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U is fixed u(T),PV,T)

S(U), T,P(V,T)

Summary Part 1

Equilibrium statistical systems

CONTINUE....
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A system in contact with a thermal and particle reservoir

The system can exchange energy and particles with a reservoir and it is in equilibrium at a fixed
T and chemical potential u

Probability of the system being in a given microstate is proportional to the probability that the
reservois is in any state that accomodate that particular microstate (hence the total number of
microstates of the thermal bath corresponding to a given system’s microstate)

Probability ratio between two microstates (the system can exchange energy AUy = —AE, and
particles ANg = —AN)

S -S
P(sy) _ Qr(sp) _ L R(sl)k rG2)| oBAUR ,—BUANR _ o—BAE , BUAN
P(sz) Qgr(sz) B B

Probability of the system in a specific microstate a fixed T and u

P(S) = e B(Es—pu Ng)

E(T, W)
Grand Partition function

E(T,u) =Y. e FEs=1Ns) counts all the accessible microstates weighted by the Gibbs factor

What is the microstate s?




@ | Non-interacting particle system in contact with a thermal and particle reservoir

U (T) P(V, T) Each identical particle can occupy discrete energy states €;, j = 1,2, --- is the state number

@ & © \© For N identical particles, we can have N; number of particles (occupation number) in the energy
state €;
J

The energy of a specific microstate with Ny = ),; N; particlesis E; = }.; Nj€;

Y. =sum over all particles number N, and over all the partitions of particles N in the quantum
states with total energy E

2(T, 1) = Z Z o B(Es—H Ng) — z =B T Nj(ej=1)

Ng {PVj} {de}
AZjIVj=st
E(T,u) = (2 e—BN1(61—Ii)) . (2 e—ﬁNZ(ez—u)) .. <z e—,BN3(63—y)>
Nl N2 N3
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Occupation number of a state

Probability of the system in a specific microstate a fixed T and u

e_:B(Es—M Ng) _ e‘ﬁN1(€1—M) . e_:BNZ(Gz—#) . e_:BNS(Gg—M)

P(s) = (T, 1) (ZNl e—ﬂN1(€1—ﬂ)) ) (ZNZ e—ﬂNz(Ez—u)) .. (ZN3 e—ﬁN3(€3—M))

e_ﬁNl(el_ﬂ) e_BNZ(GZ_ﬂ) e_BN3(€3_ﬂ)

P(s) = (ZNl e—ﬁN1(€1—H)) . (ZNZ e—ﬁNz(fz—H)) . (2N3 e_ﬁN3(€3_”))

P(s) = P(Ny) - P(N2) - P(N3) -
Probability for the occupation number N of the given state at fixed T and u

e_ﬁN(G_I‘)
(ZN e—ﬂN(f—ﬂ)) ’

P(N) = Z = z e PN~ (partition function of a single mode)

N
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@ | Non-interacting FERMIONS in contact with a thermal and particle reservoir

The occupation number for each quantum stateis N = 0,1

U(T) P(V, T)

@ © \@
© Probability for the occupation number N of the given energy state a fixed T and u

e_,BN(E_M)

PIN) = o

Average occupation number (N) of the given energy state € a fixed T and u

FERMI-DIRAC distribution

1
- 1
<N>(E) = z NP(N) = 1 _T_ e—Ble—w - <N>(E) - eB(e
N=0
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Non-interacting BOSONS in contact with a thermal and particle reservoir

The occupation number for each stateisN = 0,1,2 -

2N=0 e AN(E~1) = 1—e‘2(6—#)’ for u <e (for every e!)

Probability for the occupation number N of the given energy state a fixed T and u

P(N) = (1 — e—ﬂ(e—ﬂ))e—ﬂN(e—u)

Average occupation number (N) of the given energy state € a fixed T and u

BOSE-EINSTEIN distribution

N —p(e— N - €— -
(N)(€) = NZ;)NP(N) =(1-e A ”))NZ;)Ne BN(e=1) 5 (N)(€) = A

-1
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U (T) P(V, T)
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o = X
Bose Einstein distribution 3
=z
2L
1
0 | |
-4 -2 0

(e-10)/KT
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Classical limit

QUANTUM distribution for the average occupation number of an energy state

u( )
High T limit ( K 0)
BOLZMANN distribution
ebPr
(N)(€) = eBe + eBn  ePr-0 (N)(e) = e Flemm)

Fys2160, 2018
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2 0
(e-p)/KT
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THERMODYNAMIC PROPERTIES AND DENSITY OF STATES

Average energy

U= 777(N)(6) e(nx,ny,nx) jdnxj dnyj dn, € -(N) = fde g(e)e - (N)

nx ny nz

* Density of states g(e) comes become we need to count all the quantum states at a given
energy €. Remember that the quantum state is given by the state of the wavefunction

* Number of states with energy between € and € + de = Number of states with state number
between n and n 4+ dn (positive quadrant)

(3D) g(e)de = él}nnzdn, (2D)g(e)de = %Zmzdn, (2D), (1D) g(e)de = dn

Energy e(n) is determined by the quantum mechanics:

2
8mlL2

* Quantum harmonic oscillator e(n) = nhw

* Particle in a box e(n) =

* Relativistic particles e(n) = hf = Zn
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Density of states

Number of states with energy between € and € + de = Number of states with state number
betweenn and n + dn

(3D) g(e)de = 7%nzdn, (2D)g(e)de = gndn, (2D), (1D) g(e)de = dn

FERMIONS: remember to multiply by factor 2 because there are two electrons per energy level
(spin up and spin down)

T T
(3D) g(e)de = ZXEnzdn, (2D)g(e)de = 2X Endn, (2D), (1D)g(e)de = 2xdn

PHOTONS : remember to multiply by factor 2 for the two transverse polarizations of the EM
waves

T
(3D) g(e)de = 2x Enzdn,

PHONONS: remember to multiply by factor 3 for the three polarizations of the sound waves

(3D) g(e)de = 3><gn2dn
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Thermodynamic properties and density of states

Average energy

Average number of particles

U(T,V, ) =J de g(€) <N>E:J de g(e)eﬂ(e—i)+1
0 0 —

N(T,V,u) =f de g(€) UV)ZJ de g(e)eﬂ(e—u>+1
0 0 =

Fys2160, 2018
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© / DEGENERATE FERMIONS

U(T) P(V, T)

@ ©
& @\ e(n) = 8h2L 2 —>g(3D)(6)de —nnzdn—>g(3D)(e) __(8;1) Ve

n y

2

h? h* (N
er(N) = 8ml2 Mtmax = 8mlL2 (5)

Average energy

€F
" U(T,V,er) :j de g(e) €
0

n:

Average number of particles

N(T,V,ep) = jeFde g(e)
0
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y per Unit Wavelength

(1()'8 Watts/m?per mm)

Radiated Intensit

© / Photons

(T) P(V, T)

©
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Fit of blackbody curve
forT=274K

e
o©
T

o
(2]
T

data from COBE

o
S
T

Cosmic background

0.5 1 2 5
Wavelength A in mm

€ =hf =hc/A

10

hc 8tV

2 _ 2
2Ln — g(e)de = mn“dn - g(e) = (ho)3 €

€n =

Average energy

_ (" € 8V 63 _ 8m(kT)*
U(T,V)—fo de 9() 1 = e )3j “—1~ 15 (ho)?

Planck distribution

8mh f3
u(f) = 3 oBhf — 1

Average number of particles

1 8mV J“’ €2

N(T,V) = d = d
( ) j() E'g(E)eBE—l (hC)3 0 Eeﬂe_l
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Energy
transformation

Energy q Energy

before after

dU = 6Q + oW

Reversible
dU =TdS — PdV

First law of thermodynamics: CONSERVATION OF ENERGY

Change in the internal energy of a system is due to heat or work exchanges with its

surrounding
AU=Q+W
The change in the «stored» energy equal the sum of «energies in transit»
The infinitesimal change in internal energy
dU = 8Q + 6W
Infinitesimal reversible process

dU =TdS — PdV

Fys2160, 2018 18




First law of thermodynamics: CONSERVATION OF ENERGY

Clausius equality

dU = 6Q + 6W
Reversible 60,00
dU = TdS — PdV ds =—;

Heat capacities

0Q
cr=(G7) = Cv+ Nk
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Second law of thermodynamics
Irreversible heat flow
Entropy increase

[rreversible heat transfer is smaller than the reversible heat
exchange ata given T

) Qirrev < Qrev
T T
Clausius inequality

ds > —
T

[solated system
Entropy tends to increase as the system sponteneously finds its

equilibrium state
ds =0

Fys2160, 2018

Clausius inequality:

6Q
> _°
ds > T

Entropy of the
Universe:

dS=>0

20



transformation

Example of (reversible) transformations of an ideal gas:

Vo 14

2

W, = — f P dV = —NkT In (—)
Vi

2. lIsobaricprocess: Py =P, =P (CydT =TdS — PdV)

vV
Wrev=—f PdV =—P WV, —Vy)
V1

o T2dr T
O
isobaric T T T Ty

1. Isothermalprocess: T;=T,—>U;=U, (AU=W,,, + Q,cp, =

Fys2160, 2018
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Energy
transformation

Example of reversible transformations of an ideal gas:

3. Adiabatic process: 6Q,., = 0 - dU = —PdV

C
“P_4

CodT = —Pav — ¢, X = Y Iz (Vl)cv
= — —_ _— = —_— S | —
v '1r v ‘T, \V,

V2

Wrey = — j PdV = Cy(T, — Ty)
V1

AS =0

4. Isochoric process: V=V, (CydT =TdS)

Fys2160, 2018
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Things that are more

Second law of thermodynamics: orobability, tend to occur

In search for the most probable state more often

Qfinat = Qinitial

Boltzmann’s formula

Entropy cannot decrease
Q'final Loy
AS = kln

Qinitial

An isolated system will spontaneously evolve towards the most

likely equilibrium state, i.e. The macrostate with maximum
multiplicity () N
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Two weakly interacting ideal gases

3N ® & NV,U, O N, Vg, Ug
* Total multiplicity: Qeorqr = F(N)2(V, V)N (UUg) 2 o © ©® o| © ® 9
e _ o
e ® o0 e ©
ax L (V\2N 3N ®
total — f(N) (E) (E)
U=U,+ Up
* States near the most likely state by varying U V="VatUp
U U . , 4 Q
UA=;+x,UB=;—xwzthx<<U/2,wh|Ie VA:VB=§ e
3N [(U\* Uy 3N 2x\°
ot = 5| (z) =]~ 2 (3) - () :
3N (2\? U\? 1
o) =055 e0(=5 ) (-3) ) :
u/2
The width scal =20 |2 =250 N - oo
e width scalesas oy =2 - [+ = 1— as

2 Fys2160, 2018
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Two weakly interacting ideal gases |e o wv.u| o 2V
o o ® o] © ®
® o
e ® oo e ©
* Macrostates near the-most-likely macrostate (aka THE EQUILIBRIUM STATE) [ J
U=Uy,+Ug
2\* V\? 3N /2)\* U\? _
Qtotar(Va, Us) = Qfpta; - €Xp (‘N (V> (VA B E) ) - exp (—7(5) (UA - E) > ronTh

The number of microstates away from the equilibrium macrostate decay very rapidly,

hence they are extremely unlikely
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Gas state

o Liquid-gas phase transition

Liquid state

. Van der Waals equation of state for fluids
(o]
P\ by = NkT > p = VKT oV
—_— — -_ = -
V2 V—-Nb V2

=
Ll
[ ]

Maxwell’s equal-area construction: The phase transition happens at
constant PRESSURE! We find the pressure on the P-V diagram by the equal
areas construction of a given isotherm

Pressure p

* Phase transition from liquid to vapor at a constant Gibbs free energy
G(P,T,N)

mixed:ngL;Ldnvapor T .,,.T<T: dGl = ng

Yolume V
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Gas state

e o Liquid-gas phase transition

Liquid state

° Phase transition from liquid to vapor at a constant Gibbs free energy G(P,T,N)

dGl — ng
P Clausius Clapeyron relation
—SldT + VldP = —S_ng + ngP

dP _ Sg=S1 _ AS _ L
dT  Vg-V; AV  TAV’

L is the latent heat of the phase transition

* Entropy jumps going from a liquid to a gas
T * Volume expansion going from a liquid to a gas

Clausius Clapeyron relation tells us how much the phase transition pressure changes with
changing temperature

@ How does the boling temperature of water depends on the altitude (pressure)?




