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1 Stretching of a rubber band

Consider an elastic rubber band with a length L(T, P ) that changes with temperature T and tension
P . Equivalently, we can say that the tension P depends on the length L and temperature T . One
may find that the tension in the band changes with T and L according to the empirical slopes
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where L0 is the length of the un-stretched band (independent of temperature) and a > 0 is an
empirical constant.

1.1 Using the empirical slopes, derive the equation of state P (T, L), that relates the tension P
in the rubber band with its temperature T and length L.

The rubber band obeys the thermodynamic relations that are analogous to those of a gas. How-
ever, work is done on the rubber band by stretching it, hence the sign in the work is opposite to that
of the gas, δW = +PdL. The first law of thermodynamics for an infinitesimal reversible deformation
reads as

dU = TdS + PdL, (2)

where U is the internal energy and S is the entropy of the elastic band.
1.2 Show that the thermodynamic identity of the Helmholtz free energy F (T, L,N) leads to the
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1.3 From the equation of state P = Tg(L), it follows that (∂P/∂T )L = P/T . Using this together
with the above Maxwell relation, show that the internal energy of the band depends only on T , just
like for an ideal gas. (show that (∂U/∂L)T = 0)

1.4 The heat capacity at constant length L is then related to changes in the internal energy at
fixed L as dU = CLdT . Assume that CL is constant. Suppose the band is stretched adiabatically
and reversibly (Qrev = 0), i.e. isentropically (dS = 0), from L0 at an initial temperature Ti to the
final length Lf . What is its final temperature Tf?

1.5 The stretched rubber band with the final length Lf is released, so that it contracts freely
to its equilibrium unstretched length L0. If no heat and no work is exchanged with its surrounding
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during this contraction, find the changes in its temperature and entropy. What is the analogue
process for a gas?

2 Principle of corresponding states

This project is closely related to the lab exercise on phase transitions of water that you will complete
during October.

Figure 1: Left: Generic interaction potential between atoms or simple molecules. The most used
interaction potential model U(σ, ε,m) of this kind is called the Lennard-Jones (LJ) model. Inset
are the values for Argon. Right: Liquid-gas coexistence curves of the LJ model and the noble gases
neon, argon, krypton and xenon, rescaled by the critical temperature and density. Both the LJ
model and the noble gas curves overlap. This signifies that using appropriate values of σ, ε,m for
the noble gases the LJ model and all the gases are equivalent.

Simple liquids and gases have atoms or molecules that can be characterised by their atomic or

molecular mass, m, volume, v = 4πσ3

3 , and strength of attractive interactions, ε. The corresponding
atomic/ molecular diameter, σ, and attractive energy, ε are shown in Figure 1. In SI units [m] =kg,
[σ] =m and [ε] =kg m2 s−2 All thermodynamic properties of solids, liquids or gases of such particles
can be non-dimensionalised using only σ, ε,m and the Boltzmann constant. For example the reduced
temperature Tr = kBT/ε and the reduced density ρr = ρσ3.

2.1) Find the expressions for reduced pressure, time and enthalpy.

According to the principle of corresponding states, all simple fluids behave similarly in terms
of their reduced temperature, pressure and volume. The phase diagrams of all simple liquids and
gasses look like the phase diagrams of the Lennard-Jones fluid shown in Figure 2, the thermodynamic
variables are given in dimensionless units. This means that if we know three parameters necessary
to non-dimensionalise all thermodynamic properties (σ, ε,m or Tc, Pc, ρc, see Problem 3), we can
data collapse the coexistance curves into universal curves. It means that different substances that
occupy the same state in the phase diagram corresponding to their reduced variables, will have the
same behavior.
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Figure 2: Phase diagrams of the Lennard-Jones model. Left: Pressure-temperature diagram. The
lines in the diagram are called coexistence lines. The states specified by these lines are the states
of equilibrium between two phases of the same substance. Boiling and condensation occurs at the
black liquid-gas coexistence line. Melting and freezing occurs at the blue liquid-solid coexistence
line. Sublimation occurs at the red solid-gas coexistence line. Right: Temperature-density diagram.
The crosses are simulation data for the liquid-gas coexistence at temperatures below the critical
temperature Tc and above the the triple point temperature Ttp.

2.2) What are the densities and the pressures of the LJ liquid and gas in equilibrium at Tr = 1?
(Use Fig. 2)

2.3) In many simple liquids one finds that Tc

Ttp
= 5

2±
1
2 . Can the fact that Tc

Ttp
∼constant be derived

from the principle of corresponding states?

