UNIVERSITY OF OSLO

Obligatory assignment 3: FYS2160, Thermodynamics and statistical physics, Fall 2019
Due: October 29, 2019

1 Equipartition of energy

Consider an ultra-relativistic particle that can move in one dimension and is coupled to a thermal bath at temperature T. The kinetic energy is the ultra-relativistic particle is $E=c|p|$ where c is the speed of light and p is the momentum of the particle. This energy is linear rather than quadratic in momentum as for a classical non-relativistic particle. The aim of this exercise is to derive the equipartition theorem corresponding to a linear degree of freedom and also to compute the standard deviation of fluctuations in energy.

1. Compute the partition function $Z(\beta)$ as function of $\beta=1 /(k T)$ assuming that there are very many microstates available for the ultra-relativistic particle at a given temperature (continuous energy spectrum).
2. Derive the particle mean energy \bar{E} from the partition function computed in 1.1 and show that $\bar{E}=k T$. Discuss this expression in relation to the equipartition theorem for a quadratic degree of freedom.
3. Show that the mean square energy $\overline{E^{2}}$ can be in general derived from the partition function

$$
\begin{equation*}
\overline{E^{2}}=\frac{1}{Z} \frac{\partial^{2} Z}{\partial \beta^{2}} \tag{1}
\end{equation*}
$$

4. Using the expression of the partition function computed in 1.1, determine the dependence of mean square energy $\overline{E^{2}}(\beta)$ on temperature or β.
5. The standard deviation defined as $\sigma_{E}=\sqrt{\overline{E^{2}}-\bar{E}^{2}}$ measures the size of the energy fluctuations around the average value. Show that the size of these fluctuations relative to the average is $\sigma_{E} / \bar{E}=1$.

2 Partition function

Let us have a particle which can only have five states, with energies: $\epsilon_{1}=-0.1, \epsilon_{2}=-0.05, \epsilon_{3}=$ $0, \epsilon_{4}=0.05$ and $\epsilon_{5}=0.1$ in units of eV . The particle is in thermal equilibrium with a heat bath at room temperature, $T=300 \mathrm{~K}$.

1. Find the partition function for this particle Z_{1}.
2. Find the probability $P\left(\epsilon_{i}\right)$ for this particle to be in each of the energy states $\epsilon_{i}, i=1 \cdots 5$.
3. The reference point for measuring the energy is arbitrary, so we could shift the energies so that the ground state starts at $0: \epsilon_{1}=0, \epsilon_{2}=0.05, \epsilon_{3}=0.1, \epsilon_{4}=0.15, \epsilon_{5}=0.2$. Repeat steps (1) and (2) for these energies. What will change and what will remain unchanged?

3 Maxwell-Boltzmann distribution

Let us take the Maxwell-Boltzmann distribution of the speed $D(v)$ for a nitrogen gas N_{2} (three dimensional case).

1. Calculate the average speed $\langle v\rangle$, the root-mean-squared speed $v_{r m s}$ and the most probable speed v_{p} for a N_{2} molecule at temperatures of $T=300 \mathrm{~K}$ and $T=600 \mathrm{~K}$. (The mass of a mole of N_{2} is $M=0.028 \mathrm{~kg} / \mathrm{mol}$)
2. Plot the Maxwell-Boltzmann distribution $D(v)$ for these two temperatures, on the same graph.
3. At room temperature $T=300 \mathrm{~K}$, what fraction of the N_{2} molecules are moving at speeds less than $300 \mathrm{~m} / \mathrm{s}$?
4. The temperature of earth's upper atmosphere is around $T=1000 \mathrm{~K}$. Calculate the probability of a nitrogen molecule at this temperature moving faster than the earth's escape speed $11 \mathrm{~km} / \mathrm{s}$. Comment on this result. (Hint: evaluate the integral numerically)
5. Repeat the previous calculation at $T=1000 \mathrm{~K}$ for a hydrogen molecule $\left(H_{2}\right)$ and for helium atom (He) and discuss the results. (use that $M_{H_{2}}=0.002 \mathrm{~kg} / \mathrm{mol}$ and $M_{H e}=0.004 \mathrm{~kg} / \mathrm{mol}$)
6. Consider on a nitrogen molecule on the moon and assume that the temperature is about 1000 K the same as on the earth's upper atmosphere. The escape speed from the moon's surface is about $2.4 \mathrm{~km} / \mathrm{s}$, hence smaller than that on earth. Calculate the probability of a nitrogen molecule moving faster than the moon's escape speed and, consequently explain why the moon has no atmosphere.
