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A system in contact with a thermal and particle reservoir

The	system	can exchange energy and	particles with a	reservoir and	it	is	in	equilibrium at	a	fixed
: and	chemical potential ;

Probability of the system	being in	a	given	microstate is	proportional to	the probability that the
reservois is	in	any state that accomodate that particular microstate (hence the total	number of
microstates of the thermal bath corresponding to	a	given		system’s microstate)	

Probability ratio	between two microstates (the system	can exchange energy @AB = −@E,	and	
particles @GB = −@G)		

H IJ
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= LM IJ
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R = NSTUMNVSWTXM = NVSTY N SWTX

Probability of the system	in	a	specific microstate a	fixed T	and	;

Z [ =
\
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Grand	Partition function

Ξ d, e = ∑I NV S(YPVW XP) counts all the accessible microstates weighted by the Gibbs factor

What is the microstate [?
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Non-interacting particle system in contact with a thermal and particle reservoir

Each	identical particle can occupy discrete energy states 34, 4 = 7, 8,⋯ is	the state number

For	N	identical particles,	we can have	@4 number of particles (occupation number)	in	the energy
state 34

The	energy of a	specific microstate with @E = ∑4@4 particles is		GE = ∑4@434

∑H ≡sum	over	all	particles number @E and	over	all	the partitions of particles	@E in	the quantum
states with total	energy GE
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Occupation number of a state

Probability	of the system	in	a	specific microstate a	fixed T	and	6

7 8 =
1

Ξ(=, ?)
AB C(DEBF GE) =

ABCGH IHBF ⋅ ABCGK IKBF ⋅ ABCGL ILBF ⋯
∑GH A

BCGH IHBF ⋅ ∑GK A
BCGK IKBF ⋅⋅ ∑GL A

BCGL ILBF ⋯

O P =
QBRST UTB6

∑ST Q
BRST UTB6

⋅
QBRSV UVB6

∑SV Q
BRSV UVB6

⋅
QBRSW UWB6

∑SW Q
BRSW UWB6

⋯

O P = O(ST) ⋅ O(SV) ⋅ O(SW)⋯

Probability	for	the occupation number S of the given	state at	fixed T	and	6

O S =
QBRS UB6

∑S QBRS UB6 , [ =\
S

QBRS UB6 (]^_`a`abc decf`abc bd ^ PacghQ ibjQ)
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Non-interacting FERMIONS in contact with a thermal and particle reservoir

The	occupation number for	each quantum state is	3 = 5, 7

Probability	for	the occupation number 3 of the given	energy state a	fixed T	and	?

@ A =
BCDE FCG

1 + BCD FCG

Average occupation number ⟨3⟩ of the given	energy state M a	fixed T	and	?

FERMI-DIRAC	distribution

3 (W) = Y
3Z5

7

3[ 3 =
\C] WC?

7 + \C] WC? → 3 (W) =
7

\] WC? + 7
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Fermi Dirac distribution
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Non-interacting BOSONS in contact with a thermal and particle reservoir

The	occupation number for	each state is	2 = 4, 6, 7⋯

∑:;<
= >?@: A?B = C

C?DEF GEH , IJK L < N (IJK >P>KQ N!)

Probability for	the occupation number 2 of the given	energy state a	fixed T	and	[

\ ] = 1 − >?@ A?B >?@: A?B

Average occupation number ⟨2⟩ of the given	energy state N a	fixed T	and	[

BOSE-EINSTEIN	distribution

2 (j) = k
2;4

=

2l 2 = 6 − m?n j?[ k
2;4

=

2 m?n2 j?[ → 2 (j) =
6

mn j?[ − 6
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Bose Einstein distribution
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Classical limit 

QUANTUM	distribution for	the average occupation number of an	energy state

; (=) =
1

AB CDE ± 1

High T limit (E G

HG
≪ 0)

BOLZMANN distribution

K L =
MNO

MNL ± MNO
→MNO→Q K L = MDN LDO

R S , U(V, S)
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THERMODYNAMIC PROPERTIES AND DENSITY OF STATES 
Average	energy

* =,
-.

,
-/

,
-0

1 (3) ⋅ 3 67, 69, 67 = :
;

<
=67 :

;

<
=69 :

;

<
=6> 3 ⋅ 1 = :

;

<
=3 ? 3 3 ⋅ ⟨1⟩

• Density of states ? 3 comes become we need to count all the quantum states at a given 
energy 3. Remember that the quantum state is given by the state of the wavefunction

• Number of states with energy between 3 and 3 + =3 ≡ Number of states with state number
between 6 and 6 + =6 (positive quadrant)

3E ? 3 d3 =
1
8
4J6K=6, 2E ? 3 d3 =

1
4
2J6=6, 2E , (1E) ? 3 d3 = =6

Energy 3 6 is determined by the quantum mechanics: 
• Particle in a box 3 6 = MN

OPQN
6K

• Quantum harmonic oscillator 3 6 = 6ℏS

• Relativistic particles 3 6 = ℎU = MV
KQ
6

* W , X(Y, W)W
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Density of states
Number of states with energy between ! and ! + #! ≡ Number of states with state number
between % and % + #%

3' ( ! d! = +
2 %

-#%, 2' ( ! d! = +
2 %#%, 2' , (1') ( ! d! = #%

FERMIONS: remember to multiply by factor 2 because there are two electrons per energy level
(spin up and spin down)

3' ( ! d! = 2×+2 %
-#%, 2' ( ! d! = 2×+2 %#%, 2' , 1' ( ! d! = 2×#%

PHOTONS : remember to multiply by factor 2 for the two transverse polarizations of the EM 
waves

3' ( ! d! = 2×+2 %
-#%,

PHONONS: remember to multiply by factor 3 for the three polarizations of the sound waves

3' ( ! d! = 3×+2 %
-#%

3 4 , 5(6, 4)4
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Thermodynamic properties and density of states

Average	energy

*(,, ., /) = 2
3

4

56 7 6 8 6 = 2
3

4

56 7 6
6

9: ;<= ± 1

Average number of particles
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DEGENERATE FERMIONS 
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Photons

!" =
$%
&'

" → ) ! *! = +"&*" → ) ! =
,+ -
$% . !

