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Generalized thermodynamic identity and chemical potential

Chemical potential is the amount by which a system’s energy changes when one adds 

one particle and keeps the entropy and volume fixed. μ has units of energy. 

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁

𝜇 = −𝑇
𝜕𝑆

𝜕𝑁
𝑈,𝑉

Fixed U and V :

Fixed U and S : 𝜇 = 𝑃
𝜕𝑉

𝜕𝑁
𝑈,𝑆

Fixed V and S : 𝜇 =
𝜕𝑈

𝜕𝑁
𝑆,𝑉



Chemical potential of ideal gas

Sackur-Tetrode equation:

μ 𝜇 ≡ −𝑇
𝜕𝑆

𝜕𝑁
𝑈,𝑉
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 The sign of chemical potential depends on the ratio of the volume per one particle and the quantum

volume 𝜗𝑄. 𝜇 is negative for
𝑉

𝜗𝑄𝑁
≫ 1, or a non-dense systems with negligible probability for particles

to occupy the same energy state. A large mass of particles results in a small 𝜗𝑄.

 Reduction in mass and decrease in temperature results in
𝑉

𝜗𝑄𝑁
≪ 1 , positive 𝜇 and attempts of

particles to occupy the same energy state.

𝜗𝑄 = 𝑙𝑄
3 =

ℎ

2𝜋𝑚𝑘𝑇

3

Classical behaviour, 

negative 

Quantum behaviour, 

positive 



Quantum volume and length

𝜗𝑄 = 𝑙𝑄
3 =

ℎ

2𝜋𝑚𝑘𝑇

3

 For the air we breathe, the average distance between molecules

is about 3 nm while the average de Broglie wavelength is less

than 0.02 nm, so condition
𝑉

𝜗𝑄𝑁
≫ 1 is satisfied.

 For an electron at room temperature, because of low mass, the

quantum volume is 𝜗𝑄= 4.3 nm 3 , while the volume per

conduction electron is roughly the volume of an atom, 0.2 nm 3.

Therefore, electron gas in metals at ambient conditions is

quantum gas with
𝑉

𝜗𝑄𝑁
≪ 1.

ℎ

2𝜋𝑚𝑘𝑇

ℎ

2𝜋𝑚𝜖

𝜖 =
𝑝2

2𝑚 ℎ

𝑝 𝜋

𝑝 =
𝓀 ℎ

2𝜋 2𝜋

𝓀 𝜋

2𝜋

𝓀
= 𝜆𝑑𝐵 𝜆𝑑𝐵

𝜋
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‘By carefully measuring how the cathode rays were deflected by
electric and magnetic fields, Thomson was able to determine
the ratio between the electric charge (e) and the mass (m) of
the rays. Thomson's result was
e/m = 1.8 1011 coulombs/kg.
The particle that J.J.Thomson discovered in 1897, the electron,
is a constituent of all the matter we are surrounded by. All
atoms are made of a nucleus and electrons. He received the
Nobel Prize in 1906 for the discovery of the electron, the first
elementary particle.’

The Nobel Prize in Physics 1906
Joseph John Thomson
"in recognition of the great merits of his theoretical and 
experimental investigations on the conduction of electricity by 
gases"

Electron gas

https://en.wikipedia.org/wiki/J._J._Thomson



Cavendish Laboratory



Electron gas in vacuum

Quantum 

electron gas

Normal gas DVS

https://en.wikipedia.org/wiki/Vacuum_tube

“The simplest vacuum tube, the diode (i.e. Fleming valve),

invented in 1904 by John Ambrose Fleming, contains only

a heated electron-emitting cathode and an anode.

Electrons can only flow in one direction through the

device—from the cathode to the anode. Adding one or

more control grids within the tube allows the current

between the cathode and anode to be controlled by the

voltage on the grids.”



Si-MOSFET

p-doped Si

Ohmic contacts, 
n-doped

Oxide, SiO2

Metallic 
gate

Solid-state transistors

Quantum 

electron 

gas

Normal gas
DVS

http://en.wikipedia.org/wiki/File:MOSFET_Structure.png


Progress in miniaturisation

By Cmglee - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=16991155



http://en.wikipedia.org/wiki/Moore's_law

Moor’s law 
“Moore's law is the observation that the number of transistors in a dense integrated circuit 

(IC) doubles about every two years.”

