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1 Equilibrium states of macroscopic systems

Learning outcomes: We learn that macroscopic systems at equilibrium have thermodynamic proper-
ties (entropy, energy, temperature, etc.) that are independent of how we choose to define the system
in relation to its environment. This is a fundamental result in statistical mechanics also known as
the ensemble equivalence. A statistical ensemble is a collection of microstates corresponding to a
particular way in which the system interacts with the environment. For example, if we consider an
isolated system, then we have an ensemble of equally likely microstates at the same energy. Or,
if we consider a system in a thermal bath, then we have an ensemble of microstates at the same
temperature. The statistical mechanics of these ensembles corresponds to a unique equilibrium state
of the system. This is exemplified by showing that, in the thermodynamic limit, the mean entropy of
a particle as a function of its mean energy in an isolated system is the same as that for a system in
contact with a thermal bath at a corresponding temperature T .

Consider a system of identical, independent and distinguishable particles. Each particle has two
energy levels ε and −ε that it can occupy. First, we consider an isolated system with a fixed number
of particles N and a fixed total energy U . Let us denote the number of particles with energy ε by
N+ and the number of particles with energy −ε by N−. From the constraints of fixed total energy
and number of particles, we then have that U = N+ε−N−ε and N = N+ +N−. This implies that
N± = N(1± x)/2, where x = U/(Nε) is the dimensionless mean energy per particle.

1.1 Compute the entropy SM (x,N) as a function of U (in dimensionless units) and N . Using the
Stirling approximation for the thermodynamic limit, determine the entropy per particle as a function
of the dimensionless energy per particle, sM (x) = limN→∞ SM (x,N)/N .

Now, let us consider that the system with the same fixed N number of particles is in contact
with a thermal bath at fixed temperature T .

1.2 Calculate the partition function of one particle Z1(T ).

1.3 Calculate the partition function of N particles ZN (T ).

1.4 Determine the Helmholtz free energy F (T,N) for N particles.

1.5 Calculate the total average energy U = 〈E〉 for N particles. Invert the equation to express βε
as a function of x = U/(Nε). Eliminate the βε-dependence of FN (T ) calculated above and express
it as a function of x instead.

1.6 Determine the entropy per perticle sC(x) = limN→∞ SC(x,N)/N .

1.7 Give a physical interpretation of the identity sM ≡ sC for a particle. Why does it not matter
for a particle how the system interacts with its environment?
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2 Harmonic oscillators

Learning outcomes: We learn how to derive the equilibrium properties of a system at a given temper-
ature and with particles that have infinitely many energy levels. As an example, we consider a system
of quantum harmonic oscillators and derive the temperature dependence of the average energy and
heat capacity. We can determine the regime where the theorem of equipartition of energy applies.

Consider a system of N independent and distinguishable quantum harmonic oscillators in one
dimension, at the same angular frequency ω and in contact with a thermal bath at T . The energy
levels for each harmonic oscillator are ε(n) = (n+ 1/2)h̄ω, where n = 0, 1, · · · .

2.1 Compute the partition function for one quantum harmonic oscillator Z1(T ).

2.2 Compute the partition function for N particles ZN (T ) and the Hemlholtz free energy FN (T ).

2.3 Compute average energy 〈EN 〉 for N oscillators and discuss its the low and high-temperature
limit.

2.4 Compute compute the heat capacity (at constant volume) for N oscillators and discuss its
low-temperature limit and its high-temperature limit.

3 Particle in 1D

Learning outcomes: We learn how to derive the equation of state of a quantum ideal gas and compare
it with that the classical ideal gas. For this, we use that the ideal gas is composed of indistinguishable,
identical particles and therefore the N-particles partition function is ZN = ZN

1 /N !, where Z1 is
the one-particle partition function. The free energy of N particles is determined by ZN as FN =
−kT ln(ZN ).

A quantum in a one-dimensional square of width L has the energy levels

E(n) =
n2h̄2π2

2mL2
= n2θ(L), (1)

where the quantum number n = 1, 2, · · · and θ(L) = h̄2π2/(2mL2). We consider a gas of inde-
pendent quantum particles in contact with a thermal bath at T . 3.1 Find a general expression
for one-particle partition function Z1(T, L) and compute it in the low-T and high-T limits. Give a
general expression for N-particle partition function ZN (T, L,N).

3.2 Derive an expression for the Helmholtz free energy of the particle and evaluate it in the low-T
and high-T limit cases.

3.3 Derive an expression for the pressure P (L, T ) as function of L, T and N . Plot (P ·L)/θ as
a function NkT/θ. Evaluate this expression in the low-T and high-T limit cases and discuss which
one of them corresponds to the classical ideal gas.
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