&

Average energy
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Planck distribution

Average number of particles
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First law of thermodynamics: CONSERVATION OF ENERGY 

Change in the internal energy of a system is due to heat or work exchanges with its
surrounding

!" = $ +&

The change in the «stored» energy equal the sum of «energies in transit»   

The infinitesimal change in internal energy

'" = ($ + (&

Infinitesimal reversible process

'" = )'* − ,'-

./ = ($ + (&
Reversible 

./ = )'* − ,'-
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First law of thermodynamics: CONSERVATION OF ENERGY 

Clausius equality

!" = $%&'(
)

Heat capacities

*+ = $%
!) +

= ,-
,) +

→ !- = *+!)

*/ =
$%
!) /

= *+ + 12

34 = $% + $5
Reversible 

34 = )!" − /!+



Second law of thermodynamics
Irreversible heat flow
Entropy increase
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Clausius inequality:

!" ≥
$%

&

Irreversible	heat	transfer		is	smaller than the reversible	heat	
exchange at	a	given	T	

$%:;;<=
&

<
%;<=
&

Clausius inequality

CD ≥
$%

&
Isolated system	

Entropy tends to	increase as	the system	sponteneously finds its

equilibrium state
CD ≥ I

Entropy of the
Universe:

!" ≥ I
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Example of (reversible) transformations of an ideal gas: 

1. Isothermal process:      !" = !$ → &" = &$ ((& = )*+, + .*+, = /)

)123 = −5
6"

6$
7 86 = −9:! ;<

6$
6"

(= =
.*+,
!

= 9: ;<
6$
6"

2. Isobaric process:      7" = 7$ = 7 (>68! = !8? − 786)

)123 = −5
6"

6$
7 86 = −7 6$ − 6"

(? = 5
@ABCD*@E

F.*+,
!

= >7 5
!"

!$ 8!
!
= >7;<

!$
!"

G

HIJ IK
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Example of reversible transformations of an ideal gas: 

3.  Adiabatic process: !"#$% = ' → )* = −,)-

.-)/ = −,)- → .-
)/
/
= −01

)-
-
→
/2
/3

=
-3
-2

.4

.-
53

6789 = −:
-3

-2
, )- = .-(/2 − /3)

=> = '

4.  Isochoric process:      -3 = -2 (.-)/ = /)?)

6789 = −:
-3

-2
, )- = '

=? = :
@ABCDB#@C

!"#$%
/

= .- :
/3

/2 )/
/
= .- EF

/2
/3
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Second law of thermodynamics:  
In search for the most probable state
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Boltzmann’s	formula

Δ0 = 2 ln
Ω45678
Ω9:9;9<=

An	isolated system	will spontaneously evolve towards the most	
likely equilibrium state,	i.e.	The	macrostate with maximum
multiplicity O

Things that are more 
probability, tend to occur

more often
ΩP9:<= ≥ Ω9:9;9<=

Entropy cannot decrease
Δ0 ≥ 0

S



Two weakly interacting ideal gases

• Total multiplicity:  Ω
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• States near the most likely state by varying U 

/
+
=

7

)

+ :, /
,
=

7

)

− : =>?ℎ : ≪ //2 , while *
+
= *

,
=

6

)

lE Ω
"#"$%

∼

3(

2

ln

/

2

)

− :
)
∼ 3( ln

/

2

−

3(

2

2:

/

)

Ω
"#"$%

/
+
= Ω

"#"$%

4$5
⋅ exp −

3(

2

2

/

)

/
+
−

/

2

)
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Two weakly interacting ideal gases

• Macrostates near the-most-likely macrostate (aka THE EQUILIBRIUM STATE)

Ω"#"$% &', )' = Ω"#"$%+$, ⋅ exp −2 2
&

4
&' −

&
2

4
⋅ exp −322

2
)

4
)' −

)
2

4

The number of microstates away from the equilibrium macrostate decay very rapidly, 

hence they are extremely unlikely
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Liquid-gas phase transition
Van der Waals equation of state for fluids 

! + #$
%

&% & − $( = $*+ → ! = $*+
& − $( −

#$%
&%

• Maxwell’s equal-area construction: The phase transition happens at 
constant PRESSURE! We find the pressure on the P-V diagram by the equal
areas construction of a given isotherm

• Phase transition from liquid to vapor at a constant Gibbs free energy
-(!, +, $)

1-2 = 1-3
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Liquid-gas phase transition
Phase transition from liquid to vapor at a constant Gibbs free energy !(#, %, &)

(!) = (!+

Clausius Clapeyron relation

−-)(% + /)(# = −-_+(% + /+(#

(#
(% =

-+1-)
/+1/)

= 23
24 =

5
% 24 , 5 67 89: );8:<8 9:;8 of the phase transition

• Entropy jumps going from a liquid to a gas
• Volume expansion going from a liquid to a gas

Clausius Clapeyron relation tells us how much the phase transition pressure changes with
changing temperature

How does the boling temperature of water depends on the altitude (pressure)? 

=
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