The observation is named after Gordon Moore, the co-founder 

of Fairchild Semiconductor and Intel (and former CEO of the latter).



Moor’s law 2.0

https://newsroom.ibm.com/2019-03-04-IBM-Achieves-Highest-Quantum-Volume-to-Date-Establishes-Roadmap-for-

Reaching-Quantum-Advantage#assets_all

BOSTON, March 4, 2019 /PRNewswire/ -- At the 2019 American Physical Society March Meeting, 

IBM (NYSE: IBM) unveiled a new scientific milestone, announcing its highest quantum volume to date.

IBM has doubled the power of its quantum computers annually since 2017. 



Superconductivity and quantum computing

https://techcrunch.com/2017/11/10/ib

m-passes-major-milestone-with-20-

and-50-qubit-quantum-computers-

as-a-service/

https://www.youtube.com/watch

?v=yy6TV9Dntlw



Bosons and fermions

 For a dense system, particles that try to occupy the same state can be divided in 

two groups.

 Particles that can share a state with another are called bosons. Examples: photons 

and helium-4 atoms.

 Particles that cannot share a state with another are called fermions. Examples: 

electrons, protons, neutrons and helium-3 atoms.

 Particles with integer spin (0, 1, 2, etc., in units of h/2) are bosons.

 Particles with half-integer spin (1/2, 3/2, etc.) are fermions.

Is electron gas composed 

of fermions or bosons?

Quantum 

electron gas

Normal gas DVS



Microcanonical, canonical, and grand canonical ensembles

In isolated systems or microcanonical ensemble, all allowed microstates had the same probability, i.e.

“trivial” probability distribution. In canonical ensemble, members are assigned to states according to the

Boltzmann probability distribution. It considers system in thermal contact with a much larger “reservoir” at

some well-defined temperature allowing exchange of energy. Grand canonical ensemble allows exchange

of particles too.

Grand canonical ensemble Canonical ensemble 

Boltzmann and Maxwell distributions Fermi-Dirac and Bose-Einstein distributions

Black-body radiation - Planck Distribution

DVS
DVS



Boltzmann statistics

𝐴 is Boltzmann factor 𝑒−
𝐸

𝑘𝑇

Boltzmann statistics calculates probability of the system in the

contact with reservoir having energy 𝐸 . This probability is

proportional to multiplicity of reservoir:

DVS

𝑅 𝐸 = 𝐴𝑅 0 𝑆𝑅 𝐸 = 𝑘 ln𝑅(0) + 𝑘𝑙𝑛𝐴

∆𝑈 = 𝑇∆𝑆 − 𝑃∆𝑉 + 𝜇∆𝑁

𝐸 = −∆𝑈𝑅 = −𝑇∆𝑆𝑅

𝐴 = 𝑒−𝐸/𝑘𝑇

∆𝑆𝑅 = 𝑘𝑙𝑛𝐴

∆𝑆𝑅 = −
𝐸

𝑇

𝑃 𝐸 = 𝐴𝐶𝑅 0

𝑃 𝐸 = 𝑒−𝐸/𝑘𝑇𝐶𝑅 0 =
1

𝑍
𝑒−𝐸/𝑘𝑇.

Boltzmann distribution 

𝑃 𝑠 =
1

𝑍
𝑒−

𝐸 𝑠
𝑘𝑇

𝑍 = 

𝑠

𝑒−
𝐸 𝑠
𝑘𝑇

𝑃 𝐸 = 𝐶𝑅 𝐸



Transition to Gibbs statistics

𝐴 is Gibbs factor 𝑒−
𝐸−𝜇𝑁

𝑘𝑇

Boltzmann statistics calculates probability of the system in the

contact with reservoir having energy 𝐸 . This probability is

proportional to multiplicity of reservoir:

 𝐸 = 𝐴𝑅 0 𝑆𝑅 𝐸 = 𝑘 ln𝑅(0) + 𝑘𝑙𝑛𝐴

∆𝑈 = 𝑇∆𝑆 − 𝑃∆𝑉 + 𝜇∆𝑁

𝐸 = −∆𝑈𝑅 = −𝑇∆𝑆𝑅 − 𝜇∆𝑁𝑅

𝐴 = 𝑒−(𝐸−𝜇𝑁)/𝑘𝑇

∆𝑆𝑅 = 𝑘𝑙𝑛𝐴

∆𝑆𝑅 = −
𝐸 − 𝜇𝑁

𝑇

𝒫 𝐸 = 𝐴𝐶𝑅 0

𝒫 𝐸 = 𝑒−(𝐸−𝜇𝑁)/𝑘𝑇𝐶𝑅 0 =
1

𝒵
𝑒−(𝐸−𝜇𝑁)/𝑘𝑇.