2.4) Based on observations of some liquids, the Norwegian chemist Cato Maximillian Guldberg
proposed in 1890 that the ratio between the normal boiling point temperature (at 1 atmosphere
pressure), Tb, and the critical temperature, Tc was Tb/Tc ∼ 2/3. Does this, so-called Guldberg rule,
follow from the principle of corresponding states?

It is found that for simple liquids the ratio Hv/(RTb) ∼ 10 between the enthalpy of vaporization,
Hv and the normal boiling point temperature, Tb. Over a much larger range of noble gases, organic
and inorganic liquids and metals one finds Hv/(RTb) ∼ 12 (see Figure 3). This has been named
Trouton’s rule.

Note: The enthalpy of vaporization is the same as the latent heat at the liquid-gas phase transition.
The entropy of vaporization is the same as the jump in entropy ∆S at the liquid-gas phase transition.

2.5) Use Trouton’s rule to estimate the heat of vaporization for water.

2.6) When measuring the enthalpy of vaporization one normally works at constant pressure with
a fixed amount of substance. Use the thermodynamic identity for enthalpy to express Trouton’s rule
in terms of the entropy of vaporization, Sv.

2.7) It has been argued that Trouton’s rule follows from the principle of corresponding states. Do
you agree?
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Figure 3: Trouton’s rule: Enthalpy of vaporization, Hv and normal boiling point temperature, Tb
are proportional.

2.8) Can you find an alternative explanation for Trouton’s rule using the entropy change during
vaporization?

3 Phase coexistence of N2 - van der Waals equation

In this project we will study the gas-liquid phase equilibrium of nitrogen using the van der Waals
equation of state.

The van der Waals fluid is a mean field theory of a gas of weakly interacting particles. It is
a model system, just as the ideal gas, although it includes more features of realistic gases. The
van der Waals gas includes two of the main effects of an attractive two-particle interaction between
particles in the gas: a repulsive interaction that keeps particles apart, and an attractive long-range
interaction that pulls particles together. These two effects leads to two changes in the Helmholtz
free energy of the gas, as compared to an ideal gas: Instead of the volume V we introduce the
effective volume, V −Nb, where the volume b is the excluded volume per particle, and we introduce
an average binding energy, −a(N/V )2. Helmholtz free energy for the van der Waals gas is:
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where nQ(T ) =
(
2πmkT/h2

)3/2
is a function of T only.

3.1) Show that the pressure, P (N,V, T ), of the van der Waals gas is

P =
NkT
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− aN2

V 2
. (5)
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This is the equation of state for the van der Waals gas. We introduce the quantities

Pc =
a

27b2
, Vc = 3Nb , kTc =

8a

27b
(6)

which are the critical pressure, volume and temperature of the van der Waals model. We can then
introduce dimensionless quantities:

P̂ = P/Pc , V̂ = V/Vc , T̂ = T/Tc , (7)

and similarly for the density

ρ̂ = 1/V̂ = ρ/ρc , ρc =
1

3b
. (8)

3.2) Show that the reduced pressure of the van der Waals gas follows the universal equation of
state (principle of corresponding states)

P̂ =
8T̂

3V̂ − 1
− 3

V̂ 2
. (9)

3.3) Plot the pressure P̂ as a function of V̂ for V̂ in the range from 0.4 to 6 for T̂ = 1.0, 0.95, 0.9
and 0.8.

Notice that the volume is not a unique function of the pressure for some range of values. This means
that we generally cannot find V̂ (P̂ ).

3.4) Show that the pressure also can be expressed using the density instead of the volume:

P̂ =
8ρ̂T̂

3 − ρ̂
− 3ρ̂2 . (10)

3.5) Plot the pressure P̂ as a function of ρ̂ for ρ̂ in the range from 0.0 to 2.0 for T̂ = 0.8, 0.9, 0.95
and 1.0

3.6) Now we would like to relate the van der Waals fluid to a nitrogen (N2) gas. Use the critical
parameters Pc=33.6 atm, Vc=0.089 l/mol and Tc=126 K to plot, using the van der Waals equation
of state the PV isotherms of N2 for T = 77, 100, 110, 115, 120, 125 K. You have now applied the
principle of corresponding states.

3.7) Use the Maxwell equal area construction (see figures 5.21 and 5.23 in Schroeder) to determine
the liquid volume Vl(T ) and gas volume Vg(T ) at the temperatures 100, 110, 115, 120 and 125 K. Do
this ”by hand”, using your eyes to judge when the areas are equal. Plot Vg(T ) − Vl(T ) as function
of T to determine the critical temperature. Why do you get this value of the critical temperature?

3.8) Extra challenge (optional): Find a numerical solution to the Maxwell construction and use
this to determine the critical temperature, volume and pressure.
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