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1 Equipartition of energy

Consider an ultra-relativistic particle that can move in one dimension and is coupled to a thermal
bath at temperature T . The kinetic energy is the ultra-relativistic particle is E = c|p| where c is the
speed of light and p is the momentum of the particle. This energy is linear rather than quadratic
in momentum as for a classical non-relativistic particle. The aim of this exercise is to derive the
equipartition theorem corresponding to a linear degree of freedom and also to compute the standard
deviation of fluctuations in energy.

1. Compute the partition function Z(β) as function of β = 1/(kT ) assuming that there are very
many microstates available for the ultra-relativistic particle at a given temperature (continuous
energy spectrum).

2. Derive the particle mean energy E from the partition function computed in 1.1 and show that
E = kT . Discuss this expression in relation to the equipartition theorem for a quadratic degree
of freedom.

3. Show that the mean square energy E2 can be in general derived from the partition function
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4. Using the expression of the partition function computed in 1.1, determine the dependence of
mean square energy E2(β) on temperature or β.

5. The standard deviation defined as σE =

√
E2 − E2

measures the size of the energy fluctuations
around the average value. Show that the size of these fluctuations relative to the average is
σE/E = 1.

2 Partition function

Let us have a particle which can only have five states, with energies: ε1 = −0.1, ε2 = −0.05, ε3 =
0, ε4 = 0.05 and ε5 = 0.1 in units of eV. The particle is in thermal equilibrium with a heat bath at
room temperature, T = 300 K.

1. Find the partition function for this particle Z1.

2. Find the probability P (εi) for this particle to be in each of the energy states εi, i = 1 · · · 5.

3. The reference point for measuring the energy is arbitrary, so we could shift the energies so that
the ground state starts at 0: ε1 = 0, ε2 = 0.05, ε3 = 0.1, ε4 = 0.15, ε5 = 0.2. Repeat steps (1)
and (2) for these energies. What will change and what will remain unchanged?
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3 Maxwell-Boltzmann distribution

Let us take the Maxwell-Boltzmann distribution of the speed D(v) for a nitrogen gas N2 (three
dimensional case).

1. Calculate the average speed 〈v〉, the root-mean-squared speed vrms and the most probable
speed vp for a N2 molecule at temperatures of T = 300K and T = 600K. (The mass of a mole
of N2 is M = 0.028kg/mol)

2. Plot the Maxwell-Boltzmann distribution D(v) for these two temperatures, on the same graph.

3. At room temperature T = 300K, what fraction of the N2 molecules are moving at speeds less
than 300m/s?

4. The temperature of earth’s upper atmosphere is around T = 1000 K. Calculate the probability
of a nitrogen molecule at this temperature moving faster than the earth’s escape speed 11km/s.
Comment on this result. (Hint: evaluate the integral numerically)

5. Repeat the previous calculation at T = 1000K for a hydrogen molecule (H2) and for helium
atom (He) and discuss the results. (use that MH2

= 0.002 kg/mol and MHe = 0.004 kg/mol)

6. Consider on a nitrogen molecule on the moon and assume that the temperature is about
1000K the same as on the earth’s upper atmosphere. The escape speed from the moon’s
surface is about 2.4 km/s, hence smaller than that on earth. Calculate the probability of a
nitrogen molecule moving faster than the moon’s escape speed and, consequently explain why
the moon has no atmosphere.
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