Gibbs distribution 

𝑃 𝐸 = 𝐶𝑅 𝐸

DVS



Grand canonical ensemble

If more than one type of particle is present in the

system, then the μN term in equations becomes a sum

over species of μi Ni.

Gibbs factor

𝒫 𝑠 =
1

𝒵
𝑒−

𝐸 𝑠 −𝜇𝑁 𝑠
𝑘𝑇

Probability distribution

𝑒−
𝐸 𝑠 −𝜇𝑁 𝑠

𝑘𝑇

𝒵 = 

𝑠

𝑒−
𝐸 𝑠 −𝜇𝑁 𝑠

𝑘𝑇

𝒵 is the grand partition function

𝐸 𝑠 , 𝑁 𝑠

The grand partition function for this single-site occupation 

by oxygen of hemoglobin site. It has just two terms:

𝒵 = 1 + 𝑒−
𝜖−𝜇
𝑘𝑇

𝜖 = −0.7 eV  = −0.6 eV

𝒵 = 1 + 𝑒
0.1 𝑒𝑉

𝑘𝑇 ≈ 41

The probability of site occupation is

40/(40+1) = 98%.

With CO 100 times less abundant, it drops to 25%.

Grand canonical ensemble allows exchange of both energy and particles and has well defined chemical potential .

DVS



Grand canonical distribution for quantum particles

Planck distribution is Bose - Einstein distribution with chemical potential equal to zero. This comes from

the fact that photons can be created or destroyed in any quantity. Their total number is not conserved. If

one imposes  by grand canonical distribution, this can only be done with  = 0.

Gibbs factor

𝒫 𝑠 =
1

𝒵
𝑒−

𝐸 𝑠 −𝜇𝑁 𝑠
𝑘𝑇Probability distribution

𝑒−
𝐸 𝑠 −𝜇𝑁 𝑠

𝑘𝑇

𝒵 = 

𝑠

𝑒−
𝐸 𝑠 −𝜇𝑁 𝑠

𝑘𝑇Grand partition function

𝐸 𝑠 , 𝑁 𝑠

Bose - Einstein distribution

ത𝑛𝐵𝐸 =
1

𝑒
𝜖−𝜇
𝑘𝑇 − 1

𝜖 = ℎ𝑓

The chemical potential for a gas of photons in a box is zero.

Fermi-Dirac distribution

ത𝑛𝐹𝐷 =
1

𝑒
𝜖−𝜇
𝑘𝑇 + 1

ത𝑛 =
1

𝑒
ℎ𝑓
𝑘𝑇 − 1

Number of photons

Planck distribution

DVS



Fermi-Dirac distribution

Main idea is to consider a system as a state for single-

particles and find average number of particles in this

state. The energy when the state is occupied by a

single particle is . When the state is unoccupied, its

energy is 0. If it is occupied by n particles, the energy is

𝑛. The probability of the state being occupied by n

particles is:

𝒫 𝑛 =
1

𝒵
𝑒−

𝑛𝜖−𝜇𝑛
𝑘𝑇 =

1

𝒵
𝑒−

𝑛 𝜖−𝜇
𝑘𝑇

If the particles are fermions, then 𝑛 can only be 0 or 1, so the grand partition function is: 𝒵 = 1 + 𝑒−
𝜖−𝜇

𝑘𝑇 .

The average number of particles in the state or the occupancy of 

the state is then:

ത𝑛 = 

𝑛

𝑛𝒫 𝑛 = 0 ∙ 𝒫 0 + 1 ∙ 𝒫 1 =
𝑒−

𝜖−𝜇
𝑘𝑇

1 + 𝑒−
𝜖−𝜇
𝑘𝑇

=
1

𝑒
𝜖−𝜇
𝑘𝑇 + 1

.

It is the Fermi-Dirac distribution:    ത𝑛𝐹𝐷 =
1

𝑒
𝜖−𝜇
𝑘𝑇 +1

.

DVS

DVS



Bose-Einstein distribution

If the particles are bosons, then 𝑛 can be any

nonnegative integer, so the grand partition function is:

𝒫 𝑛 =
1

𝒵
𝑒−

𝑛𝜖−𝜇𝑛
𝑘𝑇 =

1

𝒵
𝑒−

𝑛 𝜖−𝜇
𝑘𝑇

𝒵 = 1 + 𝑒−
𝜖−𝜇
𝑘𝑇 + 𝑒−

2 𝜖−𝜇
𝑘𝑇 + ⋯ = 1 + 𝑒−

𝜖−𝜇
𝑘𝑇 + 𝑒−

𝜖−𝜇
𝑘𝑇

2

+ ⋯ =
1

1 − 𝑒−
𝜖−𝜇
𝑘𝑇

The average number of particles in the state or the occupancy of the state is then:

ത𝑛 = 

𝑛

𝑛𝒫 𝑛 = 0 ∙ 𝒫 0 + 1 ∙ 𝒫 1 + 2 ∙ 𝒫 2 + ⋯ =
1

𝑒
𝜖−𝜇
𝑘𝑇 − 1

.

This is Bose-Einstein distribution:    ത𝑛𝐵𝐸 =
1

𝑒
𝜖−𝜇
𝑘𝑇 −1

.

Like the Fermi-Dirac distribution, the Bose-Einstein distribution goes to zero when 𝜀 ≫ 𝜇. 

Unlike the Fermi-Dirac distribution, it goes to infinity as 𝜀 approaches 𝜇 from above.

DVS



Comparison of distributions

For the Boltzmann distribution:

ത𝑛𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 =
1

𝑍1
𝑁𝑒−

𝜖
𝑘𝑇 = 𝑒−

𝜖
𝑘𝑇 𝑒

𝜇
𝑘𝑇 = 𝑒−

𝜖−𝜇
𝑘𝑇

ത𝑛𝐵𝐸 =
1

𝑒
𝜖−𝜇
𝑘𝑇 − 1

When 𝜀 ≫ 𝜇, the exponent is very large, one

can neglect the 1 in the denominator of

Fermi-Dirac and Bose-Einstein distributions,

and both are reduced to the Boltzmann

distribution. The precise condition for the

three distributions to agree is: 𝜖 − 𝜇 ≫ 𝑘𝑇.

To apply the distributions to any particular

system, one needs to know what the energies

of all the states are.

𝑃 𝑠 =
1

𝑍1
𝑒−

𝜖
𝑘𝑇 𝜇 = −𝑘𝑇𝑙𝑛

𝑍1

𝑁

ത𝑛𝐹𝐷 =
1

𝑒
𝜖−𝜇
𝑘𝑇 + 1

ത𝑛𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 = 𝑒−
𝜖−𝜇
𝑘𝑇

DVS

𝐹 = −𝑘𝑇𝑙𝑛 𝑍

𝑍 =
𝑍1

𝑁

𝑁!
=

𝑍1
𝑁

𝑁!

𝑙𝑛𝑁! ≈ 𝑁 𝑙𝑛𝑁 − 1



Degenerate Fermi gas

 Gas of fermions is degenerate when nearly all states below 𝜇 are occupied and nearly all states 

above 𝜇 are unoccupied, which typically happens at a low temperatures 𝑘𝑇 < 𝜖 − 𝜇.

 At zero temperature, Fermi-Dirac distribution function is a step function. It equals 1 for all states 

with ϵ < 𝜇 and equals 0 for all states with ϵ > 𝜇.

 As a boundary of filled state at 𝑇 = 0, 𝜇 is also called Fermi energy: ϵ𝐹.

 The value of 𝜖𝐹 is determined by the total number of electrons.

 All  electron states are filled, from the lowest available state to ϵ𝐹.

 𝜇 is change in total energy at zero temperature when one particle is added to the system.

𝜖𝐹 ≡ 𝜇 𝑇 = 0𝜇 =
𝜕𝑈

𝜕𝑁
𝑆,𝑉

𝜖𝐹 =
ℎ2

8𝑚

3𝑁

𝜋𝑉

2
3

Counting quantized states in 3D:

DVS

ത𝑛𝐹𝐷 =
1

𝑒
𝜖−𝜇
𝑘𝑇 + 1



Properties of degenerate Fermi gas

 The average energy of the electrons is 3/5 the Fermi energy: 𝑈 = 3/5𝜖𝐹. Fermi

energy for conduction electrons in a typical metal is a few electron-volts. This is

much larger than the average thermal energy of a particle at room temperature,

𝑘𝑇 ≈ 1/40 𝑒𝑉, which means electron gas in metals is a degenerate Fermi gas.

