by factor 2 because there are two electrons per energy level (spin up and spin down)

$$(3D) g(\epsilon) d\epsilon = 2 \times \frac{\pi}{2} n^2 dn, \qquad (2D) g(\epsilon) d\epsilon = 2 \times \frac{\pi}{2} n dn, (2D), \qquad (1D) g(\epsilon) d\epsilon = 2 \times dn$$

PHOTONS: remember to multiply by factor 2 for the two transverse polarizations of the EM waves

$$(3D) g(\epsilon) d\epsilon = 2 \times \frac{\pi}{2} n^2 dn,$$

PHONONS: remember to multiply by factor 3 for the three polarizations of the sound waves

$$(3D) g(\epsilon) d\epsilon = 3 \times \frac{\pi}{2} n^2 dn$$

Thermodynamic properties and density of states

Average energy

$$U(T, V, \mu) = \int_0^\infty d\epsilon \ g(\epsilon) \langle N \rangle \epsilon = \int_0^\infty d\epsilon \ g(\epsilon) \frac{\epsilon}{e^{\beta(\epsilon - \mu)} \pm 1}$$

Average number of particles

$$N(T, V, \mu) = \int_0^\infty d\epsilon \ g(\epsilon) \langle N \rangle = \int_0^\infty d\epsilon \ g(\epsilon) \frac{1}{e^{\beta(\epsilon - \mu)} \pm 1}$$

DEGENERATE FERMIONS

$$\epsilon(n) = \frac{h^2}{8mL^2}n^2 \to g^{(3D)}(\epsilon)d\epsilon = \pi n^2 dn \to g^{(3D)}(\epsilon) = \frac{\pi}{2} \left(\frac{8m}{h^2}\right)^3 \sqrt{\epsilon}$$

$$\epsilon_F(N) = \frac{h^2}{8mL^2} n_{max}^2 = \frac{h^2}{8mL^2} \left(\frac{N}{2}\right)^2$$

Average energy

$$U(T,V,\epsilon_F) = \int_0^{\epsilon_F} d\epsilon \ g(\epsilon) \ \epsilon$$

Average number of particles

$$N(T, V, \epsilon_F) = \int_0^{\epsilon_F} d\epsilon \ g(\epsilon)$$

Photons

Average energy

$$U(T,V) = \int_0^\infty d\epsilon \ g(\epsilon) \frac{\epsilon}{e^{\beta \epsilon} - 1} = \frac{8\pi V}{(hc)^3} \int_0^\infty d\epsilon \frac{\epsilon^3}{e^{\beta \epsilon} - 1} = \frac{8\pi^5 (kT)^4}{15 (hc)^3}$$

Planck distribution

$$u(f) = \frac{8\pi h}{c^3} \frac{f^3}{e^{\beta hf} - 1}$$

Average number of particles

$$N(T,V) = \int_0^\infty d\epsilon \ g(\epsilon) \frac{1}{e^{\beta \epsilon} - 1} = \frac{8\pi V}{(hc)^3} \int_0^\infty d\epsilon \frac{\epsilon^2}{e^{\beta \epsilon} - 1}$$

Tit of blackbody curve for T = 2.74 K

Cosmic background data from COBE

1.0

0.6

Cosmic background data from COBE

Wavelength
$$\lambda$$
 in mm

$$\epsilon = hf = hc/\lambda$$

21.11.2018

Thermodynamic laws

Thermodynamic processes

$dU = \delta Q + \delta W$ Reversible dU = TdS - PdV

First law of thermodynamics: CONSERVATION OF ENERGY

Change in the **internal energy** of a system is due to heat or work exchanges with its surrounding

$$\Delta U = Q + W$$

The change in the «stored» energy equal the sum of «energies in transit»

The infinitesimal change in internal energy

$$dU = \delta Q + \delta W$$

Infinitesimal reversible process

$$dU = TdS - PdV$$

First law of thermodynamics: CONSERVATION OF ENERGY

 $dU = \delta Q + \delta W$ Reversible dU = TdS - PdV

Clausius equality

$$dS = \frac{\delta Q_{rev}}{T}$$

Heat capacities

$$C_V = \left(\frac{\delta Q}{dT}\right)_V = \left(\frac{\partial U}{\partial T}\right)_V \to dU = C_V dT$$
 $C_P = \left(\frac{\delta Q}{dT}\right)_P = C_V + Nk$

$$C_P = \left(\frac{\delta Q}{dT}\right)_P = C_V + Nk$$

Second law of thermodynamics Irreversible heat flow Entropy increase

Irreversible heat transfer is smaller than the reversible heat exchange at a given T

$$rac{\delta Q_{irrev}}{T} < rac{Q_{rev}}{T}$$

Clausius inequality

$$dS \geq \frac{\delta Q}{T}$$

Isolated system

Entropy tends to increase as the system sponteneously finds its equilibrium state

$$dS \geq 0$$

Clausius inequality:

$$dS \ge \frac{\delta Q}{T}$$

Entropy of the Universe:

 $dS \ge 0$

Example of (reversible) transformations of an ideal gas:

1. Isothermal process:
$$T_1 = T_2 \rightarrow U_1 = U_2$$
 $(\Delta U = W_{rev} + Q_{rev} = 0)$

$$W_{\text{rev}} = -\int_{V_1}^{V_2} P \ dV = -NkT \ ln\left(\frac{V_2}{V_1}\right)$$

$$\Delta S = \frac{Q_{rev}}{T} = Nk \ln \left(\frac{V_2}{V_1}\right)$$

2. Isobaric process:
$$P_1 = P_2 = P$$
 $(C_V dT = T dS - P dV)$

$$W_{\text{rev}} = -\int_{V_1}^{V_2} P \ dV = -P \ (V_2 - V_1)$$

$$\Delta S = \int_{isobaric} \frac{\delta Q_{rev}}{T} = C_P \int_{T_1}^{T_2} \frac{dT}{T} = C_P ln \left(\frac{T_2}{T_1}\right)$$

Example of reversible transformations of an ideal gas:

3. Adiabatic process:
$$\delta Q_{rev} = 0
ightarrow dU = -PdV$$

 $C_V dT = -P dV \rightarrow C_V \frac{dT}{T} = -Nk \frac{dV}{V} \rightarrow \frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{\frac{C_P}{C_V}-1}$

$$V_1$$
 V_2

$$W_{\text{rev}} = -\int_{V_1}^{V_2} P \ dV = C_V (T_2 - T_1)$$

$$\Delta S = 0$$

4. Isochoric process:
$$V_1 = V_2$$
 $(C_V dT = T dS)$

$$W_{\text{rev}} = -\int_{V_1}^{V_2} P \ dV = 0$$

$$\Delta S = \int_{isochoric} \frac{\delta Q_{rev}}{T} = C_V \int_{T_1}^{T_2} \frac{dT}{T} = C_V \ln \left(\frac{T_2}{T_1}\right)$$

Second law of thermodynamics: In search for the most probable state

Boltzmann's formula

$$\Delta S = k \ln \frac{\Omega_{\text{final}}}{\Omega_{initial}}$$

An isolated system will spontaneously evolve towards the most likely equilibrium state, i.e. The macrostate with maximum multiplicity Ω

Things that are more probability, tend to occur more often $\Omega_{final} \geq \Omega_{initial}$

Entropy cannot decrease $\Delta S \ge 0$

Fys2160, 2018 23

N

Two weakly interacting ideal gases

- Total multiplicity: $\Omega_{total} = f(N)^2 (V_A V_B)^N (U_A U_B)^{\frac{3N}{2}}$
- $\Omega_{total}^{max} = f(N)^2 \left(\frac{V}{2}\right)^{2N} \left(\frac{U}{2}\right)^{3N}$
- States near the most likely state by varying U

$$U_A = \frac{U}{2} + x$$
, $U_B = \frac{U}{2} - x$ with $x \ll U/2$, while $V_A = V_B = \frac{V}{2}$

$$\ln \Omega_{total} \sim \frac{3N}{2} \ln \left[\left(\frac{U}{2} \right)^2 - x^2 \right] \sim 3N \ln \left(\frac{U}{2} \right) - \frac{3N}{2} \left(\frac{2x}{U} \right)^2$$

$$\Omega_{total}(U_A) = \Omega_{total}^{max} \cdot \exp\left(-\frac{3N}{2}\left(\frac{2}{U}\right)^2 \left(U_A - \frac{U}{2}\right)^2\right)$$

The width scales as
$$\sigma_U = 2 \cdot \frac{U}{2} \sqrt{\frac{2}{3N}} = \frac{U}{\sqrt{\frac{3N}{2}}} \to 0$$
 as $N \to \infty$

$$U = U_A + U_B$$
$$V = V_A + V_B$$

Two weakly interacting ideal gases

 N, V_A, U_A

Macrostates near the-most-likely macrostate (aka THE EQUILIBRIUM STATE)

$$\Omega_{total}(V_A, U_A) = \Omega_{total}^{max} \cdot \exp\left(-N\left(\frac{2}{V}\right)^2 \left(V_A - \frac{V}{2}\right)^2\right) \cdot \exp\left(-\frac{3N}{2}\left(\frac{2}{U}\right)^2 \left(U_A - \frac{U}{2}\right)^2\right)$$

$$U = U_A + U_B$$
$$V = V_A + V_B$$

The number of microstates away from the equilibrium macrostate decay very rapidly,

hence they are extremely unlikely

Liquid-gas phase transition

Van der Waals equation of state for fluids

$$\left(P + \frac{aN^2}{V^2}\right)(V - Nb) = NkT \rightarrow P = \frac{NkT}{V - Nb} - \frac{aN^2}{V^2}$$

- Maxwell's equal-area construction: The phase transition happens at constant PRESSURE! We find the pressure on the P-V diagram by the equal areas construction of a given isotherm
- Phase transition from liquid to vapor at a constant Gibbs free energy G(P,T,N)

$$dG_l = dG_g$$

P

Liquid-gas phase transition

Phase transition from liquid to vapor at a constant Gibbs free energy G(P, T, N)

$$dG_l = dG_g$$

Clausius Clapeyron relation

$$-S_l dT + V_l dP = -S_l g dT + V_g dP$$

$$\frac{dP}{dT} = \frac{S_g - S_l}{V_g - V_l} = \frac{\Delta S}{\Delta V} = \frac{L}{T \Delta V}, \quad L \text{ is the latent heat of the phase transition}$$

- Entropy jumps going from a liquid to a gas
- Volume expansion going from a liquid to a gas

Clausius Clapeyron relation tells us how much the phase transition pressure changes with changing temperature

How does the boling temperature of water depends on the altitude (pressure)?