 The condition 𝜖𝐹 ≫ 𝑘𝑇 comes from the condition 𝑉/𝜗𝑄 ≪ 𝑁, which means that

quantum statistics is important for the electron gas.

 The large, comparable with 𝑘𝑇, Fermi energy justifies approximation of 𝑇 ≈ 0.

 Using the formula 𝑃 = − 𝜕𝑈/𝜕𝑉 𝑆,𝑁, the degeneracy pressure 𝑃 =
2𝑈

3𝑉
is found to

be few billion 𝑁/𝑚2 , sufficient to withstand electrostatic forces and hold the

electrons inside the metal. This pressure does not come from the electrostatic

repulsion between the electrons. It arises purely from the quantum exclusion

principle.

 All electron states are filled, from the lowest available state to ϵ𝐹.



Fermi gas at small nonzero temperatures

 At finite temperature 𝑇, normal particles would get energy about 𝑘𝑇. However, degenerate

electron gas is special. Most of the electrons cannot acquire such energy, because all the

states that they might jump in are already occupied.

 The only electrons that can acquire some energy (thermal) are those that are already

within 𝑘𝑇 of the Fermi energy. Only they can jump up into unoccupied states above ϵ𝐹.

 The number of electrons that can be affected by the increase in 𝑇 is proportional to 𝑇. This

number must also be proportional to 𝑁. Thus, the additional energy at finite 𝑇 is doubly

proportional to 𝑇: ∆𝑈 𝑇 ∝ 𝑁𝑘𝑇 ∙ 𝑘𝑇.

 Coefficient proportionality can be guessed from dimensionality units. It must have unit of

one over energy, and the only energy available in this model is ϵ𝐹.

 Knowing this, allows to calculate heat capacity of electron gas. It is going to zero as 𝑇 → 0.

𝑈 =
3

5
𝑁ϵ𝐹 + 𝐴

𝑁𝑘𝑇 ∙ 𝑘𝑇

𝜖𝐹
𝐴 =

𝜋2

4
𝐶𝑉 =

𝜕𝑈

𝜕𝑇
𝑉

=
𝜋2𝑁𝑘2𝑇

2𝜖𝐹



𝑔(𝜖) ത𝑛(𝜖)

Density of states
When the energy states are filled, they are typically not equidistant (the exception is 2D electron gas). For 3D

electron gas, the density of states, or the number of energy states per unit of energy, follows equation:

𝑔 𝜖 =
𝜋(8𝑚)3/2

2ℎ3
𝑉 𝜖

𝑔 𝜖

𝜖

3D

2D

1D

The derivation of the energy dependence of density of states is

straightforward from the quantization of momentum in units of ℎ/𝐿, where

𝐿 is size of electron box.

The number of electrons is then: 𝑁 = 0

∞
𝑔(𝜖) ത𝑛(𝜖)𝑑𝜖 = 0

∞
𝑔 𝜖

1

𝑒
𝜖−𝜇
𝑘𝑇 +1

𝑑𝜖

At finite temperature, 𝜇 ≠ 𝜖𝐹. Because

increasing 𝑇 does not change total

number of fermions, the two lightly

shaded areas must be equal. Since

𝑔(𝜖) is greater above ϵ𝐹 than below,

this means that the chemical potential

decreases with increase of 𝑇. The chemical potential, μ, is the point 

where the probability of a state being 

occupied is exactly 1/2.

DVS

DVS



𝑔(𝜖) ത𝑛(𝜖)

Chemical potential of degenerate Fermi gas
 The chemical potential, 𝜇, is the point where the probability of a state being occupied is exactly 1/2.

 At 𝑇 = 0, 𝜇 = ϵ𝐹.

 The chemical potential decreases with increase of 𝑇.

 At high temperatures, 𝜇 becomes negative and approaches the form for an ordinary gas obeying

Boltzmann statistics.

Chemical potential of a non-interacting, 

nonrelativistic Fermi gas in a three-

dimensional box.

Chemical potential of ideal gas:

𝜇 = −𝑘𝑇𝑙𝑛
𝑉

𝑁

2𝜋𝑚𝑘𝑇

ℎ2

3/2

DVS

DVS

DVS



Bose-Einstein condensation and superconductivity

𝐶𝑉 =
𝜕𝑈

𝜕𝑇
𝑉

=
𝜋2𝑁𝑘2𝑇

2𝜖𝐹
Fermi gas:

Superconductor:

 Superconductivity is the

result of Bose-Einstein

condensation taking place

when fermions form bosons

being united into Cooper

pairs.

 As a result, electron gas

acquires property of

superfluidity dropping

resistance to absolute zero.

 Superconductors have

unique quantum properties

allowing multiple uses in

modern technology.

Created by Alison Chaiken https://commons.wikimedia.org/wiki/File:Cvandrhovst.png



Whilst measuring the resistivity of 

“pure” Hg he noticed that the electrical 

resistance dropped to zero at 4.2K

Discovered by Kamerlingh Onnes

in 1911 during first low temperature 

measurements to liquefy helium

1913

Discovery of superconductivity
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General properties

Ideal conductor!     Ideal diamagnet!

Magnetic field is expelled 

from the superconductor
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Ginzburg-Landau Theory (1950)

Order parameter? Hint: wave function of Bose condensate (complex!)

2003 1962

https://en.wikipedia.org/wiki/File:UA035-10.jpg


Microscopic mechanism

31

Mechanism of pairing –

phonon-mediated attraction

John Bardeen, Leon Cooper, and Robert Schrieffer

1972

‘The theory describes superconductivity

as a microscopic effect caused by a

condensation of Cooper pairs into a

boson-like state. The theory is also used

in nuclear physics to describe the pairing

interaction between nucleons in an

atomic nucleus.’

https://en.wikipedia.org/wiki/BCS_theory

‘The electrons are bound into Cooper pairs…

Therefore, in order to break a pair, one has to change

energies of all other pairs. This means there is an

energy gap for single-particle excitation, unlike in the

normal metal (where the state of an electron can be

changed by adding an arbitrarily small amount of

energy). The energy gap is most directly observed in

tunnelling experiments and in reflection of microwaves

from superconductors.’

The electrons are bound into Cooper pairs, and these pairs are correlated due to the Pauli exclusion principle for the electrons, from which they are constructed. Therefore, in order to break a pair, one has to change energies of all other pairs. This means there is an energy gap for single-particle excitation, unlike in the normal metal (where the state of an electron can be changed by adding an arbitrarily small amount of energy). This energy gap is highest at low temperatures but vanishes at the transition temperature when superconductivity ceases to exist. The BCS theory gives an expression that shows how the gap grows with the strength of the attractive interaction and the (normal phase) single particle density of states at the Fermi level. Furthermore, it describes how the density of states is changed on entering the superconducting state, where there are no electronic states any more at the Fermi level. The energy gap is most directly observed in tunneling experiments[9] and in reflection of microwaves from superconductors.


32

The gap in the quasiparticle energy spectrum leads to crucial consequences. 

It is the gap that determines most of thermal, magnetic,  and electrical properties of 

superconductors.

Specific heat Microwave absorption

Energy gap in superconductors
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Ivar Giaever

1973

Leo Esaki, Ivar Giaever, Brian D. Josephson

Prize motivation: "for their experimental discoveries 
regarding tunneling phenomena in semiconductors and 
superconductors, respectively"
Field: condensed matter physics, semiconductors

The Nobel Prize in Physics 1973

https://www.youtube.com/watch?v=AJY8farPqdI
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No single-
electron 
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possible until 

Δ

At the S-N interface:

Effect of energy gap in superconductors



Official opening on 7 September 2016
http://www.mn.uio.no/geo/om/aktuelt/aktuelle-saker/2016/geomagnetisme.html

http://www.iggl.no/

Lake Shore PMC MicroMag 3900 
Vibrating Sample Magnetometer (VSM)

Instruments for Paleomagnetic Measurements 
and Rock Magnetic Analyses

AGICO JR-6A Spinner Magnetometer
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What is the resistance of the junction?

IS S

V

Weak link – two superconductors 
divided by a thin layer of 
insulator or normal conductor

For small currents, the junction is a superconductor!

Reason – order parameters overlap 
in the weak link

B. Josephson

Is it possible to convey Cooper pairs between superconductors?

1973

Josephson effects
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Long hollow 

cylinder

The current 

inside is zero

http://en.wikipedia.org/wiki/SQUID

Alexei A. Abrikosov

2003

Quantization of magnetic flux

http://en.wikipedia.org/wiki/SQUID


Physics Nobel Prize 2016

David Thouless, Duncan Haldane and Michael Kosterlitz

Given for topological phase transitions and topological phases of matter



Superconductivity in relativistic heavy ion collisions

The Large Hadron Collider

(LHC) is currently

operating at the energy of

6.5 TeV per beam. At this

energy, the trillions of

particles circle the collider's

27-kilometre tunnel 11,245

times per second. The

magnet system on the

ATLAS detector includes

eight huge superconducting

magnets (grey tubes)

arranged in a torus around

the LHC beam pipe (Image:

CERN).

All the magnets on the LHC are superconducting. There are 1232 main dipoles, each 15 metres long and

weighing in at 35 tonnes. If normal magnets were used in the 27 km-long LHC instead of superconducting

magnets, the accelerator would have to be 120 kilometres long to reach the same energy.



Superconductivity in cancer therapy

Making cancer treatment more 

accessible:

Alexey Radovinsky, Joe Minervini, 

Phil Michael, and Leslie Bromberg of 

the Plasma Science and Fusion Center 

MIT collaborates on a smaller, lighter 

delivery system for proton-beam 

radiotherapy.

http://thesilicongraybeard.blogspot.no/2015/07/techy-tuesday-using-superconductors-to.html

http://news.mit.edu/2015/making-cancer-treatment-more-accessible-0604

Joseph Minervini: “Using superconductivity in a cyclotron 

design can reduce its mass an order of magnitude from 

conventional, resistive magnet machines,” 

http://www.google.no/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjm8aOI3ojTAhWKiiwKHWKJAIYQjRwIBw&url=http://thesilicongraybeard.blogspot.com/2015/07/techy-tuesday-using-superconductors-to.html&psig=AFQjCNH551RYWAT658EnMw_l


Superconductivity in thermonuclear  energy, ITER
‘ITER (International Thermonuclear Experimental Reactor, and is also Latin for "the way")

is an international nuclear fusion research and engineering megaproject, which will be the

world's largest magnetic confinement plasma physics experiment.’

‘Without superconductivity, ITER would go from being a ''net 

energy positive'' machine to a ''net energy negative'' machine.’
https://www.iter.org/newsline/146/408

https://en.wikipedia.org/wiki/ITER



Superconductivity and renewable energy sources

• Hydrogen and electricity can easily be produced by renewable energy sources solving simultaneously problem of

energy storage.

• Hydrogen can release full potential of superconductivity starting with building infrastructure for hydrogen economy.

P Mikheenko, Superconductivity for hydrogen economy, Journal of Physics: Conference Series 286 (1), 012014



Global applications of superconductivity
Magnetic field protection of Earth 

during poles reversal

The superconducting 

pipeline would need to 

withstand a current of 

109 A

Prevention of super-volcano eruption

The liquid hydrogen-

cooled superconducting 

pipeline encircling planet 

could be built

The superconducting 

pipeline encircling super-

volcano could be used to 

extract energy and 

prevent its eruption

P Mikheenko, Superconductivity for hydrogen economy, Journal of Physics: Conference Series 286 (1), 012014
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Possible superconductivity in the brain
https://link.springer.com/article/10.1007/s10948-018-4965-4

Altmetric has tracked 12,833,273 research outputs across

all sources so far. Compared to these this one has done

particularly well and is in the 99th percentile: it's in the top

5% of all research outputs ever tracked by Altmetric.

https://www.altmetric.com/details/52746868#score

https://link.springer.com/article/10.1007/s10948-018-4965-4
https://www.altmetric.com/details/52746868


Summary

 Electron gas in solid materials is quantum gas at room temperature.

 The application of the formalism of grand canonical ensemble is needed for the 

description of electron gas. 

 Fermi-Dirac distribution provides a good description of standard electron gas.

 At high temperatures, Fermi-Dirac distribution merges with Boltzmann distribution, 

as quantum volume becomes smaller than the volume for one particle of gas.

 Chemical potential of electron gas changes from positive to negative with the 

increase of temperature.

 Bose-Einstein condensation is possible in electron gas. It leads to the 

phenomenon of superconductivity.

 Superconductivity is intensively used in practical applications, and can form a 

basis of renewable energy